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ABSTRACT 
Application-level software dependability is difficult to 

ensure.  Thus it’s typically used only in custom systems and 
is achieved using one-of-a-kind, handcrafted solutions.  We 
are interested in understanding whether and how these 
techniques can be applied to more common, lower-end sys-
tems.  To this end, we have adapted a condition-based main-
tenance (CBM) approach called the Multivariate State Es-
timation Technique (MSET).  This approach automatically 
creates sophisticated statistical models that predict system 
failure well before failures occur, leading to simpler and 
more successful recoveries.  We have packaged this ap-
proach in the Software Dependability Framework (SDF).  
The SDF consists of instrumentation and data management 
libraries, a CBM module, performance visualization tools, 
and a software architecture that supports system designers.  
Finally, we evaluated our framework on a simple video 
game application.  Our results suggest that we can cheaply 
and reliably predict impending runtime failures and re-
spond to them in time to improve the system’s dependability. 
1 Introduction 

Dependability is essential to modern software systems.  
Developers typically try to ensure dependability by monitor-
ing key runtime variables and, when these variables exceed 
established limits, intervening in ways that return the vari-
ables to appropriate values.  In practice, these key variables 
and their limits are highly constrained in their number and 
complexity to limit computational overhead, are determined 
through manual, offline analysis, and are difficult to change 
if system behaviors or usage patterns change.  Needless to 
say, this process is error-prone and costly.  Success often 
comes, if at all, only through ad hoc solutions, hand-coded 
by highly experienced developers, tuned and verified 
through trial and error.   

As a result, these approaches have been used mainly on 
high-end, safety-critical systems such as nuclear power 
plant control, telephone switching, or military applications.  
The truth, however, is that many systems could benefit from 
improved dependability (e.g., e-commerce systems, network 
middleware, personal productivity software).  Unfortu-
nately, many of these systems are widely distributed to users 
with differing and unknown usage patterns making it diffi-
cult to develop appropriate dependability strategies.   

In effect, our need to create dependable systems is large 
and growing, but our tools, techniques, and processes to 
cost-effectively do so lag far behind.  Our research provides 

one first step towards understanding and improving soft-
ware engineering support for dependable “everyday” sys-
tems.   

1.1. Implementing Software Dependability 
Although details differ from application to application, at 

a high level many systems achieve dependability through a 
continuous process of self-assessment, problem identifica-
tion and corrective action. 

Self-assessment.  Developers add instrumentation to the 
system to continuously monitor its runtime state.  The re-
sulting data is called a telemetry stream.  In general, teleme-
try data comes in two flavors: environmental and domain.  
Environmental telemetry is data observed or derived from 
the system’s runtime environment.  Examples include CPU 
and memory usage, disk activity, cache misses, and network 
latency.  Domain telemetry, on the other hand, is applica-
tion-specific.  For example, telephony systems monitor 
“failed call attempts”, while e-commerce systems monitor 
“average transaction time.”  Key challenges here include 
understanding what data to collect, with simple enough in-
strumentation so as not to unacceptably perturb the applica-
tion. 

Problem detection and identification.  Telemetry data 
are monitored to determine whether a problem has or will 
soon occur, and in some cases what kind of problem it is.  
Problem detection is accomplished using threshold values or 
windows for key system variables.  We call these values and 
ranges, alarm conditions.  If at any time alarm conditions 
are exceeded, then the system is in an undesirable state and 
corrective action is needed.  The key challenges are to iden-
tify problems early and accurately, so that there is time to 
take small, likely to be successful, corrective actions, while 
minimizing false alarms.  

Corrective action: Once a problem has been identified, 
the system takes corrective action to fix the problem, ideally 
returning the system to a non-problem state.  When applied 
at runtime, corrective actions must have a fairly immediate 
effect and typically involve limiting access to the system or 
changing the character of work already in progress in the 
system. A key challenge here is to determine the right cor-
rective actions that ensure improved dependability.   

This paper makes several research contributions.  First, 
we describe a generic approach to creating dependable sys-
tems.  This approach relies on sophisticated statistical tech-
niques (MSET) to automatically model the system’s under-
lying failure prediction modes.  Next, we present the Soft-



ware Dependability Framework (SDF), which provides 
components needed to implement our generic approach.  We 
then use the SDF framework and MSET tools to create a 
simple dependable system.  Finally, we evaluate the overall 
process on that system. 

2 MSET Pattern Recognition 
Successful, dependable systems must be able to (1) de-

tect problems, (2) isolate and contain them, and (3) recover 
while still maintaining a high level of service.  We believe 
that designing and implementing systems so they emit te-
lemetry data creates a powerful framework for improving 
software dependability.  This will only be true, however, if 
we can somehow use the telemetry data to reliably predict 
impending failure. 

As mentioned earlier, we leverage a Condition Based 
Maintenance (CBM) approach called the Multivariate State 
Estimation Technique (MSET) [Gross et al., 2002, Cassidy 
et al., 2002] to automatically model and predict impending 
system failures based on telemetry data. 

The general CBM approach has been used successfully 
in complex mechanical systems.  These strategies continu-
ously monitor telemetry data generated from transducers 
measuring physical variables, e.g.  distributed temperatures, 
vibration levels, fluid flow rates and pressures, motor cur-
rents, etc.  in order to understand the “health” of the system.  
If a group of telemetry producing machines can be operated 
to failure, then we can use analytical methods to identify 
one or more variables that are strongly correlated with re-
sidual life.  These “predictor variables” may then be used 
for real-time health monitoring to proactively annunciate 
impending failure before it occurs so that the evolving deg-
radation can be terminated and potentially costly conse-
quences avoided. 

This basic rationale for CBM methods that exploit the 
Multivariate State Estimation Technique (MSET) is as fol-
lows: In general, if we can identify single predictor vari-
ables that are correlated with residual life, we can designate 
a threshold value for each such variable beyond which we 
actuate an alarm or trigger an automated corrective action 
for asset protection, safety margin, or simply to maintain 
acceptable QoS.  These predictors are typically application 
specific.  For instance temperature thresholds in a nuclear 
plant that actuate the Plant Protection System and automati-
cally insert control rods; or call-volume thresholds for a 
telephony switching system that initiate automatic rerouting 
of new incoming calls to avoid system overload events.   

If, instead, we can identify pairs of variables that in com-
bination have a good bivariate correlation with residual life, 
then we can often improve the “power” of the approach1.  
An example might be a machine for which a combination of 
                                                        
1 The power of an algorithm is a measure of its sensitivity in de-

tecting “real” events, thereby enhancing asset protection or 
safety margin, while avoiding false alarms, which in turn en-
hances availability, operating efficiency, and return on invest-
ment (ROI). 

high temperature and high vibration could be much more 
highly correlated with time-to-failure than either tempera-
ture or vibration separately.   

In fact, power will generally continue to improve as long 
as we continue to find new variables that in combination 
have some predictive power as to the health of the system.   

The MSET approach was originally developed for proac-
tive health monitoring of complex engineering systems in 
the commercial nuclear industry [Gross et al., 1997, Singer 
et al., 1997].  As part of this research we have adapted it to 
the telemetry and analysis of complex software systems.  
MSET has been beneficially applied to mitigate complex 
latch-contention phenomena in large OLTP enterprise serv-
ers [Cassidy et al., 2001] and to proactively detect the onset 
of software aging phenomena in large, multi-user web serv-
ers [Gross et al., 2002]. 

The prior work however, has several limitations that we 
are now beginning to address.  First, applying MSET was 
extremely labor-intensive.  We had no tools or libraries that 
would have allowed us to implement the approach quickly.  
Second, the problems these systems were experiencing cen-
tered on “software aging” – basically resource leakage.  
These phenomena generally express themselves over peri-
ods of days and weeks.  For many systems, for example 
those involving human controllers, we also need to handle 
events on the scale of minutes and seconds (or faster). 

3 The Software Dependability Framework 
3.1 Overview 

To support the development of dependable systems, we 
have constructed and evaluated a software dependability 
framework (SDF).  The SDF provides several components 
and facilities for implementing the generic dependability 
strategy described in Section 1.1.  These facilities include: 

Instrumentation and data management libraries: In-
strumentation is used to identify the true dynamic behavior 
of programs.  This instrumentation is intended to be light-
weight from the point of view of individual programs, con-
figurable at runtime, and to the largest extent possible, 
transparent to the application programmer.  Also, since we 
will often instrument multiple deployed program instances, 
we also provide libraries for transferring and aggregating 
data from multiple sources. 

Statistical modeling tools: These tools turn raw teleme-
try data into information that we can use.  This happens in 
two ways.  Initially, we use MSET off board, not-in-real-
time to build models (i.e., learn data patterns) that predict 
impending failure reliably.  Later, these models are dynami-
cally linked back into the running system to do onboard, 
real-time problem detection.  Of course, both uses can hap-
pen simultaneously: e.g., existing models used onboard, 
while at the same time sensitivity parameters are tuned and 
optimized off board. 

Corrective action strategy support tools: Once we can 
proactively detect problems, the next step is to correct them.  
Corrective action strategies will be highly application-



specific.  Still, once defined, they need to be validated and 
tuned.  We have created visualizations to support this. 

A software architecture: To glue everything together, 
we defined a cohesive software architecture that identifies 
the necessary components, interfaces, and protocols ex-
pected by the rest of the framework. 
3.2 Process View 

As depicted in Figure 1 our approach has three phases: 
system development, model building, and model use. 

3.2.1 Phase1: System Development  
Implement system functionality.  Before implementing 

the required functionality, developers design the system 
according to the SDF software architecture described later 
in Section 3.3.1.   

Add telemetry-producing instrumentation.  Develop-
ers use facilities provided by the instrumentation and data 
management libraries (see Section 3.3.2) to create an in-
strumented version of the system.  At runtime this instru-
mentation generates environmental and domain telemetry 
data.  If developers intend to process telemetry off board, 
they must configure the system with the location of the 
processing site and the transmission frequency in mind. 

Create corrective action strategies.  Developers create 
components that encapsulate the actions to be taken when 
alarm conditions are detected at runtime.  At this stage, sys-
tems will typically be unable to raise meaningful alarms.  In 
this case, this step may also be done at a later time. 

Deploy the system to users.  The instrumented system is 
deployed to end-users. 

3.2.2 Model Building Phase 
Collect telemetry data.  As it runs, each instance of the 

instrumented system generates telemetry data.  If the system 
is configured to allow telemetry streaming outside the fire-
wall for remote monitoring, the data are forwarded to one or 

more off board sites for processing.  If security policies pre-
vent real-time transmission of telemetry data off site, then 
the data are directed to a “black box flight recorder” file that 
may be transferred by other means for remote processing 
(e.g. via an automated email script, via FTP, or even manu-
ally transported out of the datacenter on removable media). 

Determine model parameters.  Once enough data ar-
rives, the server(s) process it using the methods described in 
Sections 2 and 3.  The result is a parameterized statistical 
model P(t, X1,X2,..,Xn), giving the probability of runtime 
failure within t time units, given the current values of pre-
dictor variables X1,X2,..,Xn.  For telemetry systems monitor-
ing configurations characterized by noisy process variables, 
there is usually a tradeoff between the sensitivity for annun-
ciation of process anomalies that are likely to lead to failure 
(and hence the length of advance warning), and the number 
of false alarms raised.   One of our objectives is to maximize 
warning time while minimizing false alarms. 

3.2.3 Model Use Phase 
Link in specific model.  After analyzing the parameter-

ized model, developers customize the model by choosing a 
specific time-interval and probability threshold that will 
cause an alarm to be raised.  For example, developers might 
want to trigger an alarm if the probability of failure within 
the next 30 seconds is greater than 0.75.  When multiple 
models are desired, the process is repeated.  Next, the cus-
tomized model is coded into a software component that will 
be statically or dynamically linked into deployed system 
instances. 

Link in corrective action strategies.  Corrective action 
strategies are software components that can respond to spe-
cific alarms.  When those alarms are raised, the component 
executes code intended to avert impending failure. 

Execute the system.  At runtime, certain framework 
components observe the system telemetry stream, raising 
alarms as appropriate.  Corrective action strategy compo-
nents can then execute in response to them.  The result is a 
system that significantly reduces the probability of system 
failure.  According to user and developer preferences, data 
collection can be continued through the model use phase so 
that the model may be periodically calibrated and refined. 
3.3 Implementation View 
3.3.1 Software Architecture 

To use this framework, developers build their systems 
according to the SDF software architecture.  Its components 
are described below and shown in Figure 2. 

Telemetry Source.  Telemetry sources generate teleme-
try data and pass it to the Telemetry Stream upon request.  
Since domain telemetry and environmental telemetry re-
quire different support facilities, we encapsulate that support 
in two different objects: FRU and Environment Monitor.  
FRUs manage domain telemetry, while Environment Moni-
tors manage environmental telemetry. 

FRU.  Application components are encapsulated in soft-
ware field-replaceable units (FRUs).  FRUs are the focal 

 
Figure 1: High Level View of the Telemetry Process 



point of the dependable system and, therefore, perform 
many functions.  Besides generating telemetry data and 
passing it to the Telemetry Stream, FRUs also aggregate 
telemetry data from other FRUs that it logically contains.  
This allows telemetry data to be calculated at different lev-
els of abstraction: entire system, subsystem, or an individual 
FRU.  FRUs also poll Telemetry Monitors for alarm condi-
tions and dispatch appropriate corrective actions as neces-
sary. 

Environment Monitor.  Environment Monitors collect 
environmental telemetry.  Examples include components 
that watch memory usage, thread counts, and network traf-
fic.  Because of their application-independent nature, envi-
ronment monitors are generally portable from system to 
system within our architecture.  Designers may choose and 
install any environment monitors that may provide insight 
into their system.  Like FRUs, environment monitors regis-
ter with and are monitored by the Telemetry Stream. 

Telemetry Stream.  The Telemetry Stream represents a 
time-synchronized aggregation of environmental telemetry 
from the system’s host platform along with domain teleme-
try collected from each FRU.  While a system may contain 
many Telemetry Sources, it has only one Telemetry Stream.  
This stream periodically queries all registered FRUs and 
environment monitors for their telemetry data.  This process 
may be started and stopped as requested by the application. 

The Telemetry Stream is also responsible for forwarding 
telemetry data to a telemetry server for processing.  The 
forwarding location and the transmission frequency are set 
by the application.  Depending on the telemetry sampling 
rate and the amount of data generated by telemetry sources, 
the telemetry stream may contain large amounts of data.  To 
transmit this data across the network, care must be taken to 
minimize the size of the data stream. 

Telemetry Monitor.  Telemetry Monitors observe the 
system’s telemetry stream at regular intervals and calculate 
a health index based on the data in the stream.  In calculat-
ing the health index, a telemetry monitor may choose to 
incorporate simple heuristics or sophisticated statistical 
models.  At any given time, a system may have many te-
lemetry monitors and therefore many health indices.  Each 
FRU attaches one or more telemetry monitors of interest and 

periodically checks to see if any of them have raised an 
alarm condition.  FRUs may also detach telemetry monitors 
when they are no longer needed. 

Alarm Condition.  Alarm conditions represent the de-
tection of problem behavior.  Telemetry Monitors define 
alarm conditions based on their models of the system.  The 
alarm conditions are subsequently detected by interested 
FRUs, which react by executing corrective actions. 

Corrective Action.  Corrective action objects encapsu-
late actions taken in response to an alarm condition.  Typi-
cally, these actions are designed to return the system to a 
non-problem state.  Practical examples include proactive 
restarts or system rejuvenation 4, refusing connections, and 
discarding work. 

3.3.2 Instrumentation and Data Mgmt.  Libraries 
To support this architecture we have created several re-

usable classes and libraries.  They are currently imple-
mented in Java for the Java 2 Platform. 

Telemetry Stream.  The Telemetry Stream class is im-
plemented as a singleton and maintains its own thread to 
minimize interference with the system’s functionality.  Us-
ers configure this class to control how often it aggregates 
telemetry data and where it forwards that data.  Users may 
start and stop the Telemetry Stream as desired. 

Telemetry Source.  Telemetry Sources are objects that 
contribute data to telemetry streams.  We have therefore 
defined a Java interface that controls this behavior.  This 
interface contains a single method that returns telemetry 
data as a collection of name-value pairs.  Telemetry Sources 
must also register themselves with the Telemetry Stream 
object. 

Telemetry Monitor.  Concrete objects that observe the 
Telemetry Stream and calculate system health indices based 
on that data extend the Telemetry Monitor class.  Telemetry 
Monitors are registered with the Telemetry Stream and are 
notified when new telemetry data are collected.  FRUs may 
use Telemetry Monitor methods to check for alarm condi-
tions as desired. 

EnvironmentMonitor: ProcCounter.  We developed an 
environment monitor telemetry source that uses the Java 
Virtual Machine Profiling Interface (JVMPI) 1.  This par-
ticular class collects and outputs method-entry events from 
selected classes at regular intervals as the application runs.  
As is desired for environment monitors, this component is 
completely decoupled from the core application code.  Other 
environment monitors that capture different environmental 
telemetry can easily be added. 

3.3.3 Statistical Modeling and Corrective Action 
Strategy Support Tools 

The framework contains a set of tools that process te-
lemetry data off board in order to build statistical models 
that reliably predict impending system failure.  The outputs 
of these tools are optimized models that will be coded into 
Telemetry Monitor components.  These tools are described 
in detail in Section 2. 

Figure 2: High Level View of the SDF Framework 



The framework relies on telemetry monitor components 
to raise alarms when system failure is likely.  Developers 
must also write corrective action components.  These com-
ponents respond to specific alarms and encapsulate actions 
intended to return the system to control.  The framework 
also includes some visualization tools that help developers 
evaluate how well their corrective actions work.   

4 Proof-of-Concept Study 
As an initial proof-of-concept, we conducted a small-

scale study of our framework, examining several high level 
questions.  In particular we wanted to understand how easy 
was it to use our framework and whether its components are 
sufficient to create a simple dependable system.  To answer 
these questions we conducted three studies: building a sim-
ple dependable system using the SDF; using telemetry data 
to build prediction models; and using prediction models to 
yield dependable system behavior.   
4.1 System Development Phase 

The application for this study is an implementation of a 
computer game similar to Tetris 2.  Tetris is a well-known 
interactive puzzle game.  The user is presented with a steady 
stream of falling shapes and must translate and rotate them 
so that they form horizontal lines as they are stacked.  There 
are seven different shapes that comprise four blocks each.  
As continuous, horizontal rows are created, they are re-
moved from the game, giving the user more space to work 
toward the goal of creating more rows.  It is possible to 
complete up to four rows with one shape, and more points 
are awarded for completing multiple rows simultaneously.  
The shapes fall more rapidly as the game progresses, mak-
ing it increasingly difficult for the user to correctly position 
them.  The game is lost when the height of the highest block 
goes beyond the top of the game area. 

Although Tetris is not a large safety-critical application, 
it is a useful starting point for our research.  First, it mimics 
larger dependable systems that occasionally require human 
intervention, perception, cognition, and actions that are both 
deliberate and judicious to maintain or restore equilibrium.  
Blocks continuously entering the workspace represent work 
that must be processed.  Full rows represent completed jobs, 
losing the game represents system overload, and the goal is 
to keep playing. 

Tetris provides an ideal simulation of human-control 
tasking that continuously increases in complexity and re-
sponse-time requirements until the human reaches cognitive 
overload conditions.  As such, Tetris has been used for sev-
eral years by psychologists [see, e.g. Thach, 1996] to study 
complex visuo-motor task situations where researchers can 
evaluate in a safe environment concepts involving human 
cognition,  eye-hand coordination, decision making under 
conditions where new information is becoming available at 
a relentlessly accelerating rate, context-response linkage, 
and prioritizing actions to take while actively deciding what 
actions to not take to minimize the probability of failing (i.e. 
game over).  Tetris also provides a good setting for evaluat-

ing quantitative metrics for estimating “residual life” of sys-
tems in which the most likely cause of failure is cognitive 
overload.  For Tetris, regardless of a participant’s skill, 
“cognitive overload” is eventually reached.  In fact, even 
another computer program might have a hard time playing 
Tetris indefinitely (optimizing play under certain conditions 
is known to be NP-complete [Demaine, 2002]).   

Our modified version of Tetris was written in Java.  The 
game functionality is implemented primarily in one main 
class and two helper classes consisting of around 550 lines 
of code when taken together.  The full system with reusable 
SDF-provided code, user-provided instrumentation and cor-
rective action strategies, and original application code con-
sists of approximately 1200 lines of code.   

We instrumented our application to periodically output 
environmental and domain telemetry.  For environmental 
telemetry we used the ProcCounter class to capture the 
number of times that each method in the application was 
called.  For domain telemetry, we captured a variety of 
game state variables, including the height of the highest 
block, the number of shapes created, the block density, and 
the hole count (unfilled grid spaces lying under dropped 
blocks).   

Qualitatively speaking, we experience no noticeable run-
time performance degradation as a result of our instrumenta-
tion.  However, in future work on other systems, we plan to 
quantify and minimize the performance penalty incurred by 
telemetry instrumentation.  As we developed the SDF infra-
structure classes, we also experimented with building pre-
dictive models, coding them up, linking them into the Tetris 
application, and developing and using different corrective 
action strategies.   

Overall, the experience was straightforward.  The key 
lesson is how a well-behaved FRU in our architecture 
should be written.  Because telemetry data requests come 
from a separate thread (the thread run by the Telemetry 
Stream), a FRU must do two things to ensure that monitors 
watching the telemetry stream see a consistent picture of its 
state.  First, it must prepare and return a deeply cloned snap-
shot of its state avoiding object references to state variables, 
because the FRU’s state can be changed on the main thread 
before processing by the telemetry stream and associated 
telemetry monitors.  Second, while preparing a telemetry 
response, a FRU must block any requests that may change 
its state, again to ensure that the telemetry data points are 
consistent with each other.  Because of the need to block, it 
becomes important for the FRU to prepare the telemetry 
response as quickly as possible so that processing can re-
sume on the main thread.  Thus, any complicated calcula-
tions involving telemetry data should be performed by te-
lemetry monitors and not by the FRUs themselves. 
4.2 Model Building Phase 

While developing the SDF framework, we explored us-
ing MSET-inspired statistical tools on software telemetry 
data. 



4.2.1 Hypothesis 
The research hypothesis behind this study is that our 

tools can be used on software telemetry data to automati-
cally build reliable predictors of impending system failure. 

4.2.2 Data Collection 
For this study we asked 34 CS students to play Tetris for 

approximately one hour each.  We gave them a hand-
instrumented Tetris application that collected telemetry data 
every five seconds as the game was played.  We captured 
procedure count data as well as Tetris domain telemetry as 
described in Section 4.1.  After the students finished playing 
we collected the resulting data for analysis.  In total we col-
lected and analyzed data from 323 games.  This data then 
became the basis for the model-building phase. 

4.2.3 Threats to Validity 
Threats to Internal Validity.  The effectiveness of 

MSET may be affected by data sampling rates, or peculiari-
ties in the data due to abnormal playing styles (e.g., players 
who try to lose quickly).  We made no effort to examine 
different sampling rates, but we carefully explained our 
goals to the participants and examined the data for each 
closely to identify abnormal behavior. 

Threats to External Validity.  The generalization of our 
results is bounded by the degree to which the Tetris applica-
tion represents a model of a complex and long-running sys-
tem.  At this stage of the research, we felt it would only 
complicate matters to use a more complex system.  We will 
address this issue by repeating these studies on more com-
plex subject programs in the future. 

4.2.4 Data and Analysis 
To demonstrate the usefulness of applying a simple pat-

tern recognition approach to the telemetry data we per-
formed a detailed correlation analysis of all games to iden-
tify and rank the variables that are most closely correlated 
with “residual life”, defined as the time remaining before 
failure (game over).  This analysis demonstrated that the 
best single variable predictor of residual life is the height of 
the packed pieces, and the bivariate predictors of residual 
life are height and hole count.  In particular, we are inter-
ested in whether the models do, in fact, predict failures 
when and only when they occur in the data we collected.  To 
illustrate this procedure we select one prototypic game for 
detailed analysis (game 1 by Player 8).   

The game is over when the height metric reaches the top 
of the screen.  We informally define the red zone as a set of 
states {Xi} of the game starting from which the game will be 
over in less than Tz seconds (residual life) with probability 
greater than 0.5.  Remaining states are called the green zone.  
We want to generate alarms when entering the red zone, 
while minimizing the probabilities of false alarms (Type I 
error) and missed alarms (Type II error). 

We begin by building a simple model that relates each 
state of the game Xi with the probability pi such that starting 
with this state the game will be over in Tz seconds.  This can 

be done by building a linear logistic model with pi being the 
proportion of cases when starting from state Xi for which 
the game is over in less than Tz seconds.  Such a model can 
be fit using collected metrics of several games played by the 
same player.  A linear logistic model is given by: 
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We shall seek to demonstrate the improvements obtained 
by going to models of higher dimensionality in terms of (1) 
sensitivity for detecting impending failure and (2) avoidance 
of false-alarms and missed-alarms.  Results of the analysis 
follow. 

In Figure 3, two metrics are plotted as time-series.  The 

dark vertical line marks Tz=1.5 min before the end of the 
game.  The states of the game on the right of the vertical 
line are the states starting from which this game ends in less 
that Tz seconds.   The states on the left of the vertical line 
are the states from which this game lasts longer that Tz sec-
onds.   This division can be used to calculate the proportions 
required for fitting the logistic model.  For each state Xi we 
count how many times the game was in this state and how 
many of those lie on the right of the vertical line.  This gives 
a proportion pi of cases for state Xi for which the game is 
over in less that Tz seconds.  This proportion is a rough es-
timate of the probability that the game will be over in less 
than Tz seconds if the current state is Xi.   

Figure 3:  Height and Hole Count for Player 8 Game 1 



Figure 4 shows the fit of a linear logistic model with one 
regressor, height.  The stars represent calculated proportions 
for the game to be over in less than Tz seconds, given a par-
ticular state represented by only one metric, height.  The 
solid line is the fitted model that gives the probability of the 
game to be over in less than Tz seconds as a function of 
height.  

Figure 5 shows predictions made by Model 1.  The upper 
subplot shows height from the beginning to the end of the 
game.  The lower plot shows the probability that the game 
will be over in less than Tz seconds.  We see that at ap-
proximately T=100 the model-predicted probability of 
gameover becomes high, but the game continued much 
longer.  This is a false alarm from the one-regressor model.   

Figure 6 shows the actual alarms raise for entering the 
red zone (symbols) defined as the states leading to 
gameover in less than Tz seconds with probability greater 
than 0.5.  We see false alarms at approximately T=100.  
Examples are the symbols just after the dark vertical line. 

We can now compare the performance of Model 2 con-
structed with bivariate regressors: height and hole density.  

Figure 7 shows the 3D surface depicting the linear logistic 
regression fit by model 2. 

Figure 8 shows predictions of the probability of 
gameover in Tz seconds as the game progresses from the 
beginning to the end.  Notice that with model 2, the prob-
ability of gameover at T=100 is now very low as compared 
to predictions made using Model 1.   

Finally, Figure 9 shows actual alarms for entering the red 
zone produced using model 2 with 2 regressors.  There are 
no false alarms in the vicinity of T=100, and no missed 
alarms following transition into the red zone.  This is a sig-
nificant improvement over predictions by model 1. 
4.3 Model Use Phase 

After developing the MSET models, we also explored 
whether and how these models and corresponding corrective 
action strategies would improve system dependability. 

Figure 4: Linear logistic model w/ height regressor 

 
Figure 5:  Model 1 Predictions 

 
Figure 8:  Model 2 Predictions 

 
Figure 6:  Model 1 Alarms 

Figure 7: Model 2 linear logistic regression 



4.3.1 Hypothesis 
The research hypothesis behind this study is that the 

models developed in the last study will be reliable even in 
new contexts and that corrective action strategies actually 
improve system dependability. 

4.3.2 Operational Model 
Experimental Platform.  For this study, we modified 

the Tetris application used in the previous study.  In addi-
tion to the telemetry data already captured, we instrumented 
the models and the corrective action strategies.  We linked 
both models into the application, but allowed only one to 
raise alarms during any one game.  We also increased the 
sampling rate to once per second to more precisely view the 
system’s behavior. 

We implemented a single corrective action strategy, 
which was to clear the bottom 4 rows from the grid and to 
reset the game speed.  This strategy takes into account the 
two fundamental ways to prevent a system from going into 
overload, limiting access to the system and changing the 
character of work already in progress in the system  

Evaluation Criteria.  To evaluate the models, we exam-
ined how well they predicted impending failure in this new 
context and then examined whether the models and correc-
tive actions allow players to play longer and score more 
points.  Since the models effectively work by trading some 
points now in hope of scoring more points in the future, we 
want to use corrective actions if and only if they’re actually 
necessary.  In Tetris terms, we want to minimize the number 
of partial rows thrown away (by the corrective action strat-
egy) while maximizing the number of rows completed.  Dif-
ferent corrective action strategies will create different cost-
benefit tradeoffs.  To quantify this, we came up with an al-
ternative score where each completed row added one point 
and each row thrown away while executing a corrective 
action lost one point.  We also assessed a penalty of 1 point 
for each partially-filled row at each loss (or end of game).   

4.3.3 Data Collection 
In this study, we asked 10 CS grad students to use the 

modified Tetris application.  None of these students had 

participated in the previous study.  Each participant played 
4, 15-minute periods.  The first period was considered a 
warm up.  In the second period the participants used the 
application without the corrective action strategy enabled 
(NoModel).   The third and the fourth periods involved the 
corrective action strategy enabled applications.  At the start 
of the third game, one model was randomly selected and 
used throughout that game.  Since the models and strategies 
we are using make it impossible to lose the game, we auto-
matically end the game after 15 minutes.  The fourth game 
was the same, but used the remaining model (Model-1 is the 
univariate model, Model-2 the bivariate).   

During each game we logged both models’ health indices 
at each interval.  In all, we collected data from 52 games in 
the second period (with no corrective action) and 12 games 
each from the third and fourth periods (with corrective ac-
tion) using 12 participants. 

4.3.4 Data Analysis 
To understand whether the predictive models from the 

previous study were useful in this one, we examined when 
the models would have raised alarms in the NoModel 
games.  Figure 10 shows that both models would have trig-
gered alarms before loss occurred and that on the average 
Model-2 would have raised alarms 82s from failure, while 
Model-1 would have raised alarms 64s from failure.  Since 
the models were built to predict failure 90s away, we con-
sider Model-2 to be closer to the desired behavior. 

The results obtained by having participants play with no 
corrective actions, and with corrective actions actuated by 
Model 1 and Model 2 are summarized here:   

Figure 11 shows the avg work performed with and with-
out models.  No Model games had an average alternative 
score of only 10.  They processed 72 rows, but lost fre-
quently.  Model-1 (83 processed and 21 thrown away) 
games processed 62 more and Model-2 games (80 processed 
and 25 thrown away) processed 55 more.  Clearly, the mod-
els allowed longer, more effective play. 
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Figure 10: Advance warning by model type 

 
Figure 9:  Model 2 Alarms 



The conclusion from this proof-of concept investigation 
is that it possible (even in human-controlled) systems to 
enhance overall system operation and maintenance strate-
gies by a combination of continuous system telemetry cou-
pled with pattern recognition.  The pattern recognition mod-
ule can detect the incipience or onset of problems proac-
tively and trigger automated corrective actions. 

5 Related Work 
Our software dependability work is motivated by re-

search in predictive detection and software engineering 
Several researchers, have understood the difficulty of build-
ing dependable systems. The Eternal system for fault-
tolerant CORBA is designed to enable the transparent inte-
gration of fault tolerance into existing applications 16.  
France and Georg [13] separate fault tolerance code from 
the core application code and weave it together using as-
pect-oriented techniques.  Kalbarczyk et al.  [18] describe a 
Chameleon framework that allows different levels of avail-
ability requirements to be simultaneously supported in a 
networked environment using configurable software 
ARMOR modules that are tuned for specific failure modes.  
Xu et.  al. [14] provide a framework that allows systems to 
trade off dependability and efficiency characteristics at run-
time based on design-time choices.  Our framework also has 
the goal of making it easy for application developers to get 
the benefits of sophisticated dependability infrastructure 
without making major modifications to their code bases. 

Our work is also influenced by work on predictive detec-
tion, such as the Pinpoint system [15]. This work explores 
techniques for analyzing time series data to understand its 
effect on certain outcomes of events 

Researchers in [11-13] have investigated the use of pre-
dictive algorithms for a closely related objective of enhanc-
ing performance for improved manageability of computing 
systems. That research is leading to new system-

management innovations, improving the performance and 
quality-of-service of complex uniprocessor and distributed-
processor systems.  Our work focuses on software depend-
ability improvement for human-in-the-loop scenarios where 
humans need information in a low-pressure setting with an 
uncluttered, prioritized format to avoid "cognitive overload" 
mistakes that can quickly compound into complete system 
failure.  In such settings where humans remain a part of the 
decision/action process, we introduce here a quantitative 
methodology for continuously assessing the "residual life" 
of a system, which reflects not only the overall health of the 
system but the likelihood of being able to perceive and react 
to incoming information when system upset events occur 
that may increase the rate incoming messages.  The real 
value of the methodology introduced in this investigation is 
the ability of the SDF to automate the decision as to when it 
is very unlikely that the present mitigation actions (which 
may be a combination of human actions and those from 
automated system management systems) will avoid com-
plete system failure.  At this point, and with quantitative 
confidence factors, the system can reject incoming work 
and/or kill off the lowest priority processes until equilibrium 
has been re-established.  Finally, another difference between 
the contributions in [11-13] and the approach we adopted is 
the use of nonlinear, nonparametric regression as embodied 
in MSET.  Conventional predictive algorithms are based on 
threshold-type rules. When there are three or more telemetry 
metrics to be monitored, MSET has a significant advantage 
over conventional threshold-limit rules as it is sensitive to 
anomalies in the correlation patterns between and among 
monitored dynamic variables.  Thus, sensor "stuck-at" fail-
ure events and other degradation modes wherein telemetry 
is faulty but nevertheless will not trip a threshold are causes 
of misidentifications in conventional predictive algorithms.  
MSET, by monitoring the correlation structure among moni-
tored metrics, gives sensitive alarms when signals go out of 
bounds (as would conventional system management solu-
tions); but also when anomalies appear in the correlation 
patterns among the monitored signals, even while those sig-
nals are still within their normal range of variation. 

6 Summary 
Modern software systems increasingly need to be de-

pendable.  Yet the software engineering techniques and 
tools for achieving it are limited, relying almost exclusively 
on one-of-a-kind solutions and ad hoc optimizations.  Con-
sequently, there is a great need for software engineering 
tools and techniques that make it easier for developers to 
build dependability into their systems. 

We have developed the SDF to improve this situation.  
This framework is based on a generic dependability strategy 
in which systems are instrumented to produce runtime te-
lemetry data.  These data are then analyzed by MSET, 
which automatically produces statistical models intended to 
predict impending failures well before they occur.  These 
models are then fed back to the system to allow a system to 
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Figure 11: Total work by model type 



monitor itself at runtime, raising alarms when the system is 
believed to be approaching failure.  To support this process 
we developed tools, libraries, and an architecture complete 
with reusable components. 

We also presented a simple proof-of-concept study in 
which we used our framework to instrument a simple appli-
cation.  We then asked a number of subjects to use the ap-
plication, from which we automatically developed failure-
predicting models.  We evaluated these models and demon-
strated that they indeed reliably predicted failure.  Next we 
linked the models back into the application and asked a dif-
ferent set of users to execute it.  We found that the models 
worked well in this new context - even though the applica-
tion is completely driven by human input. 

For future work, we need techniques to efficiently trans-
mit telemetry data over the network for off board analysis 
by centralized servers.  We plan to quantitatively analyze 
the overhead generated by telemetry data collection.  Given 
that more frequent telemetry sampling may allow us to build 
better models of the system, but only at the price of in-
creased speed and space overhead, we will analyze the 
cost/benefit tradeoff in telemetry sampling rates.  We intend 
to scale techniques up to larger systems in domains such as 
ecommerce servers and applications. 
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