
1

J-Sim: An Integrated Environment for Simulation 
and Model Checking of Network Protocols

Ahmed Sobeih, Mahesh Viswanathan, Darko Marinov and Jennifer C. Hou

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Presented by: Ahmed Sobeih

NSFNGS 2007 Workshop, held in conjunction with IPDPS 2007 
Long Beach, California, USA, March 25-26 2007



2

Problem Definition: What?

• Network simulators (e.g., ns-2, J-Sim)
• Build a simulation model of a network protocol
• Evaluate its performance in scenarios provided by the user

Extend network simulators with verification capabilities

• Deficiency of traditional network simulators:
• Only evaluate performance in scenarios provided by the user, 
but can not exhaustively analyze possible scenarios for 
“correctness” of either the simulation model or the protocol itself.

• Examples of correctness (protocol-level requirements):
• Can a routing protocol suffer from routing loops?
• Can an attacker break a security protocol?



3

Motivation: Why?
• Network simulators have been widely used for decades
• The earlier an error is found the better

• Errors in the simulation model may lead to incorrect experimental results
• Errors in the network protocol itself may happen after deployment

• Building another model specifically for verification purposes is 
time- and effort-consuming and error-prone

• Network protocol designers are more familiar with network simulators 
written in imperative languages (e.g., C++, Java)

Can we have a single integrated tool providing 
both Performance Evaluation and Verification?

• Translating programming languages (e.g., Java) into the input 
modeling languages of conventional model checkers

• May not be always feasible. Requires that each language feature of 
Java have a corresponding one in the destination modeling language.
• Making use of the simulation model that the protocol designer has to 
build anyway for performance evaluation purposes



4

J-Sim (http://www.j-sim.org)
• Autonomous Component Architecture (ACA)

• a component-based software architecture

• ACA closely mimics the Integrated Circuit (IC) design

Component

PortData
011…

Signal

Pin 1

Pin 2

IC Chip

Pin

ACA realizes the notion of a “software” IC

At design time, an IC is bound to a certain 
specification in the databook, instead of being 

bound to ICs that interact with it.

At design time, a component is bound to a 
certain contract, instead of being bound to 

components that interact with it.



5

s0

s1

s2

s3

s4

s5

s6

s7

X

J-Sim

s0

s1

s2

s3

s4

s5

s6

s7

X

J-Sim w/ MC

Model Checking Framework in J-Sim

X denotes a violation of a safety property

• Stateful on-the-fly explicit-state model checking in J-Sim
• Explore the state space created by the simulation model of a network 
protocol up to a (configurable) maximum depth of transitions
• No changes to the core design and implementation of J-Sim



6

• Build the model checker as a component in the ACA of J-Sim

P1 P2 Pn

Model Checker

J-Sim

Error Trace / No Error

Initial 
State

Current 
State

Next 
State

Model Checking Framework in J-Sim (cont’d)

Component

Port

Communication 
via ports



7

• AODV routing for MANETs

• Reasonably complex network protocol
• 1200 LOC (excluding the J-Sim library)

• Representative routing protocol for MANETs

Evaluation and Results

• Handling state space explosion: 
• Making use of protocol-specific heuristics to develop best-first 
search (BeFS) strategies
• Exploit properties inherent to the network protocol and the safety 
property being checked

• Safety property
• Loop-free property of routing paths

• Infinite state space



8

AODV Case Study

• Routing protocol: build and maintain routing table entries (RTEs)

• In AODV, the RTE at node n for a destination d contains the 
following fields: nexthopn,d, hopsn,d, seqnon,d

• Loop-free property: 
• A node can not occur at two points on a path

• Consider two nodes n and m such that nexthopn,d = m

• AODV-BeFS: considers a state s1 better than a state s2 if the number 
of valid RTEs to any node in s1 is greater than that in s2.

• On route timeout: invalidate (but not delete) 
RTE, increment seqnon,d, hopsn,d infinity



9

Errors discovered and injected

• CE1: An error in the J-Sim simulation model of AODV caused by not 
following part of the AODV specification when an AODV process restarts

• Two manually injected, but subtle, errors:
• CE2: Not to increment seqnon,d when an RTE is invalidated
• CE3: Deleting (instead of invalidating) the RTE

nexthopn0,n2 = n1

nexthopn1,n2 = n0

seqn0,n2 > seqn1,n2

nexthopn0,n2 = n1

AODV Case Study (cont’d)



10

Performance of the search strategies
Time (in seconds) and space (in number of states explored) requirements and the 
number of transitions executed for finding the three counterexamples in a 3-node 
chain ad-hoc network using different search strategies. MAX_DEPTH = 10

AODV Case Study (cont’d)



11

• Extending J-Sim (www.j-sim.org) with verification capabilities

• Several case studies of fairly complex network protocols
• ARQ, AODV for MANETs, Directed Diffusion for WSNs
• The framework is general enough and not tied to a particular network 
protocol
• The framework can handle larger network topologies

• A methodology for the model checking of another network 
protocol

• Making use of protocol-specific heuristics to develop best-
first search (BeFS) strategies

• Using analogies between AODV and directed diffusion
• Recommend exploiting properties inherent to the network protocol
and the safety property being checked

Conclusion



12

• Comparison with Java PathFinder (JPF), a model checker 
for Java programs

• Use JPF to model-check the network protocols in J-Sim
• Compare the model checking framework in J-Sim with that of JPF
• Assess the pros and cons of building a model checker in J-Sim 
instead of using an existing model checker for Java programs such 
as JPF

Future Work

• Class-specific (instead of protocol-specific) heuristics
• Devise efficient heuristics for each class of protocols (e.g., 
routing, coverage and connectivity, localization, etc.)
• If a network protocol belonging to a certain class is to be model-
checked, the user can use the appropriate heuristic for that class 
instead of having to start from scratch


