Models and Heuristics for Robust Resource Allocation in Parallel and Distributed Computing Systems

D. Janovy, J. Smith, H. J. Siegel, and A. A. Maciejewski

Colorado State University

Outline

• models and metrics for robust resource allocation
• deterministic robustness
• stochastic robustness
• current research
Simple Example: Cluster Computing

- cluster of M heterogeneous machines
- T independent tasks
 - production environment
- given estimated time to compute task i on machine j
 - for each task on each machine
- need to allocate resources to tasks
 - static, off-line allocation
- makespan: time to complete all tasks
 - minimize estimated makespan
- want to be robust with respect to uncertainty of execution time estimates
 - actual makespan $\leq 1.2 \times$ estimated makespan
 - 1.2 is a user specified constraint
Deterministic Robust Resource Allocation

- reference to our group’s work

“Measuring the Robustness of a Resource Allocation,”
IEEE Transactions on Parallel and Distributed Systems, July 2004

The Three Robustness Questions

- what behavior of the system makes it robust?
 - ex. actual makespan \(\leq 1.2\) estimated makespan

- what uncertainties is the system robust against?
 - ex. variations in actual execution times

- quantitatively, exactly how robust is the system?
 - ex. largest collective increase (Euclidian measure) in actual task completion times before a makespan constraint violation occurs
Cluster Computing Example: Robustness Metric

FePIA procedure for cluster computing example

- **performance Features**
 - ex. F_j: finishing time of machine j for an allocation

- **Perturbation parameter**
 - ex. vector of actual task computation times for given allocation

- **Impact of perturbation parameter on performance features**
 - ex. $F_j = \text{sum of computation times of tasks on machine } j$

- **Analysis**
 - ex. robustness radius for machine j
 - smallest collective increase between estimated and actual computation times that will cause F_j to be $> 1.2 \times \text{estimated makespan}$
 - robustness metric = minimum robustness radius
Results of FePIA Analysis Step for Machine j

- perturbation parameter: \(t = [t_1 \, t_2] \)

- smallest change in \(t \) from its estimated value
 - that causes violation of specified constraint
 - robustness radius \(r_\mu \) for resource allocation \(\mu \)

- robustness metric: minimum robustness radii over all machines

plot for resource allocation \(\mu \) where \(\{ t \mid F_j(t) = 1.2 \times \text{estimated makespan} \} \)
Cluster: Robustness Versus Estimated Makespan

- 1000 random resource allocations for 20 tasks and 5 machines
- normalized robustness = robust metric / estimated makespan

Each point represents one resource allocation.
Deterministic Robustness: Static Mapping

- reference to our group’s work
 “Robust Static Allocation of Resources for Independent Tasks under Makespan and Dollar Cost Constraints,” *Journal of Parallel and Distributed Computing*, accepted, to appear

- robust resource allocations with uncertain task execution times

- two problem variations were considered
 - fixed machine suite in a production environment
 - task execution times based on estimates
 - maximize robustness within a given makespan constraint
 - machine selection with a purchasing cost constraint
 - machines vary in performance and cost
 - select a suite of machines that maximizes robustness while meeting makespan constraints

- six heuristics were designed and evaluated
Deterministic Robustness: Dynamic Mapping

- reference to our group’s work
 “Dynamic Resource Allocation Heuristics that Manage Tradeoff between Makespan and Robustness,”
 Journal of Supercomputing, accepted, to appear

- establish the notion of deterministic dynamic robustness
- task arrival times are not known in advance
- fixed suite of machines
- robust resource allocations with uncertain task execution times
- two problem variations were considered
 - minimize makespan while maintaining a specified level of robustness over all mapping events
 - maximize the minimum robustness over time within a given makespan constraint
- ten heuristics were designed and evaluated
Stochastic Robustness Model: Cluster Example

- reference to our group’s work

- stochastic robustness metric is probability that completion time of all machines meets requirements

![Diagram showing probability density functions and makespan constraints for tasks on machines A and B.](image)
Stochastic Robustness: Mapping Example

- periodic data sets received from sensors
- changes in input data cause variability in execution time
- data needs to be processed before next data set arrives
- goal: minimize the period Λ, between data sets to allow more sets to be processed

\[a_{11} \cdots a_{n_11} \]

\[a_{1M} \cdots a_{n_M M} \]
Stochastic Robustness: Greedy & Iterative Static Mapping

- reference to our group’s work
 “Greedy Approaches to Static Stochastic Robust Resource Allocation for Periodic Sensor Driven Distributed Systems,”
 2006 International Conference on Parallel and Distributed Processing Techniques and Applications, June 2006
 - ex. two-phase min-min type approach

- reference to our group’s work
 “Iterative Algorithms for Stochastically Robust Static Resource Allocation in Periodic Sensor Driven Clusters,”
 18th IASTED International Conference on Parallel and Distributed Computing and Systems, Nov. 2006
 - iterative static heuristics (versus greedy) look at entire resource allocation during each iteration
 - ex. genetic algorithm type approach
Stochastic Robustness: Dynamic Mapping

- reference to our group’s work
 “Measuring the Robustness of Resource Allocations in a Stochastic Dynamic Environment,”
 21st International Parallel and Distributed Processing Symposium, Mar. 2007, Session 26, Thursday ~ 4:30
- establish the notion of stochastic dynamic robustness
- environment consisted of a heterogeneous, distributed computing system designed for a high volume web site
- tasks arrival times are not known in advance
- task execution times described by probability mass functions
- dynamic stochastic robustness metric is defined as the average over all mapping events of the instantaneous stochastic robustness metric values
- used to validate the dynamic robustness as a predictor of performance
Current Robustness Research

- design of robust resource allocation in distributed systems under random machine failures using stochastic data
 - reallocation of resources is allowed
 - redundant task assignment to ensure high priority task complete when resource reallocation is not allowed
- resource allocations for virtual world environments
 - where the number of users is uncertain
 - response time is robust to the number of users being added to the system
 - also applies to calculations being distributed across a P2P network
- how sensitive are resource allocation algorithms to errors in the models of uncertainty
- use of dynamic stochastic robustness measure to guide resource allocations in a dynamic environment