
Measuring HPC Productivity*
Stuart Faulk

University of Oregon
faulk@cs.uoregon.edu

John Gustafson
Sun Microsystems Inc.

John.gustafson@sun.com

Philip Johnson
University of Hawaii

johnson@hawaii.edu

Adam Porter
University of Maryland

aporter@cs.umd.edu

Walter Tichy
University of Karlsruhe

tichy@ira.uka.de

Lawrence Votta
Sun Microsystems Inc.

lawrence.votta@sun.com

Abstract
One key to improving high-performance computing (HPC) productivity is finding better
ways to measure it. We define productivity in terms of mission goals, i.e., greater
productivity means that more science is accomplished with less cost and effort.
Traditional software productivity metrics and computing benchmarks have proven
inadequate for assessing or predicting such end-to-end productivity. In this paper we
introduce a new approach to measuring productivity in HPC applications that addresses
both development time and execution time. Our goal is to develop a public repository of
effective productivity benchmarks that anyone in the HPC community can apply to assess
or predict productivity.

1 Introduction
While computer performance has improved dramatically, real productivity in terms of the
science accomplished with these ever-faster machines has not kept pace. Indeed,
scientists are finding it increasingly costly and time consuming to write, port, or rewrite
their software to take advantage of the new hardware. While machine performance
remains a critical productivity driver for high-performance computing applications,
software development time increasingly dominates hardware speed as the primary
productivity bottleneck. Traditional benchmarks do not provide a way to measure
productivity.

Removing or ameliorating productivity bottlenecks in next-generation high-performance
computing systems is a key objective of DARPA’s High-Productivity Computing
Systems (HPCS) Program. This objective has been characterized as the long-term goal of
improving software productivity “at a rate commensurate with improvements in the
underlying hardware” [Kepner 04].

Stating the goal this way reflects the scientific community’s experience that improved
hardware performance often does not yield similar improvements in important measures
like total cost, effort, or time to solution. Addressing these larger productivity issues will
require addressing productivity bottlenecks in software development, project
management, and system administration in addition to hardware performance.

* This work is sponsored in part by the Defense Advanced Research Projects Agency (DARPA) under
Agreement No. NBCH3039002.

 2

Our work focuses on developing an effective approach to characterizing and measuring
HPCS software productivity. Before we can hope to address software productivity
problems, we must agree on what those problems are and how we would determine
whether we had solved them. In short, we must agree on what we mean by “productivity”
in HPCS applications, and how such productivity should be measured, before we can
rationally address the problem of how best to improve it. Goals of the work include:

1) Develop a common definition of HPCS productivity that the HPCS developers,
suppliers, and buyers (e.g., government agencies) can agree on. For our purposes,
this means a definition that is consistent with the mission-level view that greater
productivity means that more science is accomplished with less cost and effort.

2) Develop effective measures of HPCS productivity that encompass the overall
development process—design time as well as execution time. In particular, we
seek to develop measures that apply to a wide range of development environments
and broadly across high-performance computing application domains (e.g.,
weather prediction, fluid dynamics, nuclear applications, mechanical design, etc.)
to assess, compare, or predict productivity.

3) Provide productivity measurement capabilities to guide productivity improvement
for both hardware and software developers. Effective, objective measurement
provides the basis for systematic productivity improvement. We seek to provide
common, public benchmarks and metrics to use in assessing and improving
productivity.

Both HPCS developers and buyers have traditionally used standardized benchmarks (e.g.,
LINPACK) to guide development choices. System developers use the benchmark results
to guide platform development and subsequently demonstrate the speed of their
machines. Buyers traditionally use such benchmarks to predict computation times and
choose among competing platforms. However, the benchmarks and corresponding
metrics employed to date have proven to be decreasingly effective predictors of end-to-
end productivity. Traditional benchmarks focus almost entirely on hardware speed. Thus,
they typically attempt to predict only execution-time productivity, ignoring development
time. Further, they do not measure other properties of an application that matter to users:
reliability, repeatability, portability, reusability, maintainability, etc.

In this paper we describe our approach to creating a new type of standardized benchmark
that 1) encompasses the breadth of design-time and execution time activities as well as 2)
the productivity contributions of both functional and non-functional requirements. In
addition to defining a canonical computation problem, these “productivity benchmarks”
seek to characterize an end-to-end productivity problem by capturing the representative
context of the computation. This includes the overall process in terms of canonical
workflows [Kepner 04] as well as the developmental attributes that contribute to the
overall value of the software to its stakeholders. We will call such a multi-dimensional
productivity benchmark a productivity benchmark suite (PBS).

Briefly, a PBS comprises a canonical problem in the context of a complete set of
behavioral and developmental requirements representative of a particular high-
performance computing domain. In addition to the functional and non-functional
requirements, the productivity benchmark suite (PBS) will provide targeted metrics and

 3

tools for measuring productivity in terms of overall costs and benefits across the
development cycle. The goal is to create a set of benchmarking capabilities that, when
applied, will exercise and measure not only the execution efficiency of a platform on a
particular class of high-performance computing problems, but all the dimensions of
development that contribute to the value of a solution.

Our long-range goal is to develop a public repository of well-validated PBSs that are
representative of the productivity challenges in each distinct high-performance
computing domain. Platform developers or buyers can apply these PBSs to assess and
predict productivity of particular high-performance computing platforms on their domain
interest. In particular:

1) HPCS Buyers: buyers of HPCS platforms are faced with the problem of
predicting which vendor’s system will provide the best “bang for the buck” in
their application domain. This question embraces the total cost of ownership
including software development, execution, operation, maintenance, and so on.
Buyers will be able to apply benchmarks from the repository to answer specific
questions about how different platforms or development strategies can be
expected to affect their productivity.

2) HPCS Developers: HPCS platform vendors seek to develop systems that will
improve productivity for their customer base. To do this, they must understand
what the productivity problems are in their customer’s application domains, what
properties of the platform affect those productivity issues, and how to measure the
results of platform design changes. Vendors will be able to apply benchmarks to
guide architectural design.

A goal of our work is to provide the HPCS community with the capabilities needed to
determine whether new technologies will effectively address critical productivity
problems before vendors deploy those technologies in next-generation platforms. This
will reduce the risk that next-generation high-performance systems will fail to meet
DARPA’s HPCS productivity goals.

Our overall approach is empirical in the sense that we will develop PBSs based on
observations of real developers and their productivity problems with actual high-
performance applications. We will ensure validity of the benchmarks and metrics through
carefully controlled experiments.

The following sections describe the planned approach and expected results in detail. First,
we describe a framework for reasoning about HPCS productivity and illustrate its
application with a real application. We then describe ongoing work in developing a
framework for PBSs and our approach to productivity measurement. We illustrate a new
approach to measuring a system’s developmental qualities (e.g., maintainability). Finally,
we discuss ongoing work in creating and validating productivity benchmarks.

2 Reasoning about HPCS Productivity
The economic definition of productivity is the output per unit-of-work. For example,
“worker productivity” denotes the value of goods and services produced in a period
divided by the hours of labor used to produce them. While the units vary depending on

 4

the realm of discourse, all definitions of productivity share the underlying concept that
increasing productivity means producing more of value with less work.

Conceptually, the economic definition of productivity is both simple and intuitively
appealing. It is also consistent with the objectives of the HPCS program – i.e., providing
platforms that allow scientists to accomplish more science in less time at lower cost.
Unfortunately, the economic definition has proven difficult to apply to software
development. This is true not just for high-performance computing applications, but for
the broad classes of software applications more typically addressed in Software
Engineering productivity studies (e.g. [Boehm 80] and [Boehm 81]).

The mutable, intangible nature of both the processes and the products of software
development make the outputs or units-of-work difficult to define or measure. The
default has been to choose metrics that are relatively easy to measure, but that bear only a
loose relationship to the value of what is produced.

Our goal is to address these issues by providing a framework for characterizing and
measuring the perceived value of the output to system stakeholders. We define the output
to include any properties of the system that consume work and have stakeholder value,
including those that have no direct physical analog in the code (e.g., usability).

The remainder of this section describes the conceptual framework for our approach. We
first discuss some of the historical difficulties and pitfalls associated with software
productivity metrics. We then describe a general framework for modeling a software
development’s output value based on the stakeholder values of developmental properties
and requirements. We argue that the proposed framework is sufficiently flexible to
address productivity issues across development time and run time. We then walk through
an example taken from requirements for a high-performance application that illustrates
consistency of the model with a real high-performance computing application.

2.1 Pitfalls of Traditional Productivity Measures
Software productivity has been and remains a core mission of software engineering.
Nonetheless, problems in adequately measuring software productivity, much less
predicting or improving it, have proven among the most intractable in the field. While
there is general agreement that software productivity should reflect the economic
definition: output value per unit-of-work, there is little agreement on how to define the
outputs or the units of work. In general, industry experience has been that those software
development properties that we can most easily and precisely measure (e.g., the number
of lines of code produced) have little direct relationship to the system’s stakeholder value
while many properties with established value (e.g., maintainability) have no established,
effective metric.

The long-running controversy over the most common software productivity metric, the
number of source lines of code developed (SLOC), illustrates the types of problems that
arise. SLOC became one of the first commonly accepted productivity metrics [Boehm
81] and remains in regular use [Boehm 95]. However, if applied incautiously, SLOC
introduces a number of uncertainties and potential paradoxes. The number of lines of
code necessary to implement a particular functionality will vary greatly from one
programming language to another. Worse, they can vary inversely with the quality of the
programmer and efficiency of the code (i.e., better programmers do more with less code).

 5

If used without careful controls, SLOC productivity measures may indicate that
productivity has decreased when it has actually increased [Jones 86]. In short, creating
lines of code is a necessary but not sufficient condition to creating software of value.
There is no predictable relationship between SLOC (or similar metrics like. function
points [Albrecht 83]) to critical code properties that enhance value like maintainability,
portability, reusability, security, and so on.

Paradoxes and uncertainty likewise attend the use of common units-of-work like labor
hours or, more typically in software, man-months. Frederick Brooks’ first articulated
some of the problems in using conventional units of work to measure or predict software
productivity in his book [Brooks 95], The Mythical Man Month, most famously, his
observation that, adding manpower to a late software project typically made it later.
Subsequent empirical software engineering research at NASA Goddard’s Software
Engineering Laboratory (e.g., [Porter 95]) underscored the diversity of factors that affect
the cost and quality of software production. Likewise, detailed time-motion studies of
software developers [Perry 96] suggest that even the people doing the work do not
accurately predict or even recall exactly what they spend their time on. Such work
indicates that making reasonably accurate correlations between units-of-work and
produced value requires careful, detailed empirical study of the development process in a
controlled context.

Similar issues arise with productivity measures in high-performance computing.
Traditionally, measures of machine performance like the peak number of floating point
operations per second (FLOPS) are used as a predictive measure of high-performance
computer output. Historically, such measures had validity where the total time to solution
was overwhelmingly constrained by program execution time, and where the program
execution time was overwhelmingly dominated by the time spent doing floating-point
operations. As the effort needed for developing, porting, rewriting, and tuning the
software has increased, the relevance of such measures has correspondingly decreased.
(Floating-point arithmetic also no longer dominates execution time even in the most
compute-intensive programs, yet the focus on FLOPS persists.) Likewise, as program
properties other than execution performance (e.g., portability, maintainability, etc.) have
become more important production values, the need for metrics that account for these
properties has increased as well.

Early productivity studies observed the phenomenon that Weinberg and Schulman
[Weinberg 74] characterized as “what-you-measure-is-what-you-get” (WYMIWYG).
Repeated studies have consistently confirmed this observation’s predictive power. If one
measures productivity in terms of the number of lines of code, programmers will produce
reams of code. If one measures HPCS productivity in terms of FLOPS, then we will get
processors that show very high arithmetic rates on carefully chosen benchmarks. In
neither case will we necessarily get any improved productivity in the sense of more
functions implemented or more science done per dollar spent.

An important corollary is that the reverse also holds true. In short, if we want to get
something, we should measure it. This principle dictates, in particular, that if we want
developmental properties like portability, interoperability, maintainability, etc. in addition
to execution time properties like performance and accuracy, then we need to measure all
of those properties as directly as possible. Even if we ignore past pitfalls, this principle

 6

suggests that we cannot use a single metric that obscures the productivity contribution of
each critical property. Rather, we will need measures that explicitly address development
output as comprising multiple, diverse properties of value.

2.2 An HPCS Productivity Framework
Intuitively, each application development has associated with it some value to its
stakeholders. The overall value will typically be due to a number of different properties
of the code, its execution behavior, and its development process. Exactly which
properties have value, and how much value is attributed to them will vary from one type
of application to the next and from one class of stakeholder to the next. In particular, we
observe that:

1) The overall value is a function of a number of distinct properties of the static
work products, the code, and the development process itself. In addition to
accuracy and timeliness of results, these may include run-time properties like
security, availability, and locality. It may also include desirable developmental
properties like portability, maintainability, or reusability or even organizational
concerns like consistency with organizational standards or the amount of legacy
code reused.

2) Exactly which attributes of the system are important will vary from one type of
application to the next, from one class of stakeholders to another, and possibly
even from one run of the application to another.

3) The relative importance or priority of each attribute may likewise vary by
application type, stakeholder class, and so on.

4) The relative values of individual properties as well as the total value of a given
solution may change over (calendar) time [Snir 04].

In short, the value associated with any particular development is typically a function of a
number of different properties that we can expect to vary from one development effort to
the next or even one run of the program to another. We can capture this by representing
the total relative value as a vector over the values of the properties of interest using the
following framework. We begin by associating with each property of interest i:

1) A metric of completion Ci
2) A relative value weight vi

Briefly, the metric of completion Ci is a measure of the degree to which the realization of
the property i meets stakeholder goals for that property. The relative value weight vi
represents the importance of the property i relative to the other properties of interest.
Assuming independence, the value of some set of properties i = 1 to n is given by the
vector:

 VA = (v1C1, v2C2, …, vnCn) (1)

Where we can normalize each of the viCi to a common metric (e.g., labor or cost), we can
express the total value as the sum.

 VA = v1C1 + v2C2 + … + vnCn (2)

 7

For example, we could calibrate each Ci such that Ci = 1 whenever property i meets its
design goals, and vi gives the relative importance of property i expressed as a percentage
such that ∑n

i=1(vi) = 100 and VA = 100 exactly when all the Ci are satisfied. Relative
productivity is then given by the value produced divided by the work consumed to
produce it:

 P = VA / W (3)

Equivalently, we can say that the greater the value of VA for a given amount of work, the
higher the productivity. This corresponds to our intuitive view that greater productivity
implies greater value per unit of work.

Both equation (1) and equation (2) are useful. Equation (1) has the advantage that the
individual contributions of each property of interest to the total value are clear and that
we need not attempt to normalize over different kinds of properties. However, equation
(2) has the advantage of summarizing the overall value in a way that might be compared
across projects if normalized over a common metric like cost.

We anticipate further refinement to our equations to reflect significant dependencies. In
the general case, the degree of completeness and value of one system property or even a
set of properties may depend on others. For example, it does not make sense to talk about
the “value” of properties like maintainability or portability if the code does not do what it
is supposed to. Further, the values of individual properties, as well as the program as a
whole, are likely to change over time. A solution today is typically worth more than the
same solution tomorrow. Thus, the value weight vi associated with each property i may
be a function of calendar time t as can VA itself. Understanding the nature of these
relationships, their significance, and how best to represent them will require careful study
of different classes of HPCS applications.

2.3 Applicability of the Value Model
By design, our value function must be used in the context of a computing application that
establishes the value space of interest. For productivity benchmarking, this context will
be given by the PBS. The definition of the PBS will include the definitions of the
properties of interest, corresponding metrics of completion, and representative value
weights. Appropriate properties and values will be obtained from empirical studies of
representative development efforts in the application area of the benchmark; i.e., for a
benchmark simulating behavior of a weather code, representative properties, values, and
completion criteria would be gleaned from the weather simulation community. This
framework will then be tailored to the intended use of the benchmark. If particular
properties are irrelevant, they can be omitted (equivalently, given zero values).

The basis for constructing such productivity models as well as the applicability of our
framework can be illustrated by considering an example from a real high-performance
application. Tables 1 and 2 are taken from Software Development Plan (SDP) for Virtual
Prototyping and Accelerated Testing of DoD Composite Material Combat Systems
(VPATC) [VPATC 03] and are part of the definition of system requirements and
constraints.

 8

Table 1 gives a subset of the Critical Operational Issues (COI) and Measures of
Effectiveness and Suitability (MOE&S) defined for the VPATC system. Table 2 defines
what are called the system’s Critical Technical Parameters (CTP). It maps the technical
parameter values that should be measured back to MOE&S in Table 1 and gives both the
minimal and optimal criteria for the CTPs for the scheduled sequences system testing
milestones. This sequence begins with the system acceptance test (SAT), follows with the
Alpha and Beta tests, and finishes with the initial operational test and evaluation
(IOT&E).

Clearly, the value of the VPATC system is not a function of its execution performance
alone or even of its computational behavior as a whole. A given implementation of the
system requirements will be acceptable only if it meets the minimum criteria for the
Critical Operations Issues as detailed in Table 2. For example, a system will be
acceptable only if its execution performance meets the criteria that “Fixed speedup
exceeds 60% of optimum on 32 or more processors” and the code meets the portability
requirement of “running on three HPC platforms with the same valid results.” Thus, we
observe that:

1) To satisfy requirements, the system must meet development goals for a number of
distinct properties concurrently with functional requirements.

2) The properties of interest span development and execution time. They include
(static) developmental properties (e.g., COI #4: Maintainability and Adaptability),
execution time properties (e.g., COI #1: Performance), and organizational
properties (e.g., COI #5: Training and Technology Transfer).

3) Associated with each property is some testable metric of completion. For
example, portability is measured based on the number of HPC platforms that will
yield valid results when running the same code.

4) Notions of value, while implicit, are present in rudimentary form. For example, it
is clear that an implementation of the system that meets the “Optimum
Objectives” listed in Table 2 has greater value than an implementation that meets
only “Minimum Objectives.” A rough value scale could be constructed based on
the number of objectives satisfying optimum criteria.

Table 1: Critical Operational Issues (COIs) and Measures of Effectiveness and Suitability (MOE&S)

COI COI Title COI Description MOE&S

1
Performance Does the project provide computational

results that are accurate, stable, and
reliable in a portable scalable
environment?

Scalable performance improvement
over current systems

Software robustness

2

Interoperability Does the project application code’s
derived data integrate with reusable
software components and scientific
visualization techniques?

Sharing of project developed software
resources among local and remote
users

3

SOS Portfolio
Interoperability

Does the underlying framework enable
the exchange of results with other
simulations?

Sharing of project developed software
simulation results in real-time among
System-of-Systems simulation users

 9

COI COI Title COI Description MOE&S

4
Maintainability
and Adaptability

Does the project software adhere to
standards and accepted practices,
utilize standard languages and libraries,
utilize common visualization tools, and
provide adequate documentation?

Portable project developed software
products across existing and future
HPC platforms

Reliability of application software
products

Maintainability of application
software products

5

Training and
Technology
Transfer

Does the project software reside in a
catalogued repository, utilize standard
languages, and provide adequate
documentation?

Software dissemination and
technology transfer

6

Usability Does the project software’s human-
computer interface support ease of
learning, ease of use, effectiveness and
efficiency, and user satisfaction?

Maintainability of application
software products

7

Security Are appropriate access controls in
place to safeguard the intellectual
property rights and security concerns
associated with the project software?

Security

Table 2: Critical Technical Parameters

CTP Test
Event

Evaluation Optimum
Objectives

Evaluation Minimum
Criteria

Scalable software suites:

Demonstrate reduction in
clock time as a function
of increased Central
Processing Units (CPU)

SAT

Alpha

Beta

IOT&E

Determine the effective software code
architecture for construction of scalable
composite material predictors and
dynamic models

Fixed speedup exceeds 50% of
optimum on 16 processors

Fixed speedup exceeds 60% of
optimum on 32 processors

Fixed speedup exceeds 70% of
optimum on 64 processors

Same

Fixed speedup exceeds 40% of
optimum on 8 processors

Fixed speedup exceeds 50% of
optimum on 16 processors

Fixed speedup exceeds 60% of
optimum on 32+ processors

Portable, reusable
application software:

Software applications
behave the same and
produce similar results,
within an acceptable
margin of error, on a
variety of scalable HPC
platforms

SAT

Alpha

Beta

Architecture of code determined, and
approaches for parallel execution
analyzed

Codes run on two HPC platforms with
valid results

Codes run on three HPC platforms with
same valid results

Same

Same

Codes run on two HPC
platforms with same valid
results

 10

CTP Test
Event

Evaluation Optimum
Objectives

Evaluation Minimum
Criteria

 IOT&E

Codes run on four or more HPC
platforms with same valid results

Codes run on three HPC
platforms with same valid
results

Portable, reusable
application software:

Code provides for data
output

SAT

Alpha

Beta

IOT&E

Reusable software components
identified.

Data output in Tecplot format and
XDMF format for custom interface.

Data output in Tecplot format and
XDMF format for custom interface.

Data output in Tecplot format and
XDMF format for custom interface.

Determine the architecture for
pre- and post-processing

Data output in Tecplot format.

Data output in Tecplot format.

Same.

Stable, accurate and
robust software:

Interface with all
required external
software products and
codes

SAT

Alpha

Beta

IOT&E

Determine the architecture for pre- and
post-processing

Software stores data in XML/HDF
format and supplies interfaces to
PETSc and the Scalable Parallel Direct
Solver Library for Sparse Symmetric
Positive Definite Systems (PSPASES)

Software stores data in XML/HDF
format and supplies interfaces to
PETSc and PSPASES

 “ “

Same

Software stores data in
XML/HDF format and
supplies interfaces to the
Portable Extensible Toolkit for
Scientific Computation
(PETSC)

Same

Same

Clearly, we do not expect that every system specification will express properties and
values so clearly or can be as easily mapped to our productivity model. The VPATC
specification is, in our experience, unusual in its clarity and specificity, representative of
current best practices. Nonetheless, the format and placeholders for COIs and MOE&S
reflect government standards and are required for all similar DoD development. Clearly
most codes will have similar kinds of requirements though it may take more detective
work (e.g., interviews and observation) to characterize them as precisely.

3 Developing a Productivity Benchmark Suite
We observe that reasoning about or measuring productivity in the VPATC domain
requires considering a wide range of different kinds of system properties. Clearly, a
development effort that meets the optimum criteria for the same effort, time, and cost as
one that meets the minimum criteria would be considered more productive. Thus, these

 11

properties should be considered part of the “output” that one must measure to assess
productivity.

The same reasoning would apply to developing an effective benchmark for assessing
productivity in VPATC’s application domain. If, for example, we wanted to use a
productivity benchmark to answer a question of the form “Will we achieve greater
productivity on a VPATC application using HPC platform A or platform B?” then the
benchmark must incorporate the kinds of properties, values and metrics we observe in the
VPATC specification. In addition to defining a computational problem that exercises the
hardware in the same manner the VPATC simulation does, the benchmark would need to
define analogous requirements for the critical system properties (COIs) including
interoperability, usability, security, maintainability, adaptability, and so on. Fully
executing the benchmark would require solving the computational problem in a manner
that satisfies all of these functional and non-functional requirements. Measuring
productivity against the benchmark would require measuring the extent to which each of
the requirements had been satisfied against the effort expended.

Notionally, this characterizes the content and use of a productivity benchmark suite. We
view a PBS as a publicly available package that effectively represents the development
challenges characteristic of a particular high-performance application domain. Each such
package defines a computational problem in a context that simulates the characteristics
and constraints of a typical application in a particular high-performance computing
domain. The challenge is to define the context sufficiently that:

1) The context adequately characterizes value space of the end-to-end requirements
and goals of a real application domain

2) It is possible to make meaningful comparisons in productivity measures between
distinct applications of the benchmark

Our approach is based on the empirical derivation of canonical workflows [Kepner 04]
and purpose-based benchmarks [Gustafson 04]. Together with the associated non-
functional requirements, value function, and metrics, these sufficiently constrain the
problem that different developers should be able to apply the benchmark and generate
productivity measures that can be meaningfully compared. This will provide a basis for a
public repository of commonly applicable HPCS benchmarks. The key components are:

Canonical Workflows: Briefly, canonical workflows are used to characterize and
constrain the process context of a productivity benchmark. A canonical workflow
characterizes both the development process and the execution workflow associated with
creating and using a high-performance computing application to meet an overall set of
mission goals. It characterizes the process steps and work products associated with
characteristic development paradigms in the high-performance computing community.

Purpose-based benchmarks (PBB): PBBs are described in detail in a separate article in
this issue [Gustafson 04]. Briefly, PBBs are computational problems that accurately
embody the design and execution time challenges of real applications in a domain. Unlike
traditional benchmarks, PBBs are designed to exercise both the development process and
the development platform in essentially the same manner (with reduced size) that real
development problems do in a particular application domain.

 12

Non-functional requirements: The benchmark will include representative execution
time and developmental requirements with their associated metrics of completion and
effectiveness. These include any requirements on the development process,
administration, static-design, and run-time behavior characteristic of the application
domain.

Characteristic value function: Associated with the requirements is a representative
value function (e.g., in the form of the value function (1) or (2) above). The value
function characterizes a value proposition (i.e., relative values of the different
requirements) associated with applications in the domain interest.

Productivity metrics and tools: A set of standardized metrics, algorithms and tools for
measuring productivity associated with both development time and execution time
activities and goals. These are discussed further in subsequent sections of this paper.

Our approach to building PBSs is empirical in the sense of being derived either from
observation of real developers or from carefully controlled experiments. For example, we
will obtain the application properties of interest and their relative value directly from
developers in particular HPC domains like by direct inquiry or by observation. The
empirical methods we plan to apply to particular parts of the problem are described in
context.

3.1 Measuring Development
There are two major goals of empirical measurement in the context of our benchmarks:

1. Characterization: Initially, the primary goal of measuring the processes and
products of high productivity computing system applications is to better
understand what actually happens during such development. Measurement
supports identification of potential problems and bottlenecks in HPCS
development, clarification of the similarities and differences between the various
workflows for development, and the potential creation of predictive models for
required resources and product quality.

2. Control: Once a baseline set of measures have been obtained and used to
characterize HPCS development, the use of measurement can begin to support
project management activities. In this application, measures taken from the
project requirements or from in-process development can be compared to
measures obtained from prior development efforts or used as input to the
predictive models generated from these measures. These comparisons and model
outputs can be used to help guide the new development. Possible forms of
guidance include: the need for new or different kinds of resources, the
appropriateness of the given workflow chosen for the goals of the project, and
approaches to improving the quality of the system. Of course, the measures taken
during every development can feed back into the characterization process to
provide better understanding and modeling of HPCS development.

We propose to measure HPCS development in both qualitative and quantitative ways.
Our measurement techniques will include structured interviews, time and motion studies,
and automated measurement. Each of these techniques has differing kinds of strengths

 13

and weaknesses. By employing all of these techniques in this research, we can ameliorate
the weaknesses present in each form and improve the overall validity of the research.

3.1.1 Structured interviews
In structured interviews, a researcher talks directly with members of the development
team, recording data using notebooks, audio tape, or video tape to learn more about the
developer’s view of the development process and its strengths and weaknesses.
Structured interviews are useful for general characterization of a workflow, gaining
insight into the kinds of quantitative measures that would be useful to collect, and
collecting examples of process problems and solutions.

Some advantages of the structured interview process are that it is relatively inexpensive
to carry out and does not require extensive access of the researcher into the development
process. However, it suffers from the fact that the way a developer recalls a development
situation could vary in significant ways from the reality of that development situation
when it actually occurred. In addition, social or political pressures can influence the way
a developer represents development obstacles or problems. Over time, a developer might
simply forget or not perceive significant influences on development.

In many cases, however, we will be interested in data, observations, and lessons learned
from projects that have already completed. For such projects, structured interviews are
the only way to recover much of the information of interest (e.g., perspectives the time
spent on different activities or the relative value of different system properties). Here the
use of carefully structured interviews allows one to generalize over the data collected.
This is the approach currently being used in a set of retrospective studies of high-
performance computing applications being led by Doug Post of Los Alamos National
Laboratory [Post 04]. Results from these project retrospectives will be used to help
characterize application domains in terms of characteristic requirements and canonical
work flows.

3.1.2 Time and motion studies
In time and motion studies, also known as “naturalistic observation,” the observer spends
time “shadowing” one or more members of the development team, recording the tasks to
perform and the time intervals during which the tasks are performed. Developer logs can
augment direct observations.

Time and motion studies have the advantages of supporting the development of fine-
grained models of how developers spend their time, and surfacing issues in development
process that might not otherwise be perceived by developers. The data that is collected is
thus of generally higher quality and fidelity than that collected by structured interviews.
The disadvantages of time and motion studies are access and cost. The organization and
developers must be willing to allow a researcher to monitor their behavior over extended
periods and measures must be taken to prevent that monitoring from interfering with the
developer’s behavior. In addition, the technique is very expensive, requiring the
researcher to essentially work full-time at the institution doing data collection. Because of
this, time and motion studies are usually restricted to just a few days of data collection.
This means that only a small period of development during any given project can be
monitored.

 14

Several examples of software development time and motion studies appear in Perry,
Staudenmayer, and Votta [Perry 96]. In that work, the authors summarized the results of
three studies of developer time usage at Lucent Technologies.

The first experiment was an after the fact analysis of one software developer’s personal
diary. This diary recorded that developer’s work-related activities over a 3-year period.
This analysis helped the authors create initial hypotheses about time usage they tested in
a later experiment. For example, analysis of the diary suggested that, much more than the
authors expected, developers were blocked because important information was not
immediately available to them.

The authors then conducted a second experiment to examine their newly generated
hypotheses. To do this they created a data collection instrument accurate to about ½ hour
of time. Next, they recruited a number of Lucent developers who agreed to fill out the
data collection forms each day. From these data the authors made several observations.
First, the subjects typically worked on two features simultaneously, so they could context
switch when they became blocked. Second, even though context switching allows
developers to keep working when blocked on one project, the cost is that individual
projects take longer to finish. This was particularly important in the telephony industry
where time-to-market pressures were severe.

Finally, the authors conducted a third study to compare self-reported time data with
observed time data. The goal was to understand how accurate self-reported data is. This is
important because it is much cheaper to collect data this way than to hire an external
reporter. This study suggested that contrary to some people’s beliefs, developers did not
consciously misrepresent data. However, there were some systematic sources of bias. For
example, some developers tended to lump short work interruptions (e.g., a colleague
drops in for a 10 minute technical discussion) in with the activity they were conducting
when interrupted.

Lessons learned from these studies are being applied to development and validation of
our productivity benchmarks to ensure accurate representation of workflows and accurate
data on units of work.

3.1.3 Automated measurement
A third form of measurement involves collection of data using the artifacts of
development itself. For example, if development uses a source code control system, then
the logs from this system can be analyzed to understand the patterns of developer
interaction with the source files over time. The system itself can be generated at various
points during its development to recover measures of its size or complexity.

Automated measurement has the advantages of collecting more objective measures of the
process and products of development that are not filtered through the perceptions of
developers. Automated measurement also has the advantage of being relatively low cost:
researchers are not required to be on site, and developers do not have to deal with the
potential short-term or long-term intrusion of a researcher in their daily activities. The
disadvantage of automated measurement is its incompleteness relative to the other
methods: many development activities cannot be reconstructed by analysis of the
evidence left by tool usage.

 15

An example of automated measurement is the work by Johnson on Hackystat [Johnson
03]. Hackystat is a system for automated metrics collection and analysis that provides
custom “sensors” that are attached to developer tools, such as their editor, build tool,
configuration management system, and so forth. The sensors unobtrusively monitor
development and collect data about the process and products of development.

Some aspects of HPCS productivity measurement are similar to software productivity
measurement in general. For example, automated metrics collection can provide an
indication of how much time is spent actively modifying source code files. Automated
tools can also monitor activities such as the invocation of test cases, and the sequence and
nature of developer interactions with a configuration management repository. The tools
can automatically gather data on the overall size of the system (expressed as numbers of
non-comment lines of code, and/or number of methods, and/or number of compilation
units), or complexity measures (such as measures of coupling between or cohesion within
modules, and the characteristics of the inheritance hierarchy).

However, other aspects of HPCS productivity measurement will be required due to the
specialized nature of this domain. For example, many workflows for HPCS application
software development involve the initial development of a serial version of the system
and measurement of its performance characteristics. Following the establishment of this
baseline performance level, the next development stage involves implementing a
parallelized version, typically using packages like MPI or OpenMP. Following this,
experimental runs are performed to compute measures like Speedup, which indicates how
much faster (or slower) the system executes as the number of processors allocated to the
problem increases. Based upon the Speedup curve or other measures of parallel
performance, the developer may decide to re-implement the parallelized version. By
automatically monitoring the invocations of tools for compilation, execution, and
performance profiling, it is possible to measure the time spent in each of these phases of
HPC development.

3.2 Measuring Developmental Qualities (“ilities”)
Obtaining any sort of fine-grained measures of productivity using our approach requires
that we be able to provide relatively precise measures of progress, completion or other
figures of merit for developmental properties like maintainability and portability. While
such properties frequently appear in software requirements, the conventional wisdom is
that they cannot be effectively measured. Where these properties are part of a system’s
acceptance criteria, industry standard practice is to judge them up or down by some form
of peer review (e.g., Fagan inspections [Fagan 76]).

While our value equation certainly permits all-or-none completion criteria (i.e., value
zero or one for one or more Ci in equation (2)), their use coarsens any measure of relative
productivity. In many cases, users will be interested questions of degree: e.g., how much
more portability do we get using development platform A compared to B. Further, if such
properties account for a significant portion of a development’s productive effort, we may
lose the precision needed to make meaningful productivity comparisons. For this reason,
it is important to develop effective metrics for developmental properties.

 16

In the following, we illustrate one approach to providing just such a metric for the
property commonly referred to as “maintainability.” While we do not expect the specific
approach described to generalize to other developmental properties, it does illustrate 1)
that conventional wisdom is wrong, at least in this case and 2) there are some general
principles that may be useful in developing metrics for similar kinds of properties.

3.2.1 Example: a Maintainability Metric
Our goal is to develop an architectural design for our software system that is
“maintainable.” By “maintainable,” we mean that the system is relatively easy to change
for expected types of changes1. In the general case, a single architectural design cannot be
equally easy to change for all types of changes so the designer must choose which kinds
of changes will be accommodated easily and which will not (e.g., cause dovetailing
changes or “break” the architecture).

In short, before it makes sense to talk about (much less measure) maintainability, we
must be precise about what we mean by the word. Any given architecture may be more
maintainable than another relative to one set of changes but not to another. Thus, we must
first answer the question: “Maintainable relative to what?” We answer this question by
specifying a list of:

1) Anticipated types of changes. We list changes that potentially impact the
architectural design. These should not be highly detailed; rather they should
identify classes of change like: “It is expected that the Doppler radar will be
replaced with a new model over the lifetime of the aircraft” or “It is likely that the
pattern-matching algorithm will be replaced with a more efficient version.”

2) Relative priority of each type of change. Specifying the priorities of different
changes gives a measure of their relative value and allows the architect to make
appropriate tradeoffs if necessary.

We now develop a metric that characterizes a design’s maintainability relative to our list
of expected changes. We characterize priorities as low, med, or high, and assign to them
the respective weights 1, 3, and 9. Our architectural design strategy applies information
hiding [Parnas 72]. That is, the designer seeks to 1) encapsulate each piece of information
that is likely to change in exactly one module and 2) decompose the modules such that if
two items are likely to change independently, then they will be encapsulated in different
modules.

To the finished design, we apply a simple pass/fail completion criterion. If at most one
module must be changed in response to each an anticipated change, then the design
passes (receiving value 1); otherwise, the design fails (receiving value 0). The value of
each change is then given by its priority times its completion value and the
maintainability is given by the sum over the list of anticipated changes.

We can now calculate the maintainability metric associated with a particular architecture
by “playing” the set of anticipated changes against the design. That is, each change is

1 “Maintainability” has no precise definition and is used in the industry to cover virtually any kind of
change to software following deployment. Our definition focuses on a one common aspect of what is
usually meant by “maintainability.”

 17

treated as a scenario that a reviewer applies to the system. If the change can be made by
making changes to only one module (i.e., the design is consistent with the information-
hiding principle) then it passes for that change.

The result is a metric with granularity proportional to the number of anticipated changes
that characterize “maintainability.” Further, it is clear that, by its construction, the metric
measures what the stakeholders mean by modifiability. Modifiability is defined to mean
that anticipated changes are confined to one module. We then generate the change metric
from the definitions of anticipated changes and produce the metric by simulating those
changes.

There is, of course, considerable latitude in how we assign weights or values. For
example:

1) We could construct a simple metric based on giving a value of “1” for each
change confined to a single module and “0” otherwise—i.e., simply the number of
changes that can be accommodated easily from a list of changes.

2) In practice, we have constructed metrics that include not only the priority but also
the likelihood associated with each change. Lower weights can be assigned to
changes of lower likelihood so the metric gives higher value to architectures that
address the likely changes first.

3) We can express the maintainability metric a value in terms of the amount of
rework or cost associated with making changes. Rather than pass/fail, we evaluate
each change against an architecture by estimating the amount of rework (and cost)
to implement the change. A standard estimation exercise for change requests. We
then use the total rework (weighted as desired) as the relative metric of design
maintainability. This actually gives the measure in a form directly translatable to
productivity.

An objective of our empirical studies will be to develop comparable metrics and methods
of measurement for other properties interest. These will be empirically validated and
included in the purpose-based benchmarks.

4 Benchmark Development and Execution.
We are in the process of developing an initial set of benchmarks, metrics and tools to
validate our conceptual approach to productivity measurement for HPCS. Our
development approach is iterative:

1) Identify community of developers who will execute benchmarks.

2) Develop productivity measurement infrastructure appropriate for that community,
e.g., define benchmarks, define workflows and corresponding functional- and
non-functional requirements, create and install measurement instruments and
analysis techniques,

3) Observe and measure developers as they execute the benchmark using the
previously-defined infrastructure components, and

4) Analyze benchmark performance and evaluate and improve infrastructure.

 18

We discuss these steps below.

Identifying the developer community. We have identified two initial developer
communities who will participate in our studies. One is made up of computer science
graduate students at the University of Maryland. The other is a group of professional
software developers working remotely from Russia. We are working with these two
communities because each presents different experimental design characteristics and
cost/benefit tradeoffs for our research. In particular, these two communities represent
different tradeoffs between internal validity, external validity, cost, and data quality. That
is, the student community provides us with an in vitro experimental setting. Here we have
substantial control over many aspects of observable behavior: the programming tasks,
programming environment, outside influences, observation methods used, etc. In
addition, the costs associated with observing students are relatively low, making
prototyping more feasible.

As with most in vitro situations, however, control comes at the price of
representativeness. The students are not usually professional developers (though some
are), so the tasks must be restricted in their time length and complexity, etc. To gather
data that is more representative of the complex software development workplace, we
need access to an in vivo experimental setting. The professional developer community
provides this. This setting allows for less control because we must be careful not to
overly interfere with the developers. On the other hand, the data we do collect is likely to
be more relevant to our overall goal of understanding HPCS productivity (stronger
external validity).

Develop productivity measurement infrastructure. Here we have begun by identifying
a general PBB. This problem involves writing software to compute “optimal” designs for
a weight-bearing truss with certain material characteristics [Gustafson 04]. The original
problem was specified with considerable detail. We are using this definition as given for
the professional community, but are working to scale down the benchmark for the student
community.

Each developer community will be following a different canonical workflow. At a high
level, the professional community is following the Enterprise Workflow, while the
students will be following the Lone Researcher Workflow (see Kepner overview). As
part of this work, we are also defining the functional and non-functional requirements for
the benchmark.

As discussed in Section 3.1, we are developing low-level data collection mechanisms
(sensors) to capture developer activities unobtrusively. One novel way in which we will
use this data is to develop low-level event traces (opening/closing files, running the
compiler, etc) and match them to higher level actions defined by the canonical workflow.
This will help us to better understand iteration, backtracking, and time usage within the
overall process flows to help us better understand bottlenecks in the workflows.

Execute the purpose-based benchmark. Benchmark execution begins with an
inoculation step. Participants are informed of the experimental procedures, explained
about all data we will collect and why, informed of their right to withdraw from the study
at any time, and are asked to provide informed consent. We then explain all the

 19

functional and non-functional requirements required of the implemented benchmark. For
the student community we will also conduct a tutorial on the engineering and
mathematical concepts underlying mechanical trusses. Our goal here is to avoid any
miscommunication, or apprehensions about the experiment. Initially, participants will
also be asked to maintain some manual record to help us calibrate our automated
techniques. Finally, participants will implement the benchmark in the context of the
appropriate canonical workflow. Along with measuring overall productivity we also
expect to: Identify and measure current bottlenecks in development process, to highlight
differences between activity- and performance-based benchmarks, and to begin analyzing
how different machine architectures address existing bottlenecks.

We will be executing our first pre-pilot study using CS graduate students in the spring
semester 2004. We will simultaneously begin studying the professional developers.

Analyze benchmark performance, and evaluate and improve infrastructure. As we
begin to get data from these studies, we will continuously monitor and improve our
infrastructure.
5 Open Issues
Our approach to characterizing and measuring productivity is consistent with DARPA’s
programmatic goals of

• addressing both development-time and execution time productivity issues,

• providing benchmarks suitable for all the major classes of HPCS applications,

• measuring productivity in terms of the actual value created,

• addressing strategic development concerns outside of a single life cycle such as
the value of transferable, portable, and reusable software products, and

• finding measures of productivity that users and vendors will agree on.

The (necessarily) open-ended framework allows us to define the output of development
to include any properties necessary to characterize “value” for that development or class
of developments. Indeed, any result to which we attach value and for which we can
devise a measure can be included. Further, value expressions can be expanded or
contracted as needed to meet new situations by adding new terms or removing existing
ones.

However, the approach also will require substantial work to make it operational and
effective.

1) The properties of interest and relative values for different application areas are not
currently known. These will have to be established empirically through
stakeholder interviews and review of existing codes or specifications.

2) For any property of interest, we will have to establish appropriate and effective
metrics of completion (or comparable metrics of scale). For many properties such
as portability, maintainability, etc. there is currently no agreed upon measure or
even process for determining relative figures of merit. For each such property, we
will either have to develop new approaches or fall back on imprecise gradation
determined by review.

 20

3) Our value equations [1] and [2] are only a first approximation. It is unclear yet to
what extent we will need to address dependencies or how best to incorporate time
into the model. In-depth examination of real development situations will be
needed to make this clear.

4) Currently benchmarks do not address the range of properties we have discussed.
Effective procedures will need to be developed for incorporating the properties of
interest (e.g., as requirements), metrics, and measurement processes or tools into
the benchmark specification. Likewise, we will need to develop directions on how
to tailor the benchmarks and interpret the results of their execution.

6 Summary
Ensuring that next-generation HPC platforms significantly improve real productivity in
terms of the science accomplished will require new approaches to characterizing,
measuring, and predicting productivity. Current productivity metrics and benchmarks fall
short in several ways. Traditional software metrics focus on measurable outputs but often
bear little relationship to the actual value of what is produced. Common benchmarks tend
to focus on machine performance, ignoring the growing bottlenecks associated with
software development.

Our goal is to establish, apply, and validate an effective approach to assessing and
predicting productivity that spans both development and execution time. Our objective is
to provide these capabilities in a form that supports platform buyers in choosing the best
system and platform developers in providing technology that addresses real productivity
problems.

In this paper, we have described an empirical approach to understanding and addressing
HPCS productivity. While it is clear that software development is increasingly a
productivity issue in many HPC systems, few specifics are known. Before such problems
can be addressed we need a better understanding of precisely what kinds of problems are
occurring, where these problems occur in the process, how these differ from one process
to the next, and how they vary from one type of HPC application domain to the next. We
plan to collect such data through careful observation (e.g., interviews) of 1) real projects
in common development domains and 2) experimental development efforts on canonical
benchmark problems. Data from real development efforts will allow us to understand and
catalog problems, requirements, and constraints characterizing different types of HPC
applications. We can then characterize representative requirements and value
propositions for different domains.

Carefully controlled experiments will help us better understand precisely where
developers spend their time and how different platform features might increase the
efficiency those activities. From this we expect to develop detailed canonical workflows
representative of different development environments.

Detailed knowledge of problem characteristics, requirements, values, and workflows will
be combined to develop tailored, productivity benchmarks for key HPCS domains. These
benchmarks will provide not only a representative computation problem, but
representative non-functional requirements as well. This includes domain-characteristic
requirements for properties like portability, reliability, maintainability, etc. along with

 21

appropriate measurement techniques. As a whole, each benchmark will exercise the
entire development process across a value space appropriate to the domain and provide
metrics and tools for measuring productivity throughout the development cycle.

7 Acknowledgements
We thank Mr. Dale Shires of the U.S. Army Research Laboratory High Performance
Computing Division for permission to use portions of the VPATC [VPATC 03]
specification. We also thank Dr. Doug Post of the Los Alamos National Laboratory and
Mr. Andy Mark of the High Performance Computing Modernization Program Office for
their help in obtaining the specification. Thanks also to Bill Walster, Dolores Shaffer, and
our anonymous reviewers for their careful reviews and thoughtful comments.

8 References

[Albrecht 83] Albrecht, A. and Gaffney, J., “Software function, source lines of code, and
development effort prediction: a software science validation,” IEEE Transactions on
Software Engineering, vol. 9, no. 6, pp. 639-648, 1983.

[Boehm 80] Boehm, B. and Wolverton, R. W.,”Software Cost Modelling: Some Lessons
Learned,” Journal of Systems and Software, vol. 1, no. 3, pp. 195-201, 1980.

[Boehm 81] Boehm, B., Software Engineering Economics, Prentice Hall, 1981.

[Boehm 95] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby,
R., “Cost models for future software life cycle processes: COCOMO 2.0,” Annals of
Software Engineering, vol. 1, pp. 57-94, 1995.

[Brooks 95] Brooks, F. P., The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition. Addison-Wesley, New York, ISBN 0201835959, 1995.

[Jones 86] Jones, C., Programming Productivity, McGraw-Hill, New York, 1986.

[Fagan 76] Fagan, M., “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal, vol. 15, no. 3, pp. 182-211, 1976.

[Johnson 03] Johnson, P., Kou, H., Agustin, J., Chan, C., Moore, C. A., Miglani, J., Zhen,
S., and Doane, W. E., “Beyond the Personal Software Process: Metrics collection and
analysis for the differently disciplined,” Proceedings of the 2003 International
Conference on Software Engineering, Portland, Oregon, May, 2003.

[Kepner 04] Kepner, J., “HPC Productivity: an Overarching View,” International Journal
of High Performance Computing and Applications: Special Issue on HPC Productivity
(ed. Kepner), vol. 18, no. 4, Winter 2004

 22

[Kitchenham 92] Kitchenham, B. A, “Empirical studies of assumptions that underlie
software cost estimation,” Information and Software Technology, vol. 34, no. 4, pp. 211-
218, 1992.

[Gause 89] Gause, D. and Weinberg, G., Exploring Requirements: Quality Before
Design, Dorset House, 1989.

[Parnas 72] Parnas, D. L., “On the criteria to be used in decomposing systems into
modules,” Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, 1972.

[Perry 96] Perry, D., Staudenmayer, N., and Votta, L., "Understanding and Improving
Time Usage in Software Development," in Trends in Software: Software Process, Wolf
and Fuggetta, editors, John Wiley & Sons, 1996

[Post 04] Post, D. and Kendall, R., “Software Project management and Quality
Engineering Practices for Complex, Coupled, Multi-Physics, Massively Parallel
Computation Simulations: Lessons Learned from ASCI,” International Journal of High
Performance Computing and Applications: Special Issue on HPC Productivity (ed.
Kepner), vol. 18, no. 4, Winter 2004.

[Porter 95] Porter, A., Votta, L., and Basil,i V., “Comparing detection methods for
software requirement inspections: A replicated experiment,” IEEE Transactions on
Software Engineering, vol. 21, no. 6, pp. 563-575, June 1995.

[Snir 04] Snir, M. and Bade, D., “A framework for measuring supercomputer
productivity,” International Journal of High Performance Computing and Applications:
Special Issue on HPC Productivity (ed. Kepner), vol. 18, no. 4, Winter 2004.

[VPATC 03] Software Development Plan for Virtual Prototyping and Accelerated
Testing of DoD Composite Material Combat Systems (VPATC), SOS-3, April 2003.

[Weinberg 74], Weinberg, G. and Schulman, E., “Goals and performance in computer
programming,” Human Factors, vol. 16, no. 1, pp. 70-77, 1974.

