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Problem Definition: What?

• Network simulators (e.g., ns-2, J-Sim)
• Build a simulation model of a network protocol
• Evaluate its performance in scenarios provided by the user

Extend network simulators with verification capabilities

• Deficiency of traditional network simulators:
• Only evaluate performance in scenarios provided by the user, 
but can not exhaustively analyze possible scenarios for 
“correctness” of either the simulation model or the protocol itself.

• Examples of correctness (protocol-level requirements):
• Can a routing protocol suffer from routing loops?
• Can an attacker break a security protocol?
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Motivation: Why?
• Network simulators have been widely used for decades
• The earlier an error is found the better

• Errors in the simulation model may lead to incorrect experimental results
• Errors in the network protocol itself may happen after deployment

• Building another model specifically for verification purposes is 
time- and effort-consuming and error-prone

• Network protocol designers are more familiar with network simulators 
written in imperative languages (e.g., C++, Java)

Can we have a single integrated tool providing 
both Performance Evaluation and Verification?

• Translating programming languages (e.g., Java) into the input 
modeling languages of conventional model checkers

• May not be always feasible. Requires that each language feature of 
Java have a corresponding one in the destination modeling language.
• Making use of the simulation model that the protocol designer has to 
build anyway for performance evaluation purposes
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J-Sim (http://www.j-sim.org)
• Autonomous Component Architecture (ACA)

• a component-based software architecture

• ACA closely mimics the Integrated Circuit (IC) design
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ACA realizes the notion of a “software” IC

At design time, an IC is bound to a certain 
specification in the databook, instead of being 

bound to ICs that interact with it.

At design time, a component is bound to a 
certain contract, instead of being bound to 

components that interact with it.
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Model Checking Framework in J-Sim

X denotes a violation of a safety property

• Stateful on-the-fly explicit-state model checking in J-Sim
• Explore the state space created by the simulation model of a network 
protocol up to a (configurable) maximum depth of transitions
• No changes to the core design and implementation of J-Sim
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• Build the model checker as a component in the ACA of J-Sim
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• AODV routing for MANETs

• Reasonably complex network protocol
• 1200 LOC (excluding the J-Sim library)

• Representative routing protocol for MANETs

Evaluation and Results

• Handling state space explosion: 
• Making use of protocol-specific heuristics to develop best-first 
search (BeFS) strategies
• Exploit properties inherent to the network protocol and the safety 
property being checked

• Safety property
• Loop-free property of routing paths

• Infinite state space
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AODV Case Study

• Routing protocol: build and maintain routing table entries (RTEs)

• In AODV, the RTE at node n for a destination d contains the 
following fields: nexthopn,d, hopsn,d, seqnon,d

• Loop-free property: 
• A node can not occur at two points on a path

• Consider two nodes n and m such that nexthopn,d = m

• AODV-BeFS: considers a state s1 better than a state s2 if the number 
of valid RTEs to any node in s1 is greater than that in s2.

• On route timeout: invalidate (but not delete) 
RTE, increment seqnon,d, hopsn,d infinity
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Errors discovered and injected

• CE1: An error in the J-Sim simulation model of AODV caused by not 
following part of the AODV specification when an AODV process restarts

• Two manually injected, but subtle, errors:
• CE2: Not to increment seqnon,d when an RTE is invalidated
• CE3: Deleting (instead of invalidating) the RTE

nexthopn0,n2 = n1

nexthopn1,n2 = n0

seqn0,n2 > seqn1,n2

nexthopn0,n2 = n1

AODV Case Study (cont’d)
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Performance of the search strategies
Time (in seconds) and space (in number of states explored) requirements and the 
number of transitions executed for finding the three counterexamples in a 3-node 
chain ad-hoc network using different search strategies. MAX_DEPTH = 10

AODV Case Study (cont’d)
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• Extending J-Sim (www.j-sim.org) with verification capabilities

• Several case studies of fairly complex network protocols
• ARQ, AODV for MANETs, Directed Diffusion for WSNs
• The framework is general enough and not tied to a particular network 
protocol
• The framework can handle larger network topologies

• A methodology for the model checking of another network 
protocol

• Making use of protocol-specific heuristics to develop best-
first search (BeFS) strategies

• Using analogies between AODV and directed diffusion
• Recommend exploiting properties inherent to the network protocol
and the safety property being checked

Conclusion
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• Comparison with Java PathFinder (JPF), a model checker 
for Java programs

• Use JPF to model-check the network protocols in J-Sim
• Compare the model checking framework in J-Sim with that of JPF
• Assess the pros and cons of building a model checker in J-Sim 
instead of using an existing model checker for Java programs such 
as JPF

Future Work

• Class-specific (instead of protocol-specific) heuristics
• Devise efficient heuristics for each class of protocols (e.g., 
routing, coverage and connectivity, localization, etc.)
• If a network protocol belonging to a certain class is to be model-
checked, the user can use the appropriate heuristic for that class 
instead of having to start from scratch


