SimX meets SCIRun: A Component-Based Implementation of a Computational Study System

> Siu-Man Yau, Vijay Karamcheti, Denis Zorin New York University

> > Eitan Grinspun Columbia University

Also participating in the project: Akash Garg (Columbia), Jeremy Archuleta (Utah), Steve Parker (Utah)

Multi-Experiment Computational Studies

Computer Simulation is an integral part of the scientific method

- Wide-spread use of computational studies
- Involving 100s, 1000s, or 10,000s of simulations ...
- Examples

Car Chassis Design

Defibrillator Design

SimX: A Computational Study System

Requirements

- High-level control of the study, not individual experiments
- Support for interactivity
 - Visualization and steering mechanisms
 - Dynamic reallocation of resources in response to changing objectives

Existing systems fall short

- Parameter Sweep schedulers
 - Examples: Condor, Globus, Virtual Instrument, Nimrod/O
 - Provide poor support for interactivity, high-level study objectives
- Computational Steering Infrastructures
 - Examples: Falcon, CUMULVS, SCIRun, CSE
 - Poor support for macro-management of studies, resource allocation

SimX: Interactive, high-level management of computational studies

- Users interact at the level of aggregate studies
- Aggressive management of system resources to reflect changing priorities

SimX: Technical Ideas

- Computational study: Exploration of a parameter space of computational experiments to identify a target set
 - Target set specified as constraints on experiment observations

Study time reduced from 5678s to 13s

- SimX exploits a permeable interface between the system software and the application to deliver efficiency
 - Chooses which simulation to run and in which order
 - Maintains history, and aggressively reuses results

SimX: Architecture Components

5

This Paper: Componentized SimX

Ongoing implementation of the SimX platform on top of Univ. of Utah's SCIRun/SCIRun2 problem-solving environment

SCIRun/SCIRun2

- Modular, CCA-compliant, component-based system for interactive scientific computing applications
- Expresses applications as dataflow nets
 - Runtime system responsible for transfer of data between modules, and execution of module code
- Rich library of solver, visualization, and steering modules

Benefits from SimX/SCIRun integration

- Natural component-level integration of SimX runtime modules with existing simulation functionality
 - Easier to express the permeable interface
- Plug-and-play benefits for SimX policy modules
- Access to existing scientific computing software
- Transition path for SimX technology to broader scientific community

Realizing SimX on SCIRun

One manager and multiple simulation container nets

- Launched as separate SCIRun processes
 - Interact via sockets using communication components
- SCIRun2 supports parallel/distributed nets, so more natural

SimX components

- Manager
 - SimXManager: Encapsulates the Active Sampler functionality
 - SelectExperiment: UI interface to permit visualization
 - Currently per-experiment, being extended to study level
- Simulation container
 - Arbiter: Manages interaction with the Manager, collection of performance measures
- Common
 - SharedObjectLayer{Reader,Writer}

Example: Defibrillator Design Study

DefibSim Study: Performance Evaluation

- 256 node cluster (dual 2GHz PowerPC, 2GB, GbE), 4 shared object servers
- Design space for study: Electrode positions, potential difference

2D case: Back electrode fixed, Front electrode has one free dimension

	Grid Sampler	Active Sampler	
# Sim procs	Time (secs)	Time (secs)	# Exp Issued
1	9100	1790	760
2	5673	1074	769
4	2842	555.2	788
8	1427	315.6	771
16	818.6	146.4	787
32	359.3	83.80	795
64	181.4	42.66	881
128	134.0	39.31	1035

3D case: Back electrode fixed, Front electrode has two free dimensions

	Grid Sampler	Active Sampler	
# Sim procs	Time (secs)	Time (secs)	# Exp Issued
1	9160	5217	2329
2	5702	3313	2365
4	2856	1371	2416
8	1278	771.4	2418
16	717.0	421.9	2330
32	362.5	218.3	2348
64	182.2	123.7	2390
128	95.62	95.35	2511

Next Steps

Short term

- Steering/visualization of entire studies
 - Abstractions to allow interactive navigation through design space
- More aggressive reuse
 - Study level
 - Experiment level
- Active sampling schemes
 - Sensitivity analysis along different design space dimensions
- Shared object layer improvements
 - Value-based management of resources

Longer term

- SCIRun2-based support for studies, parallel experiments
- Analytical resource, error estimates for core numerical solvers
- More sophisticated use of history information
 - Prediction, resource usage models