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Software Architecture-level Reliability Modeling

» Assessing reliability of software early is desirable
— Fixing major problems discovered late in development is too costly

* Doing so at the level of software architecture would be preferable
— Architecture is a linchpin of software system development
— A set of abstractions, notations, techniques, and tools for developing large,
complex software-intensive systems
o Challenge: Uncertainty

— e.g., How do you know the runtime behavior of the system before it is
Implemented?

— Needed information includes
» Operational profile
» Failure characteristics
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Sources of Uncertainty

o Components’ reliabilities

— Existing approaches assume these are known
« Development scenario

— Develop a system from scratch vs. from existing components
* Needed information about a system

— Domain expertise

— Software system requirements

— Simulated architectural model

— Functionally similar system
o Granularity of architectural models

— Coarse-gained vs. detailed models of components
 Reliability modeling techniques

— Different techniques are effective in different situations
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Architecture-Level Reliability
Prediction Framework

o Specifically targeted at the level of individual components

Granularity of Reliability Modeling
Architectural Models Information Sources Techniques
I I I
I I I
A 4 A 4 Y

Architectural Phase 1 s;";‘;e;‘”gf Phase 2 Reliability Phase 3 Comp
Models +——» Determining Y Determining Model —» Computing | -
Model . s Reliability,
States Transitions Reliability




University of Southern California

USC Viterbi

School of Engineering

Architecture-Level Reliability
Prediction Framework
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Framework in Action

e Goal: Leverage
dynamlc behavior of Reset/ Initialize
a component
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Framework in Action

 And build a stochastic
reliability model
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Architecture-Level Reliability
Prediction Framework
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L_everaging the Information Sources

e Little or no information
— Explore the design space
« Domain knowledge

— Use operational profiles suggested by expert(s)
— Beware of expert inaccuracies (or worse)!

* Requirements documents
— Contain typical use cases of a component

« Simulation of architectural models
— Capable of handling complex state spaces

 Functionally similar component
— Runtime behavior might be similar to the component of interest
— Similarities may be misleading
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Architecture-Level Reliability
Prediction Framework
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Techniques for Modeling Reliability

e Discrete-Time Markov Chains

 Hidden Markov Models
— Input: Operational and failure profile from above sources
Process: Standard approaches to solve the model
Output: Transition probabilities

e Bayesian Networks

— We have been exploring them for system-level reliability
prediction
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Evaluation Strategy

 Study the framework In many representative scenarios

 Establish the framework’s predictive power vs.
Implementation-level reliability estimation techniques
 Evaluate the framework’s sensitivity to changes in
different parameters
— Architectural model and its granularity

— Source of operational profile and failure characteristics
— Reliability modeling technique
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Example Software Component at Multiple Granularities
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Example Software Component at Multiple Granularities
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Example Software Component at Multiple Granularities
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Sensitivity to Architectural Model Granularity — DeSi
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Sensitivity to Failure Probabilities — SCRover
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e Only one defect is present (Turn defect)

« Each curve corresponds to different failure probabilities

e Vary recovery probabilities from 0.2 to 1 (at 0.2 intervals)

e EXxpert can be wrong!
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Sensitivity to Failure Probabilities — DeSi

Simulation Functionally similar component Code~level Model
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e Considering Missing Model Validation Rules defect
« Again, each curve corresponds to different failure probabilities
« Vary recovery probabilities from 0.2 to 1 (at 0.2 intervals)

o Expert was relatively close, but functionally similar component was
not (close or similar)!

e Simulated model was imprecise
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Sensitivity to Operational Profile Estimation — DeSi
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Conclusions and Current Directions

* One focus to date has been component reliability
prediction at the architectural level

— Uncertainty is a major challenge

* We explored different information sources available at
the architectural level

e Current Directions

— Predicting system reliability at the architectural level
 Scalability — how to model a system with many components in a
scalable way?
— Firmware modeling

« Operating system, device drivers, middleware, etc. also impact a
software system’s reliability




