Stuff I did in the
Spring while not
Replying to Email

(aka "advances in structured prediction”)

Hal Daumé Il | University of Maryland | me@hal3.name | @haldaume3

Examples of structured pradiction

Seqguence labeling

X = the monster ate the sandwich
y = Dt NN Vb Dt NN
X = Yesterday I traveled to Lille

PER - - LOC

<
|
|

5" Splice site Branch site 3" Splice site

1193ped pJeyodTy :3TpaJd ddeuwt

Natural language parsing

[root] OUTPUT

| ‘object

n-mod

n-mod subject ./ n-mod .\ p-mod n-mod

NLP algorithms use a kitchen sink of features
INPUT

(Bipartite) matching

What

Is

the
anticipated
Cost

of
collecting
fees
under

the

new
proposal

?\

En

Vertu

de

les
nouvelles
propositions

perception
de

les

droits

?

snaJnr zI7 ‘Jdeyse] uag :1TpaJd aSewt

Machine translation

GO | nge Translate

This text has been automatically translated from Arabic:

Moscow stressed tone against Iran on its
nuclear program. He called Russian Foreign
Hinister Tehran to take concrete steps

restore confidence with the international
community, to cooperate fully with the IAEL,
Cconversely Tehran expr ed its willingness _:J

Translate text

csaaitl Legelsys glay gl o] ad Lgfwgd oSwpa Saad
o | gl 3 =21 |. Ul gl ' 3 e | -E.__l.__'-_J | J=rjy Loy
galridly Jdead| zaxdl zo L8] bolmiwd Logals
gl gl Gnb] JuolBhley dujgddl dILSedl 2o Jdlo]

ll:.l.__l_:_;.l_-ll_l I -LI I_'_:_'_I_r,;_":'_rl i:‘. L',;|_.|_._|_| I [| I_:_Il|_=_._.J I'_‘I l'_|'|. o I _I_5,"_.i._|._.J I

i =|; L _|,|_|_| | I_fil_lfl_|_|:jl I;_l_.:]fﬂ | |_|_._|_|_d:". hil_a., L kl_]_.:_l__l |:i_:l_'— |_"_|,| |

from| Arabicto English BETA Translate I

Segmentation

i
agh 48
wa® @ W
Y Y .I'-|'I.
PR, - iy E et e

NS ER F PR g g B gaagt TR F R EE
SR LR R ey g g SR EienulAREE WS
"

]
1
B
i
B sdns
-
¢ T, ol - M H pois o
® EaTEr " = s f sy 02 i |
! ::': .- L]
= "
| 2
":.' LEY r.r
.

zoun|y Tatueq :11paJd aseuwrt

Protein secondary structure prediction

Outline Isn't this
> Background: learning to s kinda narrow?

» Stuff | did in the Spring

>

YV V V V

Imperative DSL/library for learning to search
SOTA examples for tagging, parsing, relation extraction, etc.
Learning to search under bandit feedback
Hardness results for learning to search

Active learning for accelerating learning to search

> Stuff I'm trying to do now

» Distant supervision

» Mashups with recurrent neural networks

My expe

» Standard adage: academia=freedom, inc

lence, 6 montns in iNc

ustry

ustry=time

» Number of responsibilities vs number of bosses

> Aspects

> Breadth (academia) versus depth (industry)

| didn't anticipate

» Collaborating through students versus directly

» Security through tenure versus security through $

» At the end of the day: who are your colleagues and
what do you have to do to pay the piper!?

Major caveat: this is comparing a top ranked CS dept to top industry
lab, in a time when there's tons of money in this area (more in industry)

Joint prediction via learning to search

Part of Speech Tagging

NN NNS VBP DT NN NN IN NNS
NLP algorithms wuse a kitchen sink of features

Dependency Parsing

/YW N\m

NLP algorithms wuse a kitchen sink of features

Joint prediction via learning to search

7) Y

Joint Prediction Haiku

A joint prediction
Across a single input
Loss measured jointly

of
features ya—

Clclolclololclolo
wNVNMVNMV
) = | Y Y Y
ClololTlclclclaoalo
Cl>1=1=1=z1Z=Z]|>]1>
Clololocloloc|lolo|©
wMMMMMMMM
“nnmnnnnn
(G D G D GEE I GEE D GERN e GER e GERN e
alajlajajalala]la
. J/

Back to the original problem...
* How to optimize a discrete, joint loss?

—m w7 A
TSN R
vow X u g >
M o oy 2 X
t.mw..m g

(qv;
a 5 59 % &
E - O a a0

Back to the original problem...

* How to optimize a discrete, joint loss!?

* Input: Xe X

* Truth: y € Y(Xx)
* Outputs: Y(x)

* Predicted: y € Y(x)
* Loss: lossl(y, V)
* Data: (x,y) ~ D

Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

S decision

action
decision

action

decision

N
qvﬂ action

Search spaces

* When y decomposes in an ordered manner,
a sequential decision making process emerges

Encodes an output

Ta y =yle)
from which
loss(y,)
p— can be computed

(at training time)

end

mmwm?

Policies

* A policy maps observations to actions

An analogy from playing Mario

From Mario Al competition 2009

Output:
Jump in {0,1}
Right in {0,1}
Left in {0,1}

- Speed in {0,1}

High level goal:
Watch an expert play and
learn to mimic her behavior

Training (expert)

<
=
o
D
(@)
N
=
D
o
=-
—+
n
—+
M~
©
oy
Q
>
()
o)
(@)
0n
2]
()
D
(@)
_h
_h
(]
(@)
=
o
(@)
)
Q
>
o
O
=
1)
=
v}
Q)
(0)¢]
)
D
|
|

Warm-up: Supervised learning

| .Collect trajectories from expert Tref
2.Store as dataset D = { (o, mf(0,y)) | 0 ~ mef }
3.Train classifier M on D

* Let m play the game!

Test-time execution (sup. learning)

<
=
o
D
(@)
N
=
D
o
=-
—+
n
—+
M~
©
oy
Q
>
()
o)
(@)
0n
2]
()
D
(@)
_h
_h
(]
(@)
=
o
(@)
)
Q
>
o
O
=
1)
=
v}
Q)
(0)¢]
)
D
|
|

What's the (biggest) faillure mode?

The expert never gets stuck next to pipes

— Classifier doesn't learn to recover!

Warm-up II: Imitation learning

|. Collect trajectories from expert mref IfN=TlogT,

2. Dataset Do = { (o, m(0y)) | o ~ ' } [Ngfer I Nes JNa g Yg

3. Train M| on Dy for some n

4. Collect new trajectories from m,
~ But let the expert steer!

5.Dataset D| ={ (o,mr**f(0,y)) | 0o ~ T} }

6. Train M, on Dg U D,

* In general:
+ Dp={(0,m(oy)) |0~}

* Train Mh4+; on U<, D;

Test-time execution (DAgger)

ﬂtttnpt 1 of 1
hymh&liqe&h_

09pPTA

SPEED

eydsls :3Tpadd

-
@
o)
O
)
V)
n
)
o
_h
—h
()
o
=
o
o
S5
)
>
o
o
=
)
=
o
Q
0Q
>
)
|
|

What's the biggest faillure mode?

Classifier only sees right versus not-right
* No notion of better or worse

* No partial credit

* Must have a single target answer

Learning to search: AggraVaTe

|.Let learned po

2.For each possi

icy 1T drive for t timesteps to obs. 0

vle action a:

* Take action a, and let expert 1¢! drive the rest

* Record the overall loss, C,

3.Update 11 based on example:
(0, {cy, Ca,..., Ck))

4.Goto (1)

It

Training time versus test accuracy

FOS Tagging (hmed hps)

96.6

e

o

w

=
T

o

o

[s]
T

4

2.
o
=
| -
@
Q
>
%)
©
=
=]
Q
Q
<

0.

w
OAA <44 CRF++
L25 == StrPerc
L2S (ft) #=* StrSVM | -
CRFsgd ¢—¢ StrSVM2

| i | i 1.' i
10° 107 10° 10" 10° 10°
Training time (minutes)

Training time versus test accuracy

__Named Entity Recognition (tuned hps)

)
o
-]
n

T

=
£
|
a
|| -
i]
O
S
i]
| -
o
[
0
LL.

OAA <44 CRF++
L2S B StrPerc
T L2S (ft) 60 StrSVM2

CRFsgd

I I 1 1
1072 10" 10° 10’
Training time (minutes)

Test time speed

Prediction (test-time) Speed

200 300 400
Thousands of Tokens per Second

EmL2S
mL2S (ft)
CRFsgd
W CRF++
StrPerc
& StrSVM
StrSVM?2

State of the art accuracy In....

* Part of speech tagging (I million words)

e US: 6 lines of code |0 seconds to train
* CRFsgd: 1068 lines 30 minutes
e CRF++: 777 lines hours

* Named entity recognition (200 thousand words)

e US: 30 lines of code 5 seconds to train
* CRFsgd: | minute
e CRF++; |0 minutes

SVMstr: 876 lines 30 minutes (suboptimal accuracy)

The Magic

* You write some greedy “test-time” code
* In your favorite imperative language (C++/Python)
* |t makes arbitrary calls to a Predict function

* And you add some minor decoration

* We will automatically:
* Perform learning
* Generate non-determinstic (beam) search
* Run faster than specialized learning software

How to train?

Q. wn
o C
+ O
v -~
1+
U ©
cC -
(@

>
)
©

| .Generate an initial trajectory
using a rollin policy

2.Foreach state R on that trajectory:

a)Foreach possible action a (one-step deviations)
i. Take that action
ii. Complete this trajectory using a rollout policy

iii.Obtain a final loss

b)Generate a cost-sensitive classification example:

(CD(R)’ <Ca>aeA)

The magic in practice (aSEEEEIITE

correct decision (&

run{vector<example> ec) only at training time

for 1 = 0 .. ec.slze

y_true = get_example_label(egd . 1
y_pred = Predict(ec[1], y_true) not hldmg
Loss(# of y_true != vy pred) anythmgm

¥

void run(search& sch, vector<example*> ec) {
for (size_t 1=0; 1<ec.size(),; 1++) {
uint32_t y_true = get_example_label(ec[1]);
uint32_t y_pred = sch.predict(ec[1], y_true);

sch.loss(y_true != vy _pred);

1T (sch.output().good())
sch.output() << y_pred << ' ';

The illusion of control
e Execute run O(TxA) times, modifying Predict

* For each time stepmyl = 1| .. T:
For each possible action myA =1 .. A:

T myA ift=myT

define Predict(...) = = .
T otherwise

N—

run your code in full
set cost, = result of Loss

Make classification example on X, with <cost,>

run(vector<example> ec)
for 1 = 0 .. ec.silze
y_true = get_example_label(ec[1])
y_pred = Predict(ec[1], y_true)
Loss(# of y_true !'= vy _pred)

Entity/relation identification

Goal: find the Entities and then find their Relations

Method

Entity F1

Relation F1

Train Time

Structured SVM

83.00

50.04

300 seconds

.25

92.51

52.03

13 seconds

. 2S uses “100 LOC.

Dependency parsing

95 1 | | 1 | | | | | | I
Dyna
90
g
S 85
LI.
@
i
R=y
= 80 |
g
<
e |
15 -
70

Ar* Bu Ch Da Du En Ja Po* SI* Sw Avg

language

L2S uses 300 LOC.

36 Hal Daumé Il (me@hal3.name) LOLS

Outline

>

Learning to search under bandit feedback

Hardness results for learning to search

vV V V V V

Active learning for accelerating learning to search

> Stuff I'm trying to do now
» Distant supervision

» Mashups with recurrent neural networks

STRUCTURED CONTEXTUAL BANDIT

1> bing B

Srmn

Font size / i

Trial to start for Maine Chira Protests India Leader s Visit
‘{ || ™ Dupl.llrd Baader Area

man in alleged social
medla murder

Sty hiound policd ufvellinde
m-m.p.:l.lm pmrrﬂ

Color -
/

Position

Trending Topic

» Loss of a single structured label can be observed.

A SEARCH PROBLEM

Haadear
Search
. C [MEI Content Ihcj
ML

A SEARCH PROBLEM

States O
< '
Actions \H
e * ":UE Content | Ad

Convert SCB into search problem (search space + actions).

A SEARCH PROBLEM

Statgs O

L

LY
Actlﬂps

Define structured features over each state.

» Learn policy mapping features to actions.

A SEARCH PROBLEM

States O
. £
Actions \H
e * O . ':’S Content | Ad

Use status quo system as reference policy (Ref).

» Goal is to improve on Ref.

CONNECTION WITH LEARNING TO SEARCH

L25 SCB

CONNECTION WITH LEARNING TO SEARCH

L25

SCB

Search Space

States, Actions, Features

CONNECTION WITH LEARNING TO SEARCH

L2§ SCB
Search Space States, Actions, Features
Feedback Labels Single Loss

CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad

CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad

Ref Availability

Training only

Train and Test

CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad
Ref Availability Training only Train and Test
Goal Imitate Ref Improve upon Ref

CONNECTION WITH

LEARNING TO SEARCH

L2S SCB
Search Space States, Actions, Features
Feedback Labels Single Loss
Ref Quality Optimal Can be bad
Ref Availability Training only Train and Test
Goal Imitate Ref Improve upon Ref

Existing L2S algorithms give:

L(7) < L(x") + o(1)

MAIN GOAL

Learning to Search with:

1. A suboptimal reference = Learn policy that improves on Ref.
2. Partial feedback.

DISEDERATA

» Compete with Ref.

» Global optimality if Ref is optimal and realizable.
» Local optimality.

» Compete with your own one-step deviations.

O

States

Actions ™,

W

O O ye)=02

O f(}’,,_) =0.1

EXPLORATION IN SEARCH SPACE

Xe X

ye l(y)=0.0

yey ly)=0.2

yed Ily)=0.8

_.Y_J

roll-out

ﬂ
o
'—I
'—I
|
b -
- L
one-step
deviations

» Roll-in choice affects what states we train on.
» Roll-out choice affects how we score actions.

EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

m”-ﬂu.t = Reference Half /Half | Learned
L roll-in

Reference Inconsistent

Learned No local opt Good RL

EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half | Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

Roll-in with Ref can generate a model with unbounded structured
regret but zero cost-sensitive regret.

» States trained on are not representative of those seen at
prediction time.

EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half | Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

Roll-out with Ref may cause the learned policy to fail to converge
to a local optimum if the reference policy is suboptimal.

» Causes poor assessment of comparison policies.

EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

Roll-in and roll-out with the learned policy ignores Ref and is
equivalent to reinforcement learning.

EFFECT OF ROLL-IN AND ROLL-OUT POLICIES

roll-out —

. Reference Half /Half | Learned
L roll-in
Reference Inconsistent
Learned No local opt Good RL

THEOREM

LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

(L(i’f) - L(ﬂ““-f)) + %(L('Fr] = L(f.—de‘“')) is small.

L™ - g -

Regret to Ref Regret to devs

3
2

LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

%(L(i’f) - L(="®h)) + %

L™ - g -

o~
-~
—
=
S
|
r"l-l-
—
=
-
m
<
| S—
‘-.,_______,.-"
=
o
on
—
—_
4
a'v]
[
._

Regre; to Ref >0

» Competes with Ref.

LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

(L(i’f) - L(ﬂ““-f)) + %(L('Fr] = L(f.—de‘“')) is small.

L™ - g -

=0 Regret to devs

» Competes with Ref.

» Locally optimal when Ref is optimal (even if unrealizable).

LOLS REGRET BOUND

THEOREM
LOLS minimizes a combination of regret to Ref and regret to its
own one-step deviations.

(L(i’f) - L(ﬂ““-f)) + %(L('Fr] = L(f.—de‘“')) is small.

L™ - g -

Regret to Ref Regret to devs

3
2

» Competes with Ref.
» Locally optimal when Ref is optimal (even if unrealizable).

» |If Ref suboptimal, either locally optimal or better than Ref.

[.ocAL OPTIMALITY IS HARD

Finding local optimum could be hard without further assumptions.

THEOREM

Can require Q(2") cost-sensitive classification examples to reach
local optimum.

T is the number of decisions per example.

DEPENDENCY PARSING

Find the dependency structure of words in a sentence.

rolko u.t = Reference Mixture Learned
1 roll-in
Reference is optimal
Reference 87.2 89.7 88.2
Learned 90.7 90.5 86.9
Reference is suboptimal
Reference 83.3 87.2 81.6
Learned 87.1 90.2 86.8
Reference is bad

Reference 68.7 65.4 66.7
Learned 75.8 89.4 87.5

LOLS always good, even with suboptimal Ref.

STRUCTURED CONTEXTUAL BANDIT

» Loss of a single structured label can be observed.

» Reference policy is not optimal under this setting.

> bing F:R
/ B ST .111 J'r.:l'. s L 'ir!.i:l'\-l =G A :rJ" Al Fliday .|.':11.| I s
- Todwy' s Hesdires
Font size
Trial to start for Maine TINHT r:ﬂ* s Vit
man in alleged social umrinas 331
rnedla murder "i !’ ' "ﬁ
Color
i Sacrecy wrcuned pol ok Laree Lane &
Lo L Hl'l"" b
Position /

Trevaing Tophs

STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

Z :O Hye) = 0.2

STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

» w/ prob. €. perform a randomized LOLS update.

STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

» w/ prob. €. perform a randomized LOLS update.

STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

» w/ prob. €. perform a randomized LOLS update.

O O
O

O Uy.) =0.1

STRUCTURED CONTEXTUAL BANDIT

We adapt an e-greedy algorithm
Upon receiving an example:

» w/ prob. 1 — e€: follow the current policy

» w/ prob. €. perform a randomized LOLS update.

O O
O

O Uy.) =0.1
O

Regret against ref and deviations is still bounded.

Ouﬂine /Observation: rollouts at all\

time steps not equally useful
>

Solution: importance-weighted
active learning selection of
where to rollout vs skip

Hacky heuristic: 5* speedup,
slightly increased accuracy

vV V V V V

Training RNINs with LOLS
yields drastic increases in

' . performance on non-
> Stuff I'm trying to do now adversarial synthetic data

Active learning for acceleratin

» Distant supervision

» Mashups with recurrent neural networks

Distant supervision

> Learning with a human in the loop

> Repeat forever:
> Information need
Machine makes complex prediction
Human is happy or unhappy, provides extra feedback

Machine learns

vV V V V

Human learns

» How to handle the last step!?

A\

Alekh Kai-WVei Akshay John
Agarwal Chang Krishnamurthy Langford

-
*

Alina Paul Stephane He
Beygelzimmer Mineiro Ross He

* Novel programming paradigm for
integrating ML into software

* State of the art results on many
tasks, very quickly, little code

* New problems, new algorithms

* Positive results (notion of local
optimality, and regret guarantees)

* Negative results (hardness of exact
local optimality)

* Lots of places to go from here...

Thanks! Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Experiments: Super Mario Bros
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

