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Examples of structured pradiction



Seqguence labeling

X = the monster ate the sandwich
y = Dt NN Vb Dt NN
X = Yesterday I traveled to Lille
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Natural language parsing

[root] OUTPUT

| ‘object

n-mod

n-mod subject ./ n-mod .\ p-mod n-mod

NLP algorithms use a kitchen sink of features
INPUT



(Bipartite) matching
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Machine translation

GO | nge Translate

This text has been automatically translated from Arabic:

Moscow stressed tone against Iran on its
nuclear program. He called Russian Foreign
Hinister Tehran to take concrete steps

restore confidence with the international
community, to cooperate fully with the IAEL,
Cconversely Tehran expr ed its willingness _:J

Translate text
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Segmentation

i
agh 48
wa® @ W
Y Y .I'-|'I.
PR, - iy E et e

NS ER F PR g g B gaagt TR F R EE
SR LR R ey g g SR EienulAREE WS
"

]
1
B
i
B sdns
-
¢ T, ol - M H pois o
® EaTEr " = s f sy 02 i |
! ::': .- L]
= "
| 2
":.' LEY r.r
.

zoun|y Tatueq :11paJd aseuwrt



Protein secondary structure prediction




Outline Isn't this
> Background: learning to s kinda narrow?

» Stuff | did in the Spring

>

YV V V V

Imperative DSL/library for learning to search
SOTA examples for tagging, parsing, relation extraction, etc.
Learning to search under bandit feedback
Hardness results for learning to search

Active learning for accelerating learning to search

> Stuff I'm trying to do now

» Distant supervision

» Mashups with recurrent neural networks




My expe

» Standard adage: academia=freedom, inc

lence, 6 montns in iNc

ustry

ustry=time

» Number of responsibilities vs number of bosses

> Aspects

> Breadth (academia) versus depth (industry)

| didn't anticipate

» Collaborating through students versus directly

» Security through tenure versus security through $

» At the end of the day: who are your colleagues and
what do you have to do to pay the piper!?

Major caveat: this is comparing a top ranked CS dept to top industry
lab, in a time when there's tons of money in this area (more in industry)



Joint prediction via learning to search

Part of Speech Tagging

NN NNS VBP DT NN NN IN  NNS
NLP algorithms wuse a kitchen sink of features

Dependency Parsing

/YW N\m

NLP algorithms wuse a kitchen sink of features




Joint prediction via learning to search

7 ) Y

Joint Prediction Haiku

A joint prediction
Across a single input
Loss measured jointly

of
features ya—




Clclolclololclolo
wNVNMVNMV
) = | Y Y Y
ClololTlclclclaoalo
Cl>1=1=1=z1Z=Z]|>]1>
Clololocloloc|lolo|©
wMMMMMMMM
“nnmnnnnn
(G D G D GEE I GEE D GERN e GER e GERN e
alajlajajalala]la
. J/

Back to the original problem...
* How to optimize a discrete, joint loss?
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Back to the original problem...

* How to optimize a discrete, joint loss!?

* Input: Xe X

* Truth: y € Y(Xx)
* Outputs:  Y(x)

* Predicted: y € Y(x)
* Loss: lossl(y, V)
* Data: (x,y) ~ D




Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

S decision

action
decision

action

decision

N
qvﬂ action




Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

Encodes an output

Ta y =yle)
from which
loss(y, )
p— can be computed

(at training time)

end

mmwm?



Policies

* A policy maps observations to actions




An analogy from playing Mario

From Mario Al competition 2009

Output:
Jump in {0,1}
Right in {0,1}
Left in {0,1}

- Speed in {0,1}

High level goal:
Watch an expert play and
learn to mimic her behavior



Training (expert)
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Warm-up: Supervised learning

| .Collect trajectories from expert Tref
2.Store as dataset D = { (o, mf(0,y) ) | 0 ~ mef }
3.Train classifier M on D

* Let m play the game!




Test-time execution (sup. learning)
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What's the (biggest) faillure mode?

The expert never gets stuck next to pipes

— Classifier doesn't learn to recover!




Warm-up II: Imitation learning

|. Collect trajectories from expert mref IfN=TlogT,

2. Dataset Do = { (o, m(0y) ) | o ~ ' } [Ngfer I Nes JNa g Yg

3. Train M| on Dy for some n

4. Collect new trajectories from m,
~ But let the expert steer!

5.Dataset D| ={ (o,mr**f(0,y) ) | 0o ~ T} }

6. Train M, on Dg U D,

* In general:
+ Dp={(0,m(oy)) |0~}

* Train Mh4+; on U<, D;



Test-time execution (DAgger)
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What's the biggest faillure mode?

Classifier only sees right versus not-right
* No notion of better or worse

* No partial credit

* Must have a single target answer




Learning to search: AggraVaTe

|.Let learned po

2.For each possi

icy 1T drive for t timesteps to obs. 0

vle action a:

* Take action a, and let expert 1¢! drive the rest

* Record the overall loss, C,

3.Update 11 based on example:
(0, {cy, Ca,..., Ck))

4.Goto (1)

It




Training time versus test accuracy

FOS Tagging (hmed hps)
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Training time versus test accuracy

__Named Entity Recognition (tuned hps)
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Test time speed

Prediction (test-time) Speed

200 300 400
Thousands of Tokens per Second

EmL2S
mL2S (ft)
# CRFsgd
W CRF++
# StrPerc
& StrSVM
StrSVM?2



State of the art accuracy In....

* Part of speech tagging (I million words)

e US: 6 lines of code |0 seconds to train
* CRFsgd: 1068 lines 30 minutes
e CRF++: 777 lines hours

* Named entity recognition (200 thousand words)

e US: 30 lines of code 5 seconds to train
* CRFsgd: | minute
e CRF++; |0 minutes

SVMstr: 876 lines 30 minutes (suboptimal accuracy)



The Magic

* You write some greedy “test-time” code
* In your favorite imperative language (C++/Python)
* |t makes arbitrary calls to a Predict function

* And you add some minor decoration

* We will automatically:
* Perform learning
* Generate non-determinstic (beam) search
* Run faster than specialized learning software



How to train?
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| .Generate an initial trajectory
using a rollin policy

2.Foreach state R on that trajectory:

a)Foreach possible action a (one-step deviations)
i. Take that action
ii. Complete this trajectory using a rollout policy

iii.Obtain a final loss

b)Generate a cost-sensitive classification example:

( CD(R)’ <Ca>aeA )



The magic in practice (aSEEEEIITE

correct decision (&

run{vector<example> ec) only at training time

for 1 = 0 .. ec.slze

y_true = get_example_label(egd . 1
y_pred = Predict(ec[1], y_true) not hldmg
Loss( # of y_true != vy pred ) anythmgm

¥

void run(search& sch, vector<example*> ec) {
for (size_t 1=0; 1<ec.size(),; 1++) {
uint32_t y_true = get_example_label(ec[1]);
uint32_t y_pred = sch.predict(ec[1], y_true);

sch.loss( y_true != vy _pred );

1T (sch.output().good())
sch.output() << y_pred << ' ';




The illusion of control
e Execute run O(TxA) times, modifying Predict

* For each time stepmyl = 1| .. T:
For each possible action myA =1 .. A:

T myA  ift=myT

define Predict(...) = = .
T otherwise

N—

run your code in full
set cost, = result of Loss

Make classification example on X, with <cost,>

run(vector<example> ec)
for 1 = 0 .. ec.silze
y_true = get_example_label(ec[1])
y_pred = Predict(ec[1], y_true)
Loss( # of y_true !'= vy _pred )




Entity/relation identification

Goal: find the Entities and then find their Relations

Method

Entity F1

Relation F1

Train Time

Structured SVM

83.00

50.04

300 seconds

.25

92.51

52.03

13 seconds

. 2S uses “100 LOC.




Dependency parsing
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Outline

>

Learning to search under bandit feedback

Hardness results for learning to search

vV V V V V

Active learning for accelerating learning to search

> Stuff I'm trying to do now
» Distant supervision

» Mashups with recurrent neural networks



STRUCTURED CONTEXTUAL BANDIT
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» Loss of a single structured label can be observed.



A SEARCH PROBLEM
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A SEARCH PROBLEM

States O
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e * ":UE Content | Ad

Convert SCB into search problem (search space + actions).



A SEARCH PROBLEM

Statgs O

L

LY
Actlﬂps

Define structured features over each state.

» Learn policy mapping features to actions.



A SEARCH PROBLEM

States O
. £
Actions \H
e * O . ':’S Content | Ad

Use status quo system as reference policy (Ref).

» Goal is to improve on Ref.



CONNECTION WITH LEARNING TO SEARCH

L25 SCB




CONNECTION WITH LEARNING TO SEARCH

L25

SCB

Search Space

States, Actions, Features




CONNECTION WITH LEARNING TO SEARCH

L2§ SCB
Search Space States, Actions, Features
Feedback Labels Single Loss




CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad




CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad

Ref Availability

Training only

Train and Test




CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad
Ref Availability Training only Train and Test
Goal Imitate Ref Improve upon Ref




CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad
Ref Availability Training only Train and Test
Goal Imitate Ref Improve upon Ref

Existing L2S algorithms give:

L(7) < L(x") + o(1)




MAIN GOAL

Learning to Search with:

1. A suboptimal reference = Learn policy that improves on Ref.
2. Partial feedback.



DISEDERATA

» Compete with Ref.

» Global optimality if Ref is optimal and realizable.
» Local optimality.

» Compete with your own one-step deviations.

O

States

Actions ™,
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O f(}’,,_) =0.1




EXPLORATION IN SEARCH SPACE

Xe X

ye l(y)=0.0

yey ly)=0.2

yed Ily)=0.8

\_.Y_J

roll-out

ﬂ
o
'—I
'—I
|
b -
- L
one-step
deviations

» Roll-in choice affects what states we train on.
» Roll-out choice affects how we score actions.



EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

m”-ﬂu.t = Reference Half /Half | Learned
L roll-in

Reference Inconsistent

Learned No local opt Good RL




EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half | Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

Roll-in with Ref can generate a model with unbounded structured
regret but zero cost-sensitive regret.

» States trained on are not representative of those seen at
prediction time.



EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half | Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

Roll-out with Ref may cause the learned policy to fail to converge
to a local optimum if the reference policy is suboptimal.

» Causes poor assessment of comparison policies.



EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

Roll-in and roll-out with the learned policy ignores Ref and is
equivalent to reinforcement learning.



EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half | Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.



LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

(L(i’f) - L(ﬂ““-f)) + %(L('Fr] = L(f.—de‘“')) is small.
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LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.
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» Competes with Ref.



LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

(L(i’f) - L(ﬂ““-f)) + %(L('Fr] = L(f.—de‘“')) is small.

L™ - g -

=0 Regret to devs

» Competes with Ref.

» Locally optimal when Ref is optimal (even if unrealizable).



LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

(L(i’f) - L(ﬂ““-f)) + %(L('Fr] = L(f.—de‘“')) is small.

L™ - g -

Regret to Ref Regret to devs

3
2

» Competes with Ref.
» Locally optimal when Ref is optimal (even if unrealizable).

» |If Ref suboptimal, either locally optimal or better than Ref.



[.ocAL OPTIMALITY IS HARD

Finding local optimum could be hard without further assumptions.

THEOREM

Can require Q(2") cost-sensitive classification examples to reach
local optimum.

T is the number of decisions per example.



DEPENDENCY PARSING

Find the dependency structure of words in a sentence.

rolko u.t = Reference Mixture Learned
1 roll-in
Reference is optimal
Reference 87.2 89.7 88.2
Learned 90.7 90.5 86.9
Reference is suboptimal
Reference 83.3 87.2 81.6
Learned 87.1 90.2 86.8
Reference is bad

Reference 68.7 65.4 66.7
Learned 75.8 89.4 87.5

LOLS always good, even with suboptimal Ref.




STRUCTURED CONTEXTUAL BANDIT

» Loss of a single structured label can be observed.

» Reference policy is not optimal under this setting.
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STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

Z :O Hye) = 0.2



STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

» w/ prob. €. perform a randomized LOLS update.
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STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

» w/ prob. €. perform a randomized LOLS update.

O O
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STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

» w/ prob. €. perform a randomized LOLS update.

O O
O

O Uy.) =0.1
O

Regret against ref and deviations is still bounded.



Ouﬂine /Observation: rollouts at all\

time steps not equally useful
>

Solution: importance-weighted
active learning selection of
where to rollout vs skip

Hacky heuristic: 5* speedup,
slightly increased accuracy

vV V V V V

Training RNINs with LOLS
yields drastic increases in

' . performance on non-
> Stuff I'm trying to do now adversarial synthetic data

Active learning for acceleratin

» Distant supervision

» Mashups with recurrent neural networks




Distant supervision

> Learning with a human in the loop

> Repeat forever:
> Information need
Machine makes complex prediction
Human is happy or unhappy, provides extra feedback

Machine learns

vV V V V

Human learns

» How to handle the last step!?
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* Novel programming paradigm for
integrating ML into software

* State of the art results on many
tasks, very quickly, little code

* New problems, new algorithms

* Positive results (notion of local
optimality, and regret guarantees)

* Negative results (hardness of exact
local optimality)

* Lots of places to go from here...

Thanks! Questions?
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