
Hal Daumé III | University of Maryland | me@hal3.name | @haldaume3

Stuff I did in the
Spring while not

Replying to Email
(aka “advances in structured prediction”)

Examples of

The monster ate a big sandwich

structured predictionjoint

Sequence labeling

The monster ate a big sandwich

x = the monster ate the sandwich
y = Dt Nn Vb Dt Nn

x = Yesterday I traveled to Lille
y = - PER - - LOC

i
m
a
g
e

c
r
e
d
i
t
:

R
i
c
h
a
r
d

P
a
d
g
e
t
t

OUTPUT

INPUT
NLP algorithms use a kitchen sink of features

n-mod

object

subject n-mod

n-mod

p-mod n-mod

[root]

Natural language parsing

i
m
a
g
e

c
r
e
d
i
t
:

B
e
n

T
a
s
k
a
r
;

L
i
z

J
u
r
r
u
s

(Bipartite) matching

Machine translation

i
m
a
g
e

c
r
e
d
i
t
:

D
a
n
i
e
l

M
u
ñ
o
z

Segmentation

Protein secondary structure prediction

LOLS9 Hal Daumé III (me@hal3.name)

Outline
➢ Background: learning to search

➢ Stuff I did in the Spring
➢ Imperative DSL/library for learning to search
➢ SOTA examples for tagging, parsing, relation extraction, etc.
➢ Learning to search under bandit feedback
➢ Hardness results for learning to search
➢ Active learning for accelerating learning to search

➢ Stuff I'm trying to do now
➢ Distant supervision
➢ Mashups with recurrent neural networks

Isn't this
kinda narrow?

LOLS10 Hal Daumé III (me@hal3.name)

My experience, 6 months in industry
➢ Standard adage: academia=freedom, industry=time

➢ Number of responsibilities vs number of bosses

➢ Aspects I didn't anticipate
➢ Breadth (academia) versus depth (industry)
➢ Collaborating through students versus directly
➢ Security through tenure versus security through $

➢ At the end of the day: who are your colleagues and
what do you have to do to pay the piper?

Major caveat: this is comparing a top ranked CS dept to top industry
lab, in a time when there's tons of money in this area (more in industry)

Joint prediction via learning to search
Part of Speech Tagging

Dependency Parsing

NLP algorithms use a kitchen sink of features

ROOT

NLP algorithms use a kitchen sink of features
NN NNS VBP DT NN NN IN NNS

NLP

algorithms
use a

kitchen

sink

of
features

ROOT

Joint Prediction Haiku

A joint prediction
Across a single input
Loss measured jointly

Joint Prediction Haiku

A joint prediction
Across a single input
Loss measured jointly

Joint prediction via learning to search

Back to the original problem...
● How to optimize a discrete, joint loss?

● Input: x  X
● Truth: y  Y(x)
● Outputs: Y(x)
● Predicted: ŷ  Y(x)
● Loss: loss(y, ŷ)
● Data: (x,y) ~ D

I can can a can

Pro Md Vb Dt Nn

Pro Md Vb Dt Vb

Pro Md Vb Dt Md

Pro Md Nn Dt Nn

Pro Md Nn Dt Vb

Pro Md Nn Dt Md

Pro Md Md Dt Nn

Pro Md Md Dt Vb

Back to the original problem...
● How to optimize a discrete, joint loss?

● Input: x  X
● Truth: y  Y(x)
● Outputs: Y(x)
● Predicted: ŷ  Y(x)
● Loss: loss(y, ŷ)
● Data: (x,y) ~ D

Goal:
find h  H

such that h(x)  Y(x)
minimizing

E(x,y)~D [loss(y, h(x))]
based on N samples

(xn, yn) ~ D

Search spaces
● When y decomposes in an ordered manner,

a sequential decision making process emerges
I

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

decision

action
decision

action
decision

action

Search spaces
● When y decomposes in an ordered manner,

a sequential decision making process emerges

a

Pro Md Vb Dt Nn

can

Pro Md Vb Dt Nn

e end

Encodes an output
ŷ = ŷ(e)

from which
loss(y, ŷ)

can be computed
(at training time)

Policies
● A policy maps observations to actions

()=a
obs.

input: x
timestep: t
partial traj: τ
… anything else

Jump in {0,1}
Right in {0,1}
Left in {0,1}
Speed in {0,1}

Extracted 27K+ binary features
from last 4 observations
(14 binary features for every cell)

Output:Input:

From Mario AI competition 2009

An analogy from playing Mario

High level goal:
Watch an expert play and

learn to mimic her behavior

Training (expert)
V
i
d
e
o

c
r
e
d
i
t
:

S
t
é
p
h
a
n
e

R
o
s
s
,

G
e
o
f
f

G
o
r
d
o
n

a
n
d

D
r
e
w

B
a
g
n
e
l
l

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert πref

2.Store as dataset D = { (o, πref(o,y)) | o ~ πref }
3.Train classifier π on D

● Let π play the game!

Test-time execution (sup. learning)
V
i
d
e
o

c
r
e
d
i
t
:

S
t
é
p
h
a
n
e

R
o
s
s
,

G
e
o
f
f

G
o
r
d
o
n

a
n
d

D
r
e
w

B
a
g
n
e
l
l

What's the (biggest) failure mode?

ππrefref

The expert never gets stuck next to pipes
 Classifier doesn't learn to recover!

Warm-up II: Imitation learning

ππrefref

1. Collect trajectories from expert πref

2. Dataset D0 = { (o, πref(o,y)) | o ~ πref }

3. Train π1 on D0

4. Collect new trajectories from π1

➢ But let the expert steer!
5. Dataset D1 = { (o, πref(o,y)) | o ~ π1 }

6. Train π2 on D0 ∪ D1

● In general:
● Dn = { (o, πref(o,y)) | o ~ πn }
● Train πn+1 on ∪i≤n Di

ππ11

ππ22

If N = T log T,

L(πn) < T N + O(1)

for some n

Test-time execution (DAgger)
V
i
d
e
o

c
r
e
d
i
t
:

S
t
é
p
h
a
n
e

R
o
s
s
,

G
e
o
f
f

G
o
r
d
o
n

a
n
d

D
r
e
w

B
a
g
n
e
l
l

What's the biggest failure mode?
Classifier only sees right versus not-right
● No notion of better or worse
● No partial credit
● Must have a single target answer

ππ**

ππ11

ππ22

Learning to search: AggraVaTe
1.Let learned policy π drive for t timesteps to obs. o
2.For each possible action a:

● Take action a, and let expert πref drive the rest
● Record the overall loss, ca

3.Update π based on example:
 (o, 〈c1, c2,..., cK〉)

4.Goto (1)

ππ

0
0.4

100

Training time versus test accuracy

Training time versus test accuracy

Test time speed

State of the art accuracy in....
● Part of speech tagging (1 million words)

● wc: 3.2 seconds
● US: 6 lines of code 10 seconds to train
● CRFsgd: 1068 lines 30 minutes
● CRF++: 777 lines hours

● Named entity recognition (200 thousand words)
● wc: 0.8 seconds
● US: 30 lines of code 5 seconds to train
● CRFsgd: 1 minute
● CRF++: 10 minutes
● SVMstr: 876 lines 30 minutes (suboptimal accuracy)

The Magic
● You write some greedy “test-time” code

● In your favorite imperative language (C++/Python)
● It makes arbitrary calls to a Predict function
● And you add some minor decoration

● We will automatically:
● Perform learning
● Generate non-determinstic (beam) search
● Run faster than specialized learning software

How to train?

1.Generate an initial trajectory
using a rollin policy

2.Foreach state R on that trajectory:
a)Foreach possible action a (one-step deviations)

i. Take that action
ii. Complete this trajectory using a rollout policy
iii.Obtain a final loss

b)Generate a cost-sensitive classification example:
(Φ(R), caaA)

S R E

E

E

rollin

rollout

o
n
e
-
s
t
e
p

d
e
v
i
a
t
i
o
n
s

loss=.2

loss=0

loss=.8

The magic in practice
run(vector<example> ec)
 for i = 0 .. ec.size
 y_true = get_example_label(ec[i])
 y_pred = Predict(ec[i], y_true)
 Loss(# of y_true != y_pred)

How bad was the entire
sequence of predictions

(at training time)

void run(search& sch, vector<example*> ec) {
 for (size_t i=0; i<ec.size(); i++) {
 uint32_t y_true = get_example_label(ec[i]);
 uint32_t y_pred = sch.predict(ec[i], y_true);

 sch.loss(y_true != y_pred);

 if (sch.output().good())
 sch.output() << y_pred << ' ';
 }
}

I'm really
not hiding
anything...

A “hint” about the
correct decision
only at training time

The illusion of control
● Execute run O(TxA) times, modifying Predict
● For each time step myT = 1 .. T:

For each possible action myA = 1 .. A:

define Predict(...) =

run your code in full
set costa = result of Loss

Make classification example on xmyT with <costa>

myA if t = myT

π otherwise

run(vector<example> ec)
 for i = 0 .. ec.size
 y_true = get_example_label(ec[i])
 y_pred = Predict(ec[i], y_true)
 Loss(# of y_true != y_pred)

LOLS35 Hal Daumé III (me@hal3.name)

Entity/relation identification

LOLS36 Hal Daumé III (me@hal3.name)

Dependency parsing

LOLS37 Hal Daumé III (me@hal3.name)

Outline
➢ Background: learning to search

➢ Stuff I did in the Spring
➢ Imperative DSL/library for learning to search
➢ SOTA examples for tagging, parsing, relation extraction, etc.
➢ Learning to search under bandit feedback
➢ Hardness results for learning to search
➢ Active learning for accelerating learning to search

➢ Stuff I'm trying to do now
➢ Distant supervision
➢ Mashups with recurrent neural networks

LOLS38 Hal Daumé III (me@hal3.name)

LOLS39 Hal Daumé III (me@hal3.name)

LOLS40 Hal Daumé III (me@hal3.name)

LOLS41 Hal Daumé III (me@hal3.name)

LOLS42 Hal Daumé III (me@hal3.name)

LOLS43 Hal Daumé III (me@hal3.name)

LOLS44 Hal Daumé III (me@hal3.name)

LOLS45 Hal Daumé III (me@hal3.name)

LOLS46 Hal Daumé III (me@hal3.name)

LOLS47 Hal Daumé III (me@hal3.name)

LOLS48 Hal Daumé III (me@hal3.name)

LOLS49 Hal Daumé III (me@hal3.name)

LOLS50 Hal Daumé III (me@hal3.name)

LOLS51 Hal Daumé III (me@hal3.name)

LOLS52 Hal Daumé III (me@hal3.name)

LOLS53 Hal Daumé III (me@hal3.name)

LOLS54 Hal Daumé III (me@hal3.name)

LOLS55 Hal Daumé III (me@hal3.name)

LOLS56 Hal Daumé III (me@hal3.name)

LOLS57 Hal Daumé III (me@hal3.name)

LOLS58 Hal Daumé III (me@hal3.name)

LOLS59 Hal Daumé III (me@hal3.name)

LOLS60 Hal Daumé III (me@hal3.name)

LOLS61 Hal Daumé III (me@hal3.name)

LOLS62 Hal Daumé III (me@hal3.name)

LOLS63 Hal Daumé III (me@hal3.name)

LOLS64 Hal Daumé III (me@hal3.name)

LOLS65 Hal Daumé III (me@hal3.name)

LOLS66 Hal Daumé III (me@hal3.name)

LOLS67 Hal Daumé III (me@hal3.name)

LOLS68 Hal Daumé III (me@hal3.name)

LOLS69 Hal Daumé III (me@hal3.name)

LOLS70 Hal Daumé III (me@hal3.name)

Outline
➢ Background: learning to search

➢ Stuff I did in the Spring
➢ Imperative DSL/library for learning to search
➢ SOTA examples for tagging, parsing, relation extraction, etc.
➢ Learning to search under bandit feedback
➢ Hardness results for learning to search
➢ Active learning for accelerating learning to search

➢ Stuff I'm trying to do now
➢ Distant supervision
➢ Mashups with recurrent neural networks

Observation: rollouts at all
time steps not equally useful

Solution: importance-weighted
active learning selection of
where to rollout vs skip

Hacky heuristic: 5* speedup,
slightly increased accuracy

Training RNNs with LOLS
yields drastic increases in

performance on non-
adversarial synthetic data

LOLS71 Hal Daumé III (me@hal3.name)

Distant supervision
➢ Learning with a human in the loop

➢ Repeat forever:
➢ Information need
➢ Machine makes complex prediction
➢ Human is happy or unhappy, provides extra feedback
➢ Machine learns
➢ Human learns

➢ How to handle the last step?

Alekh
Agarwal

Kai-Wei
Chang

Akshay
Krishnamurthy

John
Langford

Alina
Beygelzimmer

Paul
Mineiro

Stéphane
Ross

He
He

● Novel programming paradigm for
integrating ML into software

● State of the art results on many
tasks, very quickly, little code

● New problems, new algorithms
● Positive results (notion of local

optimality, and regret guarantees)
● Negative results (hardness of exact

local optimality)
● Lots of places to go from here...

Thanks! Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Experiments: Super Mario Bros
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

