CNS-0509404 Update

José F. Martínez

M³ Architecture Research Group
http://m3.csl.cornell.edu/
Project’s Recent Highlights

- Dynamic multicore reconfiguration/adaptation
 - E. İpek, M. Kırman, N. Kırman, and J.F. Martínez
 Core Fusion: Accommodating Software Diversity in Multicore Chips
 In Intl. Symp. on Computer Architecture (ISCA), June 2007
 - C.C. LaFrieda, E. İpek, J.F. Martínez, and R. Manohar
 Dynamic Core Coupling for Resilient Multicore Chips
 In Intl. Conf. on Dependable Systems and Networks (DSN), June 2007
 - J. Li and J.F. Martínez
 Power-Performance Optimization of Parallel Computing in Multicore Chips
Project’s Recent Highlights

- Dynamic hardware reconfiguration/adaptation
 - E. İpek, M. Kırman, N. Kırman, and J.F. Martínez
 Core Fusion: Accommodating Software Diversity in Multicore Chips
 - C.C. LaFrieda, E. İpek, J.F. Martínez, and R. Manohar
 Dynamic Core Coupling for Resilient Multicore Chips
 In *Intl. Conf. on Dependable Systems and Networks (DSN)*, June 2007
 - J. Li and J.F. Martínez
 Power-Performance Optimization of Parallel Computing in Multicore Chips
Challenge: CMPs Lack Flexibility

- In CMPs, core is “new transistor”
- Must support diverse apps
 - Sequential
 - Multiprogrammed
 - Parallel (coarse- or fine-grain)
 - Evolving
- Conflicting requirements
 - No. of cores
 - Per-core performance
Challenge: CMPs Lack Flexibility

- In CMPs, core is “new transistor”
- Must support diverse apps
 - Sequential
 - Multiprogrammed
 - Parallel (coarse- or fine-grain)
 - Evolving
- Conflicting requirements
 - No. of cores
 - Per-core performance
High-ILP, High-TLP Hardware

❖ Spatial approach: Multiscalar, RAW, Smart Memories, TRIPS
 + Modular, flexible designs
 - Significant software support

❖ Temporal approach: SMT
 + Tiny overhead on top of base core; quasi-transparent
 - Top-down approach: Large base core
 - Little tolerance for hardware bugs/faults
 - Resource interference
 - Lower parallel efficiency
Proposal: Core Fusion

- Run-time CMP “synthesis”
- High compatibility
 - Single execution model
 - Backward-compatible ISA
 - No sophisticated SW support
- Bottom-up hierarchical design
 - Tolerant to hardware bugs/faults
- No interference across base cores
 - High parallel efficiency
Contributions and Findings

❖ Run-time fully reconfigurable and distributed
 - Front-end + i-Cache
 - LSQ + d-Cache
 - ROB

❖ Thorough evaluation using diverse workload classes
 - Sequential
 - Parallel
 - Multiprogrammed
 - Evolving

❖ Effective
 - Always best or 2nd best
 - Always best in intermediate parallelization stages
 - Others lag significantly in 1+ cases

❖ Highly compatible
Conceptual Organization

- Concept: Add enveloping hardware to enable on-demand core fusion

Not meant to represent actual floorplan
Core Fusion Operation

- i-Cache fusion and reconfiguration
- Collective fetch
- Instruction steering/renaming
- Collective execution
- Distributed memory access
- Collective commit
Core Fusion Operation

- i-Cache fusion and reconfiguration
- Collective fetch
- Instruction steering/renamining
- Collective execution
- Distributed memory access
- Collective commit
Collective Fetch
Collective Fetch
Collective Commit I

Pre-commit

Commit
Collective Commit II

Pre-commit: i0, i1, i2
Commit: i0, i2
Run-time Reconfiguration

- Run-time control of granularity
 - Serial vs. parallel sections
 - Variable granularity in parallel sections
- Mechanism: Fusion, fission ISA instruction
 - Typically encapsulated in macros or directives (e.g., OpenMP sections)
 - Can be safely ignored (single execution model)
- Relatively simple
 - Flush pipelines and i-caches
 - Reconfigure i-cache tags
 - Transfer architectural state as needed
Evaluation Nugget: Evolving Apps

Evolving Application Performance (MG)

Speedup Over Stage Zero Run on FineGrain-2l

- FineGrain-2l
- Core Fusion
- CoarseGrain-4l
- CoarseGrain-6l
- Asymmetric-4l
- Asymmetric-6l

stage0 stage1 stage2 stage3
Issues that Intrigue Me

- Synergistic hardware-software technology
 - Virtualization
 - OS scheduling
 - Multicore compiler mechanisms
 - Application programming
Acknowledgments

- Outstanding Ph.D. students: E. İpek, M. Kırmıhan, N. Kırmıhan, C. LaFrieda, J. Li
- Generous support
 - NSF Award CNS-0509404 (Darema)
 - Other NSF Awards
 - CAREER CCF-0545995 (Pinkston)
 - CCF-0429922 (Pinkston)
 - IBM Faculty Award
 - Intel graduate fellowships (M. Kırmıhan and N. Kırmıhan)
 - Intel gifts and equipment donations
NGS-CSR Workshop Bullet

❖ If we forget Amdahl’s Law, it will come back to haunt us