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Abstract 
One key to improving high-performance computing (HPC) productivity is finding better 
ways to measure it. We define productivity in terms of mission goals, i.e., greater 
productivity means that more science is accomplished with less cost and effort. 
Traditional software productivity metrics and computing benchmarks have proven 
inadequate for assessing or predicting such end-to-end productivity. In this paper we 
introduce a new approach to measuring productivity in HPC applications that addresses 
both development time and execution time. Our goal is to develop a public repository of 
effective productivity benchmarks that anyone in the HPC community can apply to assess 
or predict productivity.  

1 Introduction 
While computer performance has improved dramatically, real productivity in terms of the 
science accomplished with these ever-faster machines has not kept pace. Indeed, 
scientists are finding it increasingly costly and time consuming to write, port, or rewrite 
their software to take advantage of the new hardware. While machine performance 
remains a critical productivity driver for high-performance computing applications, 
software development time increasingly dominates hardware speed as the primary 
productivity bottleneck. Traditional benchmarks do not provide a way to measure 
productivity. 

Removing or ameliorating productivity bottlenecks in next-generation high-performance 
computing systems is a key objective of DARPA’s High-Productivity Computing 
Systems (HPCS) Program. This objective has been characterized as the long-term goal of 
improving software productivity “at a rate commensurate with improvements in the 
underlying hardware” [Kepner 04]. 

Stating the goal this way reflects the scientific community’s experience that improved 
hardware performance often does not yield similar improvements in important measures 
like total cost, effort, or time to solution. Addressing these larger productivity issues will 
require addressing productivity bottlenecks in software development, project 
management, and system administration in addition to hardware performance. 

                                                 
* This work is sponsored in part by the Defense Advanced Research Projects Agency (DARPA) under 
Agreement No. NBCH3039002. 
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Our work focuses on developing an effective approach to characterizing and measuring 
HPCS software productivity. Before we can hope to address software productivity 
problems, we must agree on what those problems are and how we would determine 
whether we had solved them. In short, we must agree on what we mean by “productivity” 
in HPCS applications, and how such productivity should be measured, before we can 
rationally address the problem of how best to improve it. Goals of the work include: 

1) Develop a common definition of HPCS productivity that the HPCS developers, 
suppliers, and buyers (e.g., government agencies) can agree on. For our purposes, 
this means a definition that is consistent with the mission-level view that greater 
productivity means that more science is accomplished with less cost and effort. 

2) Develop effective measures of HPCS productivity that encompass the overall 
development process—design time as well as execution time. In particular, we 
seek to develop measures that apply to a wide range of development environments 
and broadly across high-performance computing application domains (e.g., 
weather prediction, fluid dynamics, nuclear applications, mechanical design, etc.) 
to assess, compare, or predict productivity. 

3) Provide productivity measurement capabilities to guide productivity improvement 
for both hardware and software developers. Effective, objective measurement 
provides the basis for systematic productivity improvement. We seek to provide 
common, public benchmarks and metrics to use in assessing and improving 
productivity. 

Both HPCS developers and buyers have traditionally used standardized benchmarks (e.g., 
LINPACK) to guide development choices. System developers use the benchmark results 
to guide platform development and subsequently demonstrate the speed of their 
machines. Buyers traditionally use such benchmarks to predict computation times and 
choose among competing platforms. However, the benchmarks and corresponding 
metrics employed to date have proven to be decreasingly effective predictors of end-to-
end productivity. Traditional benchmarks focus almost entirely on hardware speed. Thus, 
they typically attempt to predict only execution-time productivity, ignoring development 
time. Further, they do not measure other properties of an application that matter to users: 
reliability, repeatability, portability, reusability, maintainability, etc. 

In this paper we describe our approach to creating a new type of standardized benchmark 
that 1) encompasses the breadth of design-time and execution time activities as well as 2) 
the productivity contributions of both functional and non-functional requirements. In 
addition to defining a canonical computation problem, these “productivity benchmarks” 
seek to characterize an end-to-end productivity problem by capturing the representative 
context of the computation. This includes the overall process in terms of canonical 
workflows [Kepner 04] as well as the developmental attributes that contribute to the 
overall value of the software to its stakeholders. We will call such a multi-dimensional 
productivity benchmark a productivity benchmark suite (PBS).  

Briefly, a PBS comprises a canonical problem in the context of a complete set of 
behavioral and developmental requirements representative of a particular high-
performance computing domain. In addition to the functional and non-functional 
requirements, the productivity benchmark suite (PBS) will provide targeted metrics and 
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tools for measuring productivity in terms of overall costs and benefits across the 
development cycle. The goal is to create a set of benchmarking capabilities that, when 
applied, will exercise and measure not only the execution efficiency of a platform on a 
particular class of high-performance computing problems, but all the dimensions of 
development that contribute to the value of a solution.   

Our long-range goal is to develop a public repository of well-validated PBSs that are 
representative of the productivity challenges in each distinct high-performance 
computing domain. Platform developers or buyers can apply these PBSs to assess and 
predict productivity of particular high-performance computing platforms on their domain 
interest. In particular: 

1) HPCS Buyers: buyers of HPCS platforms are faced with the problem of 
predicting which vendor’s system will provide the best “bang for the buck” in 
their application domain. This question embraces the total cost of ownership 
including software development, execution, operation, maintenance, and so on. 
Buyers will be able to apply benchmarks from the repository to answer specific 
questions about how different platforms or development strategies can be 
expected to affect their productivity.  

2) HPCS Developers: HPCS platform vendors seek to develop systems that will 
improve productivity for their customer base. To do this, they must understand 
what the productivity problems are in their customer’s application domains, what 
properties of the platform affect those productivity issues, and how to measure the 
results of platform design changes. Vendors will be able to apply benchmarks to 
guide architectural design. 

A goal of our work is to provide the HPCS community with the capabilities needed to 
determine whether new technologies will effectively address critical productivity 
problems before vendors deploy those technologies in next-generation platforms. This 
will reduce the risk that next-generation high-performance systems will fail to meet 
DARPA’s HPCS productivity goals.  

Our overall approach is empirical in the sense that we will develop PBSs based on 
observations of real developers and their productivity problems with actual high-
performance applications. We will ensure validity of the benchmarks and metrics through 
carefully controlled experiments.  

The following sections describe the planned approach and expected results in detail. First, 
we describe a framework for reasoning about HPCS productivity and illustrate its 
application with a real application. We then describe ongoing work in developing a 
framework for PBSs and our approach to productivity measurement. We illustrate a new 
approach to measuring a system’s developmental qualities (e.g., maintainability). Finally, 
we discuss ongoing work in creating and validating productivity benchmarks. 

2 Reasoning about HPCS Productivity 
The economic definition of productivity is the output per unit-of-work. For example, 
“worker productivity” denotes the value of goods and services produced in a period 
divided by the hours of labor used to produce them. While the units vary depending on 
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the realm of discourse, all definitions of productivity share the underlying concept that 
increasing productivity means producing more of value with less work. 

Conceptually, the economic definition of productivity is both simple and intuitively 
appealing. It is also consistent with the objectives of the HPCS program – i.e., providing 
platforms that allow scientists to accomplish more science in less time at lower cost. 
Unfortunately, the economic definition has proven difficult to apply to software 
development. This is true not just for high-performance computing applications, but for 
the broad classes of software applications more typically addressed in Software 
Engineering productivity studies (e.g. [Boehm 80] and [Boehm 81]).  

The mutable, intangible nature of both the processes and the products of software 
development make the outputs or units-of-work difficult to define or measure. The 
default has been to choose metrics that are relatively easy to measure, but that bear only a 
loose relationship to the value of what is produced. 

Our goal is to address these issues by providing a framework for characterizing and 
measuring the perceived value of the output to system stakeholders. We define the output 
to include any properties of the system that consume work and have stakeholder value, 
including those that have no direct physical analog in the code (e.g., usability).  

The remainder of this section describes the conceptual framework for our approach. We 
first discuss some of the historical difficulties and pitfalls associated with software 
productivity metrics. We then describe a general framework for modeling a software 
development’s output value based on the stakeholder values of developmental properties 
and requirements. We argue that the proposed framework is sufficiently flexible to 
address productivity issues across development time and run time. We then walk through 
an example taken from requirements for a high-performance application that illustrates 
consistency of the model with a real high-performance computing application. 

2.1 Pitfalls of Traditional Productivity Measures 
Software productivity has been and remains a core mission of software engineering. 
Nonetheless, problems in adequately measuring software productivity, much less 
predicting or improving it, have proven among the most intractable in the field. While 
there is general agreement that software productivity should reflect the economic 
definition: output value per unit-of-work, there is little agreement on how to define the 
outputs or the units of work. In general, industry experience has been that those software 
development properties that we can most easily and precisely measure (e.g., the number 
of lines of code produced) have little direct relationship to the system’s stakeholder value 
while many properties with established value (e.g., maintainability) have no established, 
effective metric. 

The long-running controversy over the most common software productivity metric, the 
number of source lines of code developed (SLOC), illustrates the types of problems that 
arise. SLOC became one of the first commonly accepted productivity metrics [Boehm 
81] and remains in regular use [Boehm 95]. However, if applied incautiously, SLOC 
introduces a number of uncertainties and potential paradoxes. The number of lines of 
code necessary to implement a particular functionality will vary greatly from one 
programming language to another. Worse, they can vary inversely with the quality of the 
programmer and efficiency of the code (i.e., better programmers do more with less code). 
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If used without careful controls, SLOC productivity measures may indicate that 
productivity has decreased when it has actually increased [Jones 86]. In short, creating 
lines of code is a necessary but not sufficient condition to creating software of value. 
There is no predictable relationship between SLOC (or similar metrics like. function 
points [Albrecht 83]) to critical code properties that enhance value like maintainability, 
portability, reusability, security, and so on.  

Paradoxes and uncertainty likewise attend the use of common units-of-work like labor 
hours or, more typically in software, man-months. Frederick Brooks’ first articulated 
some of the problems in using conventional units of work to measure or predict software 
productivity in his book [Brooks 95], The Mythical Man Month, most famously, his 
observation that, adding manpower to a late software project typically made it later. 
Subsequent empirical software engineering research at NASA Goddard’s Software 
Engineering Laboratory (e.g., [Porter 95]) underscored the diversity of factors that affect 
the cost and quality of software production. Likewise, detailed time-motion studies of 
software developers [Perry 96] suggest that even the people doing the work do not 
accurately predict or even recall exactly what they spend their time on. Such work 
indicates that making reasonably accurate correlations between units-of-work and 
produced value requires careful, detailed empirical study of the development process in a 
controlled context. 

Similar issues arise with productivity measures in high-performance computing. 
Traditionally, measures of machine performance like the peak number of floating point 
operations per second (FLOPS) are used as a predictive measure of high-performance 
computer output. Historically, such measures had validity where the total time to solution 
was overwhelmingly constrained by program execution time, and where the program 
execution time was overwhelmingly dominated by the time spent doing floating-point 
operations. As the effort needed for developing, porting, rewriting, and tuning the 
software has increased, the relevance of such measures has correspondingly decreased. 
(Floating-point arithmetic also no longer dominates execution time even in the most 
compute-intensive programs, yet the focus on FLOPS persists.) Likewise, as program 
properties other than execution performance (e.g., portability, maintainability, etc.) have 
become more important production values, the need for metrics that account for these 
properties has increased as well. 

Early productivity studies observed the phenomenon that Weinberg and Schulman 
[Weinberg 74] characterized as “what-you-measure-is-what-you-get” (WYMIWYG). 
Repeated studies have consistently confirmed this observation’s predictive power. If one 
measures productivity in terms of the number of lines of code, programmers will produce 
reams of code. If one measures HPCS productivity in terms of FLOPS, then we will get 
processors that show very high arithmetic rates on carefully chosen benchmarks. In 
neither case will we necessarily get any improved productivity in the sense of more 
functions implemented or more science done per dollar spent.  

An important corollary is that the reverse also holds true. In short, if we want to get 
something, we should measure it. This principle dictates, in particular, that if we want 
developmental properties like portability, interoperability, maintainability, etc. in addition 
to execution time properties like performance and accuracy, then we need to measure all 
of those properties as directly as possible. Even if we ignore past pitfalls, this principle 
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suggests that we cannot use a single metric that obscures the productivity contribution of 
each critical property. Rather, we will need measures that explicitly address development 
output as comprising multiple, diverse properties of value. 

2.2 An HPCS Productivity Framework 
Intuitively, each application development has associated with it some value to its 
stakeholders. The overall value will typically be due to a number of different properties 
of the code, its execution behavior, and its development process. Exactly which 
properties have value, and how much value is attributed to them will vary from one type 
of application to the next and from one class of stakeholder to the next. In particular, we 
observe that: 

1) The overall value is a function of a number of distinct properties of the static 
work products, the code, and the development process itself. In addition to 
accuracy and timeliness of results, these may include run-time properties like 
security, availability, and locality. It may also include desirable developmental 
properties like portability, maintainability, or reusability or even organizational 
concerns like consistency with organizational standards or the amount of legacy 
code reused.  

2) Exactly which attributes of the system are important will vary from one type of 
application to the next, from one class of stakeholders to another, and possibly 
even from one run of the application to another. 

3) The relative importance or priority of each attribute may likewise vary by 
application type, stakeholder class, and so on. 

4) The relative values of individual properties as well as the total value of a given 
solution may change over (calendar) time [Snir 04]. 

 

In short, the value associated with any particular development is typically a function of a 
number of different properties that we can expect to vary from one development effort to 
the next or even one run of the program to another. We can capture this by representing 
the total relative value as a vector over the values of the properties of interest using the 
following framework. We begin by associating with each property of interest i: 

1) A metric of completion Ci  
2) A relative value weight vi  

 
Briefly, the metric of completion Ci is a measure of the degree to which the realization of 
the property i meets stakeholder goals for that property. The relative value weight vi 
represents the importance of the property i relative to the other properties of interest. 
Assuming independence, the value of some set of properties i = 1 to n is given by the 
vector: 

 VA = (v1C1, v2C2, …, vnCn) (1) 

Where we can normalize each of the viCi to a common metric (e.g., labor or cost), we can 
express the total value as the sum.  

 VA = v1C1 + v2C2 + … + vnCn (2) 
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For example, we could calibrate each Ci such that Ci = 1 whenever property i meets its 
design goals, and vi gives the relative importance of property i expressed as a percentage 
such that ∑n

i=1(vi) = 100 and VA = 100 exactly when all the Ci are satisfied. Relative 
productivity is then given by the value produced divided by the work consumed to 
produce it:  

 P = VA / W (3) 
 
Equivalently, we can say that the greater the value of VA for a given amount of work, the 
higher the productivity. This corresponds to our intuitive view that greater productivity 
implies greater value per unit of work. 

Both equation (1) and equation (2) are useful. Equation (1) has the advantage that the 
individual contributions of each property of interest to the total value are clear and that 
we need not attempt to normalize over different kinds of properties. However, equation 
(2) has the advantage of summarizing the overall value in a way that might be compared 
across projects if normalized over a common metric like cost. 

We anticipate further refinement to our equations to reflect significant dependencies. In 
the general case, the degree of completeness and value of one system property or even a 
set of properties may depend on others. For example, it does not make sense to talk about 
the “value” of properties like maintainability or portability if the code does not do what it 
is supposed to. Further, the values of individual properties, as well as the program as a 
whole, are likely to change over time. A solution today is typically worth more than the 
same solution tomorrow. Thus, the value weight vi associated with each property i may 
be a function of calendar time t as can VA itself. Understanding the nature of these 
relationships, their significance, and how best to represent them will require careful study 
of different classes of HPCS applications.  

2.3 Applicability of the Value Model 
By design, our value function must be used in the context of a computing application that 
establishes the value space of interest. For productivity benchmarking, this context will 
be given by the PBS. The definition of the PBS will include the definitions of the 
properties of interest, corresponding metrics of completion, and representative value 
weights. Appropriate properties and values will be obtained from empirical studies of 
representative development efforts in the application area of the benchmark; i.e., for a 
benchmark simulating behavior of a weather code, representative properties, values, and 
completion criteria would be gleaned from the weather simulation community. This 
framework will then be tailored to the intended use of the benchmark. If particular 
properties are irrelevant, they can be omitted (equivalently, given zero values). 

The basis for constructing such productivity models as well as the applicability of our 
framework can be illustrated by considering an example from a real high-performance 
application. Tables 1 and 2 are taken from Software Development Plan (SDP) for Virtual 
Prototyping and Accelerated Testing of DoD Composite Material Combat Systems 
(VPATC) [VPATC 03] and are part of the definition of system requirements and 
constraints.  
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Table 1 gives a subset of the Critical Operational Issues (COI) and Measures of 
Effectiveness and Suitability (MOE&S) defined for the VPATC system. Table 2 defines 
what are called the system’s Critical Technical Parameters (CTP). It maps the technical 
parameter values that should be measured back to MOE&S in Table 1 and gives both the 
minimal and optimal criteria for the CTPs for the scheduled sequences system testing 
milestones. This sequence begins with the system acceptance test (SAT), follows with the 
Alpha and Beta tests, and finishes with the initial operational test and evaluation 
(IOT&E). 

Clearly, the value of the VPATC system is not a function of its execution performance 
alone or even of its computational behavior as a whole. A given implementation of the 
system requirements will be acceptable only if it meets the minimum criteria for the 
Critical Operations Issues as detailed in Table 2. For example, a system will be 
acceptable only if its execution performance meets the criteria that “Fixed speedup 
exceeds 60% of optimum on 32 or more processors” and the code meets the portability 
requirement of “running on three HPC platforms with the same valid results.” Thus, we 
observe that: 

1) To satisfy requirements, the system must meet development goals for a number of 
distinct properties concurrently with functional requirements. 

2) The properties of interest span development and execution time. They include 
(static) developmental properties (e.g., COI #4: Maintainability and Adaptability), 
execution time properties (e.g., COI #1: Performance), and organizational 
properties (e.g., COI #5: Training and Technology Transfer).  

3) Associated with each property is some testable metric of completion. For 
example, portability is measured based on the number of HPC platforms that will 
yield valid results when running the same code.  

4) Notions of value, while implicit, are present in rudimentary form. For example, it 
is clear that an implementation of the system that meets the “Optimum 
Objectives” listed in Table 2 has greater value than an implementation that meets 
only “Minimum Objectives.” A rough value scale could be constructed based on 
the number of objectives satisfying optimum criteria. 

Table 1: Critical Operational Issues (COIs) and Measures of Effectiveness and Suitability (MOE&S) 

COI COI Title COI Description MOE&S 
 

1 
Performance Does the project provide computational 

results that are accurate, stable, and 
reliable in a portable scalable 
environment? 

Scalable performance improvement 
over current systems 
 
Software robustness 

 
2 

Interoperability Does the project application code’s 
derived data integrate with reusable 
software components and scientific 
visualization techniques? 

Sharing of project developed software 
resources among local and remote 
users 

 
3 

SOS Portfolio 
Interoperability 

Does the underlying framework enable 
the exchange of results with other 
simulations? 
 

Sharing of project developed software 
simulation results in real-time among 
System-of-Systems simulation users 
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COI COI Title COI Description MOE&S 
 

4 
Maintainability 
and Adaptability 

Does the project software adhere to 
standards and accepted practices, 
utilize standard languages and libraries, 
utilize common visualization tools, and 
provide adequate documentation? 

Portable project developed software 
products across existing and future 
HPC platforms 
 
Reliability of application software 
products 
 
Maintainability of application 
software products 

 
5 

Training and 
Technology 
Transfer 
 

Does the project software reside in a 
catalogued repository, utilize standard 
languages, and provide adequate 
documentation? 

Software dissemination and 
technology transfer 
 

 
6 

Usability Does the project software’s human-
computer interface support ease of 
learning, ease of use, effectiveness and 
efficiency, and user satisfaction? 

Maintainability of application 
software products 
 

 
7 

Security Are appropriate access controls in 
place to safeguard the intellectual 
property rights and security concerns 
associated with the project software? 

Security 

 
Table 2: Critical Technical Parameters 

CTP Test 
Event 

Evaluation Optimum 
Objectives 

Evaluation Minimum 
Criteria 

 
Scalable software suites: 
 
Demonstrate reduction in 
clock time as a function 
of increased Central 
Processing Units (CPU) 

 
SAT 

 
 
 
 

Alpha 
 
 

Beta 
 
 

IOT&E 
 
 

 
Determine the effective software code 
architecture for construction of scalable 
composite material predictors and 
dynamic models 
 
Fixed speedup exceeds 50% of 
optimum on 16 processors  
 
Fixed speedup exceeds 60% of 
optimum on 32 processors  
 
Fixed speedup exceeds 70% of 
optimum on 64 processors  

 
Same 
 
 
 
 
Fixed speedup exceeds 40% of 
optimum on 8 processors  
 
Fixed speedup exceeds 50% of 
optimum on 16 processors 
 
Fixed speedup exceeds 60% of 
optimum on 32+ processors  

 
Portable, reusable 
application software: 
 
Software applications 
behave the same and 
produce similar results, 
within an acceptable 
margin of error, on a 
variety of scalable HPC 
platforms 

 
SAT 

 
 
 

Alpha 
 
 

Beta 
 
 

 
Architecture of code determined, and 
approaches for parallel execution 
analyzed 
 
Codes run on two HPC platforms with 
valid results  
 
Codes run on three HPC platforms with 
same valid results  
 

 
Same 
 
  
 
Same 
  
 
Codes run on two HPC 
platforms with same valid 
results 
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CTP Test 
Event 

Evaluation Optimum 
Objectives 

Evaluation Minimum 
Criteria 

 IOT&E 
 

Codes run on four or more HPC 
platforms with same valid results 
 

 
Codes run on three HPC 
platforms with same valid 
results 
 

 
Portable, reusable 
application software: 
 
Code provides for data 
output 

 
SAT 

      
 

Alpha 
 
 

Beta 
 
 

IOT&E 
 

 

 
Reusable software components 
identified. 
 
Data output in Tecplot format and 
XDMF format for custom interface. 
 
Data output in Tecplot format and 
XDMF format for custom interface. 
 
Data output in Tecplot format and 
XDMF format for custom interface. 

 
Determine the architecture for 
pre- and post-processing 
 
Data output in Tecplot format. 
 
 
Data output in Tecplot format. 
 
 
Same. 

 
Stable, accurate and 
robust software: 
 
Interface with all 
required external 
software products and 
codes 
 

 
SAT 

 
 

Alpha 
 

 
 
 
 
 

Beta 
 

 
 

IOT&E 

 
Determine the architecture for pre- and 
post-processing 
 
Software stores data in XML/HDF 
format and supplies interfaces to 
PETSc and the Scalable Parallel Direct 
Solver Library for Sparse Symmetric 
Positive Definite Systems (PSPASES) 
 
 
Software stores data in XML/HDF 
format and supplies interfaces to 
PETSc and PSPASES 
 
       “                     “ 
 

 
Same 
 
 
Software stores data in 
XML/HDF format and 
supplies interfaces to the 
Portable Extensible Toolkit for 
Scientific Computation 
(PETSC) 
 
Same 
 
 
 
Same 
 

 

Clearly, we do not expect that every system specification will express properties and 
values so clearly or can be as easily mapped to our productivity model. The VPATC 
specification is, in our experience, unusual in its clarity and specificity, representative of 
current best practices. Nonetheless, the format and placeholders for COIs and MOE&S 
reflect government standards and are required for all similar DoD development. Clearly 
most codes will have similar kinds of requirements though it may take more detective 
work (e.g., interviews and observation) to characterize them as precisely. 

3 Developing a Productivity Benchmark Suite 
We observe that reasoning about or measuring productivity in the VPATC domain 
requires considering a wide range of different kinds of system properties. Clearly, a 
development effort that meets the optimum criteria for the same effort, time, and cost as 
one that meets the minimum criteria would be considered more productive. Thus, these 
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properties should be considered part of the “output” that one must measure to assess 
productivity.  

The same reasoning would apply to developing an effective benchmark for assessing 
productivity in VPATC’s application domain. If, for example, we wanted to use a 
productivity benchmark to answer a question of the form “Will we achieve greater 
productivity on a VPATC application using HPC platform A or platform B?” then the 
benchmark must incorporate the kinds of properties, values and metrics we observe in the 
VPATC specification. In addition to defining a computational problem that exercises the 
hardware in the same manner the VPATC simulation does, the benchmark would need to 
define analogous requirements for the critical system properties (COIs) including 
interoperability, usability, security, maintainability, adaptability, and so on. Fully 
executing the benchmark would require solving the computational problem in a manner 
that satisfies all of these functional and non-functional requirements. Measuring 
productivity against the benchmark would require measuring the extent to which each of 
the requirements had been satisfied against the effort expended. 

Notionally, this characterizes the content and use of a productivity benchmark suite. We 
view a PBS as a publicly available package that effectively represents the development 
challenges characteristic of a particular high-performance application domain. Each such 
package defines a computational problem in a context that simulates the characteristics 
and constraints of a typical application in a particular high-performance computing 
domain. The challenge is to define the context sufficiently that: 

1) The context adequately characterizes value space of the end-to-end requirements 
and goals of a real application domain 

2) It is possible to make meaningful comparisons in productivity measures between 
distinct applications of the benchmark 

Our approach is based on the empirical derivation of canonical workflows [Kepner 04] 
and purpose-based benchmarks [Gustafson 04]. Together with the associated non-
functional requirements, value function, and metrics, these sufficiently constrain the 
problem that different developers should be able to apply the benchmark and generate 
productivity measures that can be meaningfully compared. This will provide a basis for a 
public repository of commonly applicable HPCS benchmarks. The key components are: 

Canonical Workflows: Briefly, canonical workflows are used to characterize and 
constrain the process context of a productivity benchmark. A canonical workflow 
characterizes both the development process and the execution workflow associated with 
creating and using a high-performance computing application to meet an overall set of 
mission goals. It characterizes the process steps and work products associated with 
characteristic development paradigms in the high-performance computing community. 

Purpose-based benchmarks (PBB): PBBs are described in detail in a separate article in 
this issue [Gustafson 04]. Briefly, PBBs are computational problems that accurately 
embody the design and execution time challenges of real applications in a domain. Unlike 
traditional benchmarks, PBBs are designed to exercise both the development process and 
the development platform in essentially the same manner (with reduced size) that real 
development problems do in a particular application domain.  
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Non-functional requirements: The benchmark will include representative execution 
time and developmental requirements with their associated metrics of completion and 
effectiveness. These include any requirements on the development process, 
administration, static-design, and run-time behavior characteristic of the application 
domain. 

Characteristic value function: Associated with the requirements is a representative 
value function (e.g., in the form of the value function (1) or (2) above). The value 
function characterizes a value proposition (i.e., relative values of the different 
requirements) associated with applications in the domain interest. 

Productivity metrics and tools: A set of standardized metrics, algorithms and tools for 
measuring productivity associated with both development time and execution time 
activities and goals. These are discussed further in subsequent sections of this paper.  

Our approach to building PBSs is empirical in the sense of being derived either from 
observation of real developers or from carefully controlled experiments. For example, we 
will obtain the application properties of interest and their relative value directly from 
developers in particular HPC domains like by direct inquiry or by observation. The 
empirical methods we plan to apply to particular parts of the problem are described in 
context. 

3.1 Measuring Development 
There are two major goals of empirical measurement in the context of our benchmarks: 

1. Characterization: Initially, the primary goal of measuring the processes and 
products of high productivity computing system applications is to better 
understand what actually happens during such development. Measurement 
supports identification of potential problems and bottlenecks in HPCS 
development, clarification of the similarities and differences between the various 
workflows for development, and the potential creation of predictive models for 
required resources and product quality.  

2. Control: Once a baseline set of measures have been obtained and used to 
characterize HPCS development, the use of measurement can begin to support 
project management activities. In this application, measures taken from the 
project requirements or from in-process development can be compared to 
measures obtained from prior development efforts or used as input to the 
predictive models generated from these measures. These comparisons and model 
outputs can be used to help guide the new development. Possible forms of 
guidance include: the need for new or different kinds of resources, the 
appropriateness of the given workflow chosen for the goals of the project, and 
approaches to improving the quality of the system. Of course, the measures taken 
during every development can feed back into the characterization process to 
provide better understanding and modeling of HPCS development. 

We propose to measure HPCS development in both qualitative and quantitative ways. 
Our measurement techniques will include structured interviews, time and motion studies, 
and automated measurement. Each of these techniques has differing kinds of strengths 
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and weaknesses. By employing all of these techniques in this research, we can ameliorate 
the weaknesses present in each form and improve the overall validity of the research. 

3.1.1 Structured interviews  
In structured interviews, a researcher talks directly with members of the development 
team, recording data using notebooks, audio tape, or video tape to learn more about the 
developer’s view of the development process and its strengths and weaknesses. 
Structured interviews are useful for general characterization of a workflow, gaining 
insight into the kinds of quantitative measures that would be useful to collect, and 
collecting examples of process problems and solutions.    

Some advantages of the structured interview process are that it is relatively inexpensive 
to carry out and does not require extensive access of the researcher into the development 
process. However, it suffers from the fact that the way a developer recalls a development 
situation could vary in significant ways from the reality of that development situation 
when it actually occurred. In addition, social or political pressures can influence the way 
a developer represents development obstacles or problems. Over time, a developer might 
simply forget or not perceive significant influences on development. 

In many cases, however, we will be interested in data, observations, and lessons learned 
from projects that have already completed. For such projects, structured interviews are 
the only way to recover much of the information of interest (e.g., perspectives the time 
spent on different activities or the relative value of different system properties). Here the 
use of carefully structured interviews allows one to generalize over the data collected. 
This is the approach currently being used in a set of retrospective studies of high-
performance computing applications being led by Doug Post of Los Alamos National 
Laboratory [Post 04]. Results from these project retrospectives will be used to help 
characterize application domains in terms of characteristic requirements and canonical 
work flows. 

3.1.2 Time and motion studies 
In time and motion studies, also known as “naturalistic observation,” the observer spends 
time “shadowing” one or more members of the development team, recording the tasks to 
perform and the time intervals during which the tasks are performed. Developer logs can 
augment direct observations. 

Time and motion studies have the advantages of supporting the development of fine-
grained models of how developers spend their time, and surfacing issues in development 
process that might not otherwise be perceived by developers. The data that is collected is 
thus of generally higher quality and fidelity than that collected by structured interviews. 
The disadvantages of time and motion studies are access and cost. The organization and 
developers must be willing to allow a researcher to monitor their behavior over extended 
periods and measures must be taken to prevent that monitoring from interfering with the 
developer’s behavior. In addition, the technique is very expensive, requiring the 
researcher to essentially work full-time at the institution doing data collection. Because of 
this, time and motion studies are usually restricted to just a few days of data collection. 
This means that only a small period of development during any given project can be 
monitored. 
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Several examples of software development time and motion studies appear in Perry, 
Staudenmayer, and Votta [Perry 96]. In that work, the authors summarized the results of 
three studies of developer time usage at Lucent Technologies.  

The first experiment was an after the fact analysis of one software developer’s personal 
diary. This diary recorded that developer’s work-related activities over a 3-year period. 
This analysis helped the authors create initial hypotheses about time usage they tested in 
a later experiment. For example, analysis of the diary suggested that, much more than the 
authors expected, developers were blocked because important information was not 
immediately available to them. 

The authors then conducted a second experiment to examine their newly generated 
hypotheses. To do this they created a data collection instrument accurate to about ½ hour 
of time. Next, they recruited a number of Lucent developers who agreed to fill out the 
data collection forms each day. From these data the authors made several observations. 
First, the subjects typically worked on two features simultaneously, so they could context 
switch when they became blocked. Second, even though context switching allows 
developers to keep working when blocked on one project, the cost is that individual 
projects take longer to finish. This was particularly important in the telephony industry 
where time-to-market pressures were severe.  

Finally, the authors conducted a third study to compare self-reported time data with 
observed time data. The goal was to understand how accurate self-reported data is. This is 
important because it is much cheaper to collect data this way than to hire an external 
reporter. This study suggested that contrary to some people’s beliefs, developers did not 
consciously misrepresent data. However, there were some systematic sources of bias. For 
example, some developers tended to lump short work interruptions (e.g., a colleague 
drops in for a 10 minute technical discussion) in with the activity they were conducting 
when interrupted. 

Lessons learned from these studies are being applied to development and validation of 
our productivity benchmarks to ensure accurate representation of workflows and accurate 
data on units of work.  

3.1.3 Automated measurement 
A third form of measurement involves collection of data using the artifacts of 
development itself. For example, if development uses a source code control system, then 
the logs from this system can be analyzed to understand the patterns of developer 
interaction with the source files over time. The system itself can be generated at various 
points during its development to recover measures of its size or complexity. 

Automated measurement has the advantages of collecting more objective measures of the 
process and products of development that are not filtered through the perceptions of 
developers. Automated measurement also has the advantage of being relatively low cost: 
researchers are not required to be on site, and developers do not have to deal with the 
potential short-term or long-term intrusion of a researcher in their daily activities. The 
disadvantage of automated measurement is its incompleteness relative to the other 
methods: many development activities cannot be reconstructed by analysis of the 
evidence left by tool usage. 
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An example of automated measurement is the work by Johnson on Hackystat [Johnson 
03]. Hackystat is a system for automated metrics collection and analysis that provides 
custom “sensors” that are attached to developer tools, such as their editor, build tool, 
configuration management system, and so forth. The sensors unobtrusively monitor 
development and collect data about the process and products of development. 

Some aspects of HPCS productivity measurement are similar to software productivity 
measurement in general. For example, automated metrics collection can provide an 
indication of how much time is spent actively modifying source code files. Automated 
tools can also monitor activities such as the invocation of test cases, and the sequence and 
nature of developer interactions with a configuration management repository. The tools 
can automatically gather data on the overall size of the system (expressed as numbers of 
non-comment lines of code, and/or number of methods, and/or number of compilation 
units), or complexity measures (such as measures of coupling between or cohesion within 
modules, and the characteristics of the inheritance hierarchy).   

However, other aspects of HPCS productivity measurement will be required due to the 
specialized nature of this domain. For example, many workflows for HPCS application 
software development involve the initial development of a serial version of the system 
and measurement of its performance characteristics. Following the establishment of this 
baseline performance level, the next development stage involves implementing a 
parallelized version, typically using packages like MPI or OpenMP. Following this, 
experimental runs are performed to compute measures like Speedup, which indicates how 
much faster (or slower) the system executes as the number of processors allocated to the 
problem increases. Based upon the Speedup curve or other measures of parallel 
performance, the developer may decide to re-implement the parallelized version. By 
automatically monitoring the invocations of tools for compilation, execution, and 
performance profiling, it is possible to measure the time spent in each of these phases of 
HPC development. 

3.2 Measuring Developmental Qualities (“ilities”) 
Obtaining any sort of fine-grained measures of productivity using our approach requires 
that we be able to provide relatively precise measures of progress, completion or other 
figures of merit for developmental properties like maintainability and portability. While 
such properties frequently appear in software requirements, the conventional wisdom is 
that they cannot be effectively measured. Where these properties are part of a system’s 
acceptance criteria, industry standard practice is to judge them up or down by some form 
of peer review (e.g., Fagan inspections [Fagan 76]).  

While our value equation certainly permits all-or-none completion criteria (i.e., value 
zero or one for one or more Ci in equation (2)), their use coarsens any measure of relative 
productivity. In many cases, users will be interested questions of degree: e.g., how much 
more portability do we get using development platform A compared to B. Further, if such 
properties account for a significant portion of a development’s productive effort, we may 
lose the precision needed to make meaningful productivity comparisons. For this reason, 
it is important to develop effective metrics for developmental properties. 
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In the following, we illustrate one approach to providing just such a metric for the 
property commonly referred to as “maintainability.” While we do not expect the specific 
approach described to generalize to other developmental properties, it does illustrate 1) 
that conventional wisdom is wrong, at least in this case and 2) there are some general 
principles that may be useful in developing metrics for similar kinds of properties. 

3.2.1 Example: a Maintainability Metric 
Our goal is to develop an architectural design for our software system that is 
“maintainable.” By “maintainable,” we mean that the system is relatively easy to change 
for expected types of changes1. In the general case, a single architectural design cannot be 
equally easy to change for all types of changes so the designer must choose which kinds 
of changes will be accommodated easily and which will not (e.g., cause dovetailing 
changes or “break” the architecture).  

In short, before it makes sense to talk about (much less measure) maintainability, we 
must be precise about what we mean by the word. Any given architecture may be more 
maintainable than another relative to one set of changes but not to another. Thus, we must 
first answer the question: “Maintainable relative to what?” We answer this question by 
specifying a list of: 

1) Anticipated types of changes. We list changes that potentially impact the 
architectural design. These should not be highly detailed; rather they should 
identify classes of change like: “It is expected that the Doppler radar will be 
replaced with a new model over the lifetime of the aircraft” or “It is likely that the 
pattern-matching algorithm will be replaced with a more efficient version.” 

2) Relative priority of each type of change. Specifying the priorities of different 
changes gives a measure of their relative value and allows the architect to make 
appropriate tradeoffs if necessary. 

We now develop a metric that characterizes a design’s maintainability relative to our list 
of expected changes. We characterize priorities as low, med, or high, and assign to them 
the respective weights 1, 3, and 9. Our architectural design strategy applies information 
hiding [Parnas 72]. That is, the designer seeks to 1) encapsulate each piece of information 
that is likely to change in exactly one module and 2) decompose the modules such that if 
two items are likely to change independently, then they will be encapsulated in different 
modules. 

To the finished design, we apply a simple pass/fail completion criterion. If at most one 
module must be changed in response to each an anticipated change, then the design 
passes (receiving value 1); otherwise, the design fails (receiving value 0). The value of 
each change is then given by its priority times its completion value and the 
maintainability is given by the sum over the list of anticipated changes. 

We can now calculate the maintainability metric associated with a particular architecture 
by “playing” the set of anticipated changes against the design. That is, each change is 

                                                 
1 “Maintainability” has no precise definition and is used in the industry to cover virtually any kind of 
change to software following deployment. Our definition focuses on a one common aspect of what is 
usually meant by “maintainability.”  
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treated as a scenario that a reviewer applies to the system. If the change can be made by 
making changes to only one module (i.e., the design is consistent with the information-
hiding principle) then it passes for that change. 

The result is a metric with granularity proportional to the number of anticipated changes 
that characterize “maintainability.” Further, it is clear that, by its construction, the metric 
measures what the stakeholders mean by modifiability. Modifiability is defined to mean 
that anticipated changes are confined to one module. We then generate the change metric 
from the definitions of anticipated changes and produce the metric by simulating those 
changes. 

There is, of course, considerable latitude in how we assign weights or values. For 
example: 

1) We could construct a simple metric based on giving a value of “1” for each 
change confined to a single module and “0” otherwise—i.e., simply the number of 
changes that can be accommodated easily from a list of changes. 

2) In practice, we have constructed metrics that include not only the priority but also 
the likelihood associated with each change. Lower weights can be assigned to 
changes of lower likelihood so the metric gives higher value to architectures that 
address the likely changes first. 

3) We can express the maintainability metric a value in terms of the amount of 
rework or cost associated with making changes. Rather than pass/fail, we evaluate 
each change against an architecture by estimating the amount of rework (and cost) 
to implement the change. A standard estimation exercise for change requests. We 
then use the total rework (weighted as desired) as the relative metric of design 
maintainability. This actually gives the measure in a form directly translatable to 
productivity. 

An objective of our empirical studies will be to develop comparable metrics and methods 
of measurement for other properties interest. These will be empirically validated and 
included in the purpose-based benchmarks. 

4 Benchmark Development and Execution. 
We are in the process of developing an initial set of benchmarks, metrics and tools to 
validate our conceptual approach to productivity measurement for HPCS. Our 
development approach is iterative:  

1) Identify community of developers who will execute benchmarks. 

2) Develop productivity measurement infrastructure appropriate for that community, 
e.g., define benchmarks, define workflows and corresponding functional- and 
non-functional requirements, create and install measurement instruments and 
analysis techniques,  

3) Observe and measure developers as they execute the benchmark using the 
previously-defined infrastructure components, and 

4) Analyze benchmark performance and evaluate and improve infrastructure. 
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We discuss these steps below. 

Identifying the developer community. We have identified two initial developer 
communities who will participate in our studies. One is made up of computer science 
graduate students at the University of Maryland. The other is a group of professional 
software developers working remotely from Russia. We are working with these two 
communities because each presents different experimental design characteristics and 
cost/benefit tradeoffs for our research. In particular, these two communities represent 
different tradeoffs between internal validity, external validity, cost, and data quality. That 
is, the student community provides us with an in vitro experimental setting. Here we have 
substantial control over many aspects of observable behavior: the programming tasks, 
programming environment, outside influences, observation methods used, etc. In 
addition, the costs associated with observing students are relatively low, making 
prototyping more feasible.  

As with most in vitro situations, however, control comes at the price of 
representativeness. The students are not usually professional developers (though some 
are), so the tasks must be restricted in their time length and complexity, etc. To gather 
data that is more representative of the complex software development workplace, we 
need access to an in vivo experimental setting. The professional developer community 
provides this. This setting allows for less control because we must be careful not to 
overly interfere with the developers. On the other hand, the data we do collect is likely to 
be more relevant to our overall goal of understanding HPCS productivity (stronger 
external validity).  

Develop productivity measurement infrastructure. Here we have begun by identifying 
a general PBB. This problem involves writing software to compute “optimal” designs for 
a weight-bearing truss with certain material characteristics [Gustafson 04]. The original 
problem was specified with considerable detail. We are using this definition as given for 
the professional community, but are working to scale down the benchmark for the student 
community.  

Each developer community will be following a different canonical workflow. At a high 
level, the professional community is following the Enterprise Workflow, while the 
students will be following the Lone Researcher Workflow (see Kepner overview). As 
part of this work, we are also defining the functional and non-functional requirements for 
the benchmark. 

As discussed in Section 3.1, we are developing low-level data collection mechanisms 
(sensors) to capture developer activities unobtrusively. One novel way in which we will 
use this data is to develop low-level event traces (opening/closing files, running the 
compiler, etc) and match them to higher level actions defined by the canonical workflow. 
This will help us to better understand iteration, backtracking, and time usage within the 
overall process flows to help us better understand bottlenecks in the workflows.  

Execute the purpose-based benchmark. Benchmark execution begins with an 
inoculation step. Participants are informed of the experimental procedures, explained 
about all data we will collect and why, informed of their right to withdraw from the study 
at any time, and are asked to provide informed consent. We then explain all the 
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functional and non-functional requirements required of the implemented benchmark. For 
the student community we will also conduct a tutorial on the engineering and 
mathematical concepts underlying mechanical trusses. Our goal here is to avoid any 
miscommunication, or apprehensions about the experiment. Initially, participants will 
also be asked to maintain some manual record to help us calibrate our automated 
techniques. Finally, participants will implement the benchmark in the context of the 
appropriate canonical workflow. Along with measuring overall productivity we also 
expect to: Identify and measure current bottlenecks in development process, to highlight 
differences between activity- and performance-based benchmarks, and to begin analyzing 
how different machine architectures address existing bottlenecks. 

We will be executing our first pre-pilot study using CS graduate students in the spring 
semester 2004. We will simultaneously begin studying the professional developers.  

Analyze benchmark performance, and evaluate and improve infrastructure. As we 
begin to get data from these studies, we will continuously monitor and improve our 
infrastructure. 
5 Open Issues 
Our approach to characterizing and measuring productivity is consistent with DARPA’s 
programmatic goals of 

• addressing both development-time and execution time productivity issues, 

• providing benchmarks suitable for all the major classes of HPCS applications, 

• measuring productivity in terms of the actual value created, 

• addressing strategic development concerns outside of a single life cycle such as 
the value of transferable, portable, and reusable software products, and 

• finding measures of productivity that users and vendors will agree on. 

The (necessarily) open-ended framework allows us to define the output of development 
to include any properties necessary to characterize “value” for that development or class 
of developments. Indeed, any result to which we attach value and for which we can 
devise a measure can be included. Further, value expressions can be expanded or 
contracted as needed to meet new situations by adding new terms or removing existing 
ones. 

However, the approach also will require substantial work to make it operational and 
effective.  

1) The properties of interest and relative values for different application areas are not 
currently known. These will have to be established empirically through 
stakeholder interviews and review of existing codes or specifications. 

2) For any property of interest, we will have to establish appropriate and effective 
metrics of completion (or comparable metrics of scale). For many properties such 
as portability, maintainability, etc. there is currently no agreed upon measure or 
even process for determining relative figures of merit. For each such property, we 
will either have to develop new approaches or fall back on imprecise gradation 
determined by review. 



 20 

3) Our value equations [1] and [2] are only a first approximation. It is unclear yet to 
what extent we will need to address dependencies or how best to incorporate time 
into the model. In-depth examination of real development situations will be 
needed to make this clear. 

4) Currently benchmarks do not address the range of properties we have discussed. 
Effective procedures will need to be developed for incorporating the properties of 
interest (e.g., as requirements), metrics, and measurement processes or tools into 
the benchmark specification. Likewise, we will need to develop directions on how 
to tailor the benchmarks and interpret the results of their execution. 

6 Summary  
Ensuring that next-generation HPC platforms significantly improve real productivity in 
terms of the science accomplished will require new approaches to characterizing, 
measuring, and predicting productivity. Current productivity metrics and benchmarks fall 
short in several ways. Traditional software metrics focus on measurable outputs but often 
bear little relationship to the actual value of what is produced. Common benchmarks tend 
to focus on machine performance, ignoring the growing bottlenecks associated with 
software development.  

Our goal is to establish, apply, and validate an effective approach to assessing and 
predicting productivity that spans both development and execution time. Our objective is 
to provide these capabilities in a form that supports platform buyers in choosing the best 
system and platform developers in providing technology that addresses real productivity 
problems.  

In this paper, we have described an empirical approach to understanding and addressing 
HPCS productivity. While it is clear that software development is increasingly a 
productivity issue in many HPC systems, few specifics are known. Before such problems 
can be addressed we need a better understanding of precisely what kinds of problems are 
occurring, where these problems occur in the process, how these differ from one process 
to the next, and how they vary from one type of HPC application domain to the next. We 
plan to collect such data through careful observation (e.g., interviews) of 1) real projects 
in common development domains and 2) experimental development efforts on canonical 
benchmark problems. Data from real development efforts will allow us to understand and 
catalog problems, requirements, and constraints characterizing different types of HPC 
applications. We can then characterize representative requirements and value 
propositions for different domains.  

Carefully controlled experiments will help us better understand precisely where 
developers spend their time and how different platform features might increase the 
efficiency those activities. From this we expect to develop detailed canonical workflows 
representative of different development environments.  

Detailed knowledge of problem characteristics, requirements, values, and workflows will 
be combined to develop tailored, productivity benchmarks for key HPCS domains. These 
benchmarks will provide not only a representative computation problem, but 
representative non-functional requirements as well. This includes domain-characteristic 
requirements for properties like portability, reliability, maintainability, etc. along with 
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appropriate measurement techniques. As a whole, each benchmark will exercise the 
entire development process across a value space appropriate to the domain and provide 
metrics and tools for measuring productivity throughout the development cycle.  
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