
Towards Dependability in Everyday Software Using Software Telemetry
Kenny C. Gross* Scott McMaster+ Adam Porter+ Aleksey Urmanov* Lawrence G. Votta*

*Sun Microsystems Inc., +University of Maryland
{Kenny.Gross, Aleksey.Urmanov,Larry.Votta}@sun.com, {aporter,scottmcm}@cs.umd.edu

ABSTRACT
Application-level software dependability is difficult to

ensure. Thus it’s typically used only in custom systems and
is achieved using one-of-a-kind, handcrafted solutions. We
are interested in understanding whether and how these
techniques can be applied to more common, lower-end sys-
tems. To this end, we have adapted a condition-based main-
tenance (CBM) approach called the Multivariate State Es-
timation Technique (MSET). This approach automatically
creates sophisticated statistical models that predict system
failure well before failures occur, leading to simpler and
more successful recoveries. We have packaged this ap-
proach in the Software Dependability Framework (SDF).
The SDF consists of instrumentation and data management
libraries, a CBM module, performance visualization tools,
and a software architecture that supports system designers.
Finally, we evaluated our framework on a simple video
game application. Our results suggest that we can cheaply
and reliably predict impending runtime failures and re-
spond to them in time to improve the system’s dependability.
1 Introduction

Dependability is essential to modern software systems.
Developers typically try to ensure dependability by monitor-
ing key runtime variables and, when these variables exceed
established limits, intervening in ways that return the vari-
ables to appropriate values. In practice, these key variables
and their limits are highly constrained in their number and
complexity to limit computational overhead, are determined
through manual, offline analysis, and are difficult to change
if system behaviors or usage patterns change. Needless to
say, this process is error-prone and costly. Success often
comes, if at all, only through ad hoc solutions, hand-coded
by highly experienced developers, tuned and verified
through trial and error.

As a result, these approaches have been used mainly on
high-end, safety-critical systems such as nuclear power
plant control, telephone switching, or military applications.
The truth, however, is that many systems could benefit from
improved dependability (e.g., e-commerce systems, network
middleware, personal productivity software). Unfortu-
nately, many of these systems are widely distributed to users
with differing and unknown usage patterns making it diffi-
cult to develop appropriate dependability strategies.

In effect, our need to create dependable systems is large
and growing, but our tools, techniques, and processes to
cost-effectively do so lag far behind. Our research provides

one first step towards understanding and improving soft-
ware engineering support for dependable “everyday” sys-
tems.

1.1. Implementing Software Dependability
Although details differ from application to application, at

a high level many systems achieve dependability through a
continuous process of self-assessment, problem identifica-
tion and corrective action.

Self-assessment. Developers add instrumentation to the
system to continuously monitor its runtime state. The re-
sulting data is called a telemetry stream. In general, teleme-
try data comes in two flavors: environmental and domain.
Environmental telemetry is data observed or derived from
the system’s runtime environment. Examples include CPU
and memory usage, disk activity, cache misses, and network
latency. Domain telemetry, on the other hand, is applica-
tion-specific. For example, telephony systems monitor
“failed call attempts”, while e-commerce systems monitor
“average transaction time.” Key challenges here include
understanding what data to collect, with simple enough in-
strumentation so as not to unacceptably perturb the applica-
tion.

Problem detection and identification. Telemetry data
are monitored to determine whether a problem has or will
soon occur, and in some cases what kind of problem it is.
Problem detection is accomplished using threshold values or
windows for key system variables. We call these values and
ranges, alarm conditions. If at any time alarm conditions
are exceeded, then the system is in an undesirable state and
corrective action is needed. The key challenges are to iden-
tify problems early and accurately, so that there is time to
take small, likely to be successful, corrective actions, while
minimizing false alarms.

Corrective action: Once a problem has been identified,
the system takes corrective action to fix the problem, ideally
returning the system to a non-problem state. When applied
at runtime, corrective actions must have a fairly immediate
effect and typically involve limiting access to the system or
changing the character of work already in progress in the
system. A key challenge here is to determine the right cor-
rective actions that ensure improved dependability.

This paper makes several research contributions. First,
we describe a generic approach to creating dependable sys-
tems. This approach relies on sophisticated statistical tech-
niques (MSET) to automatically model the system’s under-
lying failure prediction modes. Next, we present the Soft-

ware Dependability Framework (SDF), which provides
components needed to implement our generic approach. We
then use the SDF framework and MSET tools to create a
simple dependable system. Finally, we evaluate the overall
process on that system.

2 MSET Pattern Recognition
Successful, dependable systems must be able to (1) de-

tect problems, (2) isolate and contain them, and (3) recover
while still maintaining a high level of service. We believe
that designing and implementing systems so they emit te-
lemetry data creates a powerful framework for improving
software dependability. This will only be true, however, if
we can somehow use the telemetry data to reliably predict
impending failure.

As mentioned earlier, we leverage a Condition Based
Maintenance (CBM) approach called the Multivariate State
Estimation Technique (MSET) [Gross et al., 2002, Cassidy
et al., 2002] to automatically model and predict impending
system failures based on telemetry data.

The general CBM approach has been used successfully
in complex mechanical systems. These strategies continu-
ously monitor telemetry data generated from transducers
measuring physical variables, e.g. distributed temperatures,
vibration levels, fluid flow rates and pressures, motor cur-
rents, etc. in order to understand the “health” of the system.
If a group of telemetry producing machines can be operated
to failure, then we can use analytical methods to identify
one or more variables that are strongly correlated with re-
sidual life. These “predictor variables” may then be used
for real-time health monitoring to proactively annunciate
impending failure before it occurs so that the evolving deg-
radation can be terminated and potentially costly conse-
quences avoided.

This basic rationale for CBM methods that exploit the
Multivariate State Estimation Technique (MSET) is as fol-
lows: In general, if we can identify single predictor vari-
ables that are correlated with residual life, we can designate
a threshold value for each such variable beyond which we
actuate an alarm or trigger an automated corrective action
for asset protection, safety margin, or simply to maintain
acceptable QoS. These predictors are typically application
specific. For instance temperature thresholds in a nuclear
plant that actuate the Plant Protection System and automati-
cally insert control rods; or call-volume thresholds for a
telephony switching system that initiate automatic rerouting
of new incoming calls to avoid system overload events.

If, instead, we can identify pairs of variables that in com-
bination have a good bivariate correlation with residual life,
then we can often improve the “power” of the approach1.
An example might be a machine for which a combination of

1 The power of an algorithm is a measure of its sensitivity in de-

tecting “real” events, thereby enhancing asset protection or
safety margin, while avoiding false alarms, which in turn en-
hances availability, operating efficiency, and return on invest-
ment (ROI).

high temperature and high vibration could be much more
highly correlated with time-to-failure than either tempera-
ture or vibration separately.

In fact, power will generally continue to improve as long
as we continue to find new variables that in combination
have some predictive power as to the health of the system.

The MSET approach was originally developed for proac-
tive health monitoring of complex engineering systems in
the commercial nuclear industry [Gross et al., 1997, Singer
et al., 1997]. As part of this research we have adapted it to
the telemetry and analysis of complex software systems.
MSET has been beneficially applied to mitigate complex
latch-contention phenomena in large OLTP enterprise serv-
ers [Cassidy et al., 2001] and to proactively detect the onset
of software aging phenomena in large, multi-user web serv-
ers [Gross et al., 2002].

The prior work however, has several limitations that we
are now beginning to address. First, applying MSET was
extremely labor-intensive. We had no tools or libraries that
would have allowed us to implement the approach quickly.
Second, the problems these systems were experiencing cen-
tered on “software aging” – basically resource leakage.
These phenomena generally express themselves over peri-
ods of days and weeks. For many systems, for example
those involving human controllers, we also need to handle
events on the scale of minutes and seconds (or faster).

3 The Software Dependability Framework
3.1 Overview

To support the development of dependable systems, we
have constructed and evaluated a software dependability
framework (SDF). The SDF provides several components
and facilities for implementing the generic dependability
strategy described in Section 1.1. These facilities include:

Instrumentation and data management libraries: In-
strumentation is used to identify the true dynamic behavior
of programs. This instrumentation is intended to be light-
weight from the point of view of individual programs, con-
figurable at runtime, and to the largest extent possible,
transparent to the application programmer. Also, since we
will often instrument multiple deployed program instances,
we also provide libraries for transferring and aggregating
data from multiple sources.

Statistical modeling tools: These tools turn raw teleme-
try data into information that we can use. This happens in
two ways. Initially, we use MSET off board, not-in-real-
time to build models (i.e., learn data patterns) that predict
impending failure reliably. Later, these models are dynami-
cally linked back into the running system to do onboard,
real-time problem detection. Of course, both uses can hap-
pen simultaneously: e.g., existing models used onboard,
while at the same time sensitivity parameters are tuned and
optimized off board.

Corrective action strategy support tools: Once we can
proactively detect problems, the next step is to correct them.
Corrective action strategies will be highly application-

specific. Still, once defined, they need to be validated and
tuned. We have created visualizations to support this.

A software architecture: To glue everything together,
we defined a cohesive software architecture that identifies
the necessary components, interfaces, and protocols ex-
pected by the rest of the framework.
3.2 Process View

As depicted in Figure 1 our approach has three phases:
system development, model building, and model use.

3.2.1 Phase1: System Development
Implement system functionality. Before implementing

the required functionality, developers design the system
according to the SDF software architecture described later
in Section 3.3.1.

Add telemetry-producing instrumentation. Develop-
ers use facilities provided by the instrumentation and data
management libraries (see Section 3.3.2) to create an in-
strumented version of the system. At runtime this instru-
mentation generates environmental and domain telemetry
data. If developers intend to process telemetry off board,
they must configure the system with the location of the
processing site and the transmission frequency in mind.

Create corrective action strategies. Developers create
components that encapsulate the actions to be taken when
alarm conditions are detected at runtime. At this stage, sys-
tems will typically be unable to raise meaningful alarms. In
this case, this step may also be done at a later time.

Deploy the system to users. The instrumented system is
deployed to end-users.

3.2.2 Model Building Phase
Collect telemetry data. As it runs, each instance of the

instrumented system generates telemetry data. If the system
is configured to allow telemetry streaming outside the fire-
wall for remote monitoring, the data are forwarded to one or

more off board sites for processing. If security policies pre-
vent real-time transmission of telemetry data off site, then
the data are directed to a “black box flight recorder” file that
may be transferred by other means for remote processing
(e.g. via an automated email script, via FTP, or even manu-
ally transported out of the datacenter on removable media).

Determine model parameters. Once enough data ar-
rives, the server(s) process it using the methods described in
Sections 2 and 3. The result is a parameterized statistical
model P(t, X1,X2,..,Xn), giving the probability of runtime
failure within t time units, given the current values of pre-
dictor variables X1,X2,..,Xn. For telemetry systems monitor-
ing configurations characterized by noisy process variables,
there is usually a tradeoff between the sensitivity for annun-
ciation of process anomalies that are likely to lead to failure
(and hence the length of advance warning), and the number
of false alarms raised. One of our objectives is to maximize
warning time while minimizing false alarms.

3.2.3 Model Use Phase
Link in specific model. After analyzing the parameter-

ized model, developers customize the model by choosing a
specific time-interval and probability threshold that will
cause an alarm to be raised. For example, developers might
want to trigger an alarm if the probability of failure within
the next 30 seconds is greater than 0.75. When multiple
models are desired, the process is repeated. Next, the cus-
tomized model is coded into a software component that will
be statically or dynamically linked into deployed system
instances.

Link in corrective action strategies. Corrective action
strategies are software components that can respond to spe-
cific alarms. When those alarms are raised, the component
executes code intended to avert impending failure.

Execute the system. At runtime, certain framework
components observe the system telemetry stream, raising
alarms as appropriate. Corrective action strategy compo-
nents can then execute in response to them. The result is a
system that significantly reduces the probability of system
failure. According to user and developer preferences, data
collection can be continued through the model use phase so
that the model may be periodically calibrated and refined.
3.3 Implementation View
3.3.1 Software Architecture

To use this framework, developers build their systems
according to the SDF software architecture. Its components
are described below and shown in Figure 2.

Telemetry Source. Telemetry sources generate teleme-
try data and pass it to the Telemetry Stream upon request.
Since domain telemetry and environmental telemetry re-
quire different support facilities, we encapsulate that support
in two different objects: FRU and Environment Monitor.
FRUs manage domain telemetry, while Environment Moni-
tors manage environmental telemetry.

FRU. Application components are encapsulated in soft-
ware field-replaceable units (FRUs). FRUs are the focal

Figure 1: High Level View of the Telemetry Process

point of the dependable system and, therefore, perform
many functions. Besides generating telemetry data and
passing it to the Telemetry Stream, FRUs also aggregate
telemetry data from other FRUs that it logically contains.
This allows telemetry data to be calculated at different lev-
els of abstraction: entire system, subsystem, or an individual
FRU. FRUs also poll Telemetry Monitors for alarm condi-
tions and dispatch appropriate corrective actions as neces-
sary.

Environment Monitor. Environment Monitors collect
environmental telemetry. Examples include components
that watch memory usage, thread counts, and network traf-
fic. Because of their application-independent nature, envi-
ronment monitors are generally portable from system to
system within our architecture. Designers may choose and
install any environment monitors that may provide insight
into their system. Like FRUs, environment monitors regis-
ter with and are monitored by the Telemetry Stream.

Telemetry Stream. The Telemetry Stream represents a
time-synchronized aggregation of environmental telemetry
from the system’s host platform along with domain teleme-
try collected from each FRU. While a system may contain
many Telemetry Sources, it has only one Telemetry Stream.
This stream periodically queries all registered FRUs and
environment monitors for their telemetry data. This process
may be started and stopped as requested by the application.

The Telemetry Stream is also responsible for forwarding
telemetry data to a telemetry server for processing. The
forwarding location and the transmission frequency are set
by the application. Depending on the telemetry sampling
rate and the amount of data generated by telemetry sources,
the telemetry stream may contain large amounts of data. To
transmit this data across the network, care must be taken to
minimize the size of the data stream.

Telemetry Monitor. Telemetry Monitors observe the
system’s telemetry stream at regular intervals and calculate
a health index based on the data in the stream. In calculat-
ing the health index, a telemetry monitor may choose to
incorporate simple heuristics or sophisticated statistical
models. At any given time, a system may have many te-
lemetry monitors and therefore many health indices. Each
FRU attaches one or more telemetry monitors of interest and

periodically checks to see if any of them have raised an
alarm condition. FRUs may also detach telemetry monitors
when they are no longer needed.

Alarm Condition. Alarm conditions represent the de-
tection of problem behavior. Telemetry Monitors define
alarm conditions based on their models of the system. The
alarm conditions are subsequently detected by interested
FRUs, which react by executing corrective actions.

Corrective Action. Corrective action objects encapsu-
late actions taken in response to an alarm condition. Typi-
cally, these actions are designed to return the system to a
non-problem state. Practical examples include proactive
restarts or system rejuvenation 4, refusing connections, and
discarding work.

3.3.2 Instrumentation and Data Mgmt. Libraries
To support this architecture we have created several re-

usable classes and libraries. They are currently imple-
mented in Java for the Java 2 Platform.

Telemetry Stream. The Telemetry Stream class is im-
plemented as a singleton and maintains its own thread to
minimize interference with the system’s functionality. Us-
ers configure this class to control how often it aggregates
telemetry data and where it forwards that data. Users may
start and stop the Telemetry Stream as desired.

Telemetry Source. Telemetry Sources are objects that
contribute data to telemetry streams. We have therefore
defined a Java interface that controls this behavior. This
interface contains a single method that returns telemetry
data as a collection of name-value pairs. Telemetry Sources
must also register themselves with the Telemetry Stream
object.

Telemetry Monitor. Concrete objects that observe the
Telemetry Stream and calculate system health indices based
on that data extend the Telemetry Monitor class. Telemetry
Monitors are registered with the Telemetry Stream and are
notified when new telemetry data are collected. FRUs may
use Telemetry Monitor methods to check for alarm condi-
tions as desired.

EnvironmentMonitor: ProcCounter. We developed an
environment monitor telemetry source that uses the Java
Virtual Machine Profiling Interface (JVMPI) 1. This par-
ticular class collects and outputs method-entry events from
selected classes at regular intervals as the application runs.
As is desired for environment monitors, this component is
completely decoupled from the core application code. Other
environment monitors that capture different environmental
telemetry can easily be added.

3.3.3 Statistical Modeling and Corrective Action
Strategy Support Tools

The framework contains a set of tools that process te-
lemetry data off board in order to build statistical models
that reliably predict impending system failure. The outputs
of these tools are optimized models that will be coded into
Telemetry Monitor components. These tools are described
in detail in Section 2.

Figure 2: High Level View of the SDF Framework

The framework relies on telemetry monitor components
to raise alarms when system failure is likely. Developers
must also write corrective action components. These com-
ponents respond to specific alarms and encapsulate actions
intended to return the system to control. The framework
also includes some visualization tools that help developers
evaluate how well their corrective actions work.

4 Proof-of-Concept Study
As an initial proof-of-concept, we conducted a small-

scale study of our framework, examining several high level
questions. In particular we wanted to understand how easy
was it to use our framework and whether its components are
sufficient to create a simple dependable system. To answer
these questions we conducted three studies: building a sim-
ple dependable system using the SDF; using telemetry data
to build prediction models; and using prediction models to
yield dependable system behavior.
4.1 System Development Phase

The application for this study is an implementation of a
computer game similar to Tetris 2. Tetris is a well-known
interactive puzzle game. The user is presented with a steady
stream of falling shapes and must translate and rotate them
so that they form horizontal lines as they are stacked. There
are seven different shapes that comprise four blocks each.
As continuous, horizontal rows are created, they are re-
moved from the game, giving the user more space to work
toward the goal of creating more rows. It is possible to
complete up to four rows with one shape, and more points
are awarded for completing multiple rows simultaneously.
The shapes fall more rapidly as the game progresses, mak-
ing it increasingly difficult for the user to correctly position
them. The game is lost when the height of the highest block
goes beyond the top of the game area.

Although Tetris is not a large safety-critical application,
it is a useful starting point for our research. First, it mimics
larger dependable systems that occasionally require human
intervention, perception, cognition, and actions that are both
deliberate and judicious to maintain or restore equilibrium.
Blocks continuously entering the workspace represent work
that must be processed. Full rows represent completed jobs,
losing the game represents system overload, and the goal is
to keep playing.

Tetris provides an ideal simulation of human-control
tasking that continuously increases in complexity and re-
sponse-time requirements until the human reaches cognitive
overload conditions. As such, Tetris has been used for sev-
eral years by psychologists [see, e.g. Thach, 1996] to study
complex visuo-motor task situations where researchers can
evaluate in a safe environment concepts involving human
cognition, eye-hand coordination, decision making under
conditions where new information is becoming available at
a relentlessly accelerating rate, context-response linkage,
and prioritizing actions to take while actively deciding what
actions to not take to minimize the probability of failing (i.e.
game over). Tetris also provides a good setting for evaluat-

ing quantitative metrics for estimating “residual life” of sys-
tems in which the most likely cause of failure is cognitive
overload. For Tetris, regardless of a participant’s skill,
“cognitive overload” is eventually reached. In fact, even
another computer program might have a hard time playing
Tetris indefinitely (optimizing play under certain conditions
is known to be NP-complete [Demaine, 2002]).

Our modified version of Tetris was written in Java. The
game functionality is implemented primarily in one main
class and two helper classes consisting of around 550 lines
of code when taken together. The full system with reusable
SDF-provided code, user-provided instrumentation and cor-
rective action strategies, and original application code con-
sists of approximately 1200 lines of code.

We instrumented our application to periodically output
environmental and domain telemetry. For environmental
telemetry we used the ProcCounter class to capture the
number of times that each method in the application was
called. For domain telemetry, we captured a variety of
game state variables, including the height of the highest
block, the number of shapes created, the block density, and
the hole count (unfilled grid spaces lying under dropped
blocks).

Qualitatively speaking, we experience no noticeable run-
time performance degradation as a result of our instrumenta-
tion. However, in future work on other systems, we plan to
quantify and minimize the performance penalty incurred by
telemetry instrumentation. As we developed the SDF infra-
structure classes, we also experimented with building pre-
dictive models, coding them up, linking them into the Tetris
application, and developing and using different corrective
action strategies.

Overall, the experience was straightforward. The key
lesson is how a well-behaved FRU in our architecture
should be written. Because telemetry data requests come
from a separate thread (the thread run by the Telemetry
Stream), a FRU must do two things to ensure that monitors
watching the telemetry stream see a consistent picture of its
state. First, it must prepare and return a deeply cloned snap-
shot of its state avoiding object references to state variables,
because the FRU’s state can be changed on the main thread
before processing by the telemetry stream and associated
telemetry monitors. Second, while preparing a telemetry
response, a FRU must block any requests that may change
its state, again to ensure that the telemetry data points are
consistent with each other. Because of the need to block, it
becomes important for the FRU to prepare the telemetry
response as quickly as possible so that processing can re-
sume on the main thread. Thus, any complicated calcula-
tions involving telemetry data should be performed by te-
lemetry monitors and not by the FRUs themselves.
4.2 Model Building Phase

While developing the SDF framework, we explored us-
ing MSET-inspired statistical tools on software telemetry
data.

4.2.1 Hypothesis
The research hypothesis behind this study is that our

tools can be used on software telemetry data to automati-
cally build reliable predictors of impending system failure.

4.2.2 Data Collection
For this study we asked 34 CS students to play Tetris for

approximately one hour each. We gave them a hand-
instrumented Tetris application that collected telemetry data
every five seconds as the game was played. We captured
procedure count data as well as Tetris domain telemetry as
described in Section 4.1. After the students finished playing
we collected the resulting data for analysis. In total we col-
lected and analyzed data from 323 games. This data then
became the basis for the model-building phase.

4.2.3 Threats to Validity
Threats to Internal Validity. The effectiveness of

MSET may be affected by data sampling rates, or peculiari-
ties in the data due to abnormal playing styles (e.g., players
who try to lose quickly). We made no effort to examine
different sampling rates, but we carefully explained our
goals to the participants and examined the data for each
closely to identify abnormal behavior.

Threats to External Validity. The generalization of our
results is bounded by the degree to which the Tetris applica-
tion represents a model of a complex and long-running sys-
tem. At this stage of the research, we felt it would only
complicate matters to use a more complex system. We will
address this issue by repeating these studies on more com-
plex subject programs in the future.

4.2.4 Data and Analysis
To demonstrate the usefulness of applying a simple pat-

tern recognition approach to the telemetry data we per-
formed a detailed correlation analysis of all games to iden-
tify and rank the variables that are most closely correlated
with “residual life”, defined as the time remaining before
failure (game over). This analysis demonstrated that the
best single variable predictor of residual life is the height of
the packed pieces, and the bivariate predictors of residual
life are height and hole count. In particular, we are inter-
ested in whether the models do, in fact, predict failures
when and only when they occur in the data we collected. To
illustrate this procedure we select one prototypic game for
detailed analysis (game 1 by Player 8).

The game is over when the height metric reaches the top
of the screen. We informally define the red zone as a set of
states {Xi} of the game starting from which the game will be
over in less than Tz seconds (residual life) with probability
greater than 0.5. Remaining states are called the green zone.
We want to generate alarms when entering the red zone,
while minimizing the probabilities of false alarms (Type I
error) and missed alarms (Type II error).

We begin by building a simple model that relates each
state of the game Xi with the probability pi such that starting
with this state the game will be over in Tz seconds. This can

be done by building a linear logistic model with pi being the
proportion of cases when starting from state Xi for which
the game is over in less than Tz seconds. Such a model can
be fit using collected metrics of several games played by the
same player. A linear logistic model is given by:

)1(
1

)(2211 mmxbxbxbai ep ++++−+= !

We shall seek to demonstrate the improvements obtained
by going to models of higher dimensionality in terms of (1)
sensitivity for detecting impending failure and (2) avoidance
of false-alarms and missed-alarms. Results of the analysis
follow.

In Figure 3, two metrics are plotted as time-series. The

dark vertical line marks Tz=1.5 min before the end of the
game. The states of the game on the right of the vertical
line are the states starting from which this game ends in less
that Tz seconds. The states on the left of the vertical line
are the states from which this game lasts longer that Tz sec-
onds. This division can be used to calculate the proportions
required for fitting the logistic model. For each state Xi we
count how many times the game was in this state and how
many of those lie on the right of the vertical line. This gives
a proportion pi of cases for state Xi for which the game is
over in less that Tz seconds. This proportion is a rough es-
timate of the probability that the game will be over in less
than Tz seconds if the current state is Xi.

Figure 3: Height and Hole Count for Player 8 Game 1

Figure 4 shows the fit of a linear logistic model with one
regressor, height. The stars represent calculated proportions
for the game to be over in less than Tz seconds, given a par-
ticular state represented by only one metric, height. The
solid line is the fitted model that gives the probability of the
game to be over in less than Tz seconds as a function of
height.

Figure 5 shows predictions made by Model 1. The upper
subplot shows height from the beginning to the end of the
game. The lower plot shows the probability that the game
will be over in less than Tz seconds. We see that at ap-
proximately T=100 the model-predicted probability of
gameover becomes high, but the game continued much
longer. This is a false alarm from the one-regressor model.

Figure 6 shows the actual alarms raise for entering the
red zone (symbols) defined as the states leading to
gameover in less than Tz seconds with probability greater
than 0.5. We see false alarms at approximately T=100.
Examples are the symbols just after the dark vertical line.

We can now compare the performance of Model 2 con-
structed with bivariate regressors: height and hole density.

Figure 7 shows the 3D surface depicting the linear logistic
regression fit by model 2.

Figure 8 shows predictions of the probability of
gameover in Tz seconds as the game progresses from the
beginning to the end. Notice that with model 2, the prob-
ability of gameover at T=100 is now very low as compared
to predictions made using Model 1.

Finally, Figure 9 shows actual alarms for entering the red
zone produced using model 2 with 2 regressors. There are
no false alarms in the vicinity of T=100, and no missed
alarms following transition into the red zone. This is a sig-
nificant improvement over predictions by model 1.
4.3 Model Use Phase

After developing the MSET models, we also explored
whether and how these models and corresponding corrective
action strategies would improve system dependability.

Figure 4: Linear logistic model w/ height regressor

Figure 5: Model 1 Predictions

Figure 8: Model 2 Predictions

Figure 6: Model 1 Alarms

Figure 7: Model 2 linear logistic regression

4.3.1 Hypothesis
The research hypothesis behind this study is that the

models developed in the last study will be reliable even in
new contexts and that corrective action strategies actually
improve system dependability.

4.3.2 Operational Model
Experimental Platform. For this study, we modified

the Tetris application used in the previous study. In addi-
tion to the telemetry data already captured, we instrumented
the models and the corrective action strategies. We linked
both models into the application, but allowed only one to
raise alarms during any one game. We also increased the
sampling rate to once per second to more precisely view the
system’s behavior.

We implemented a single corrective action strategy,
which was to clear the bottom 4 rows from the grid and to
reset the game speed. This strategy takes into account the
two fundamental ways to prevent a system from going into
overload, limiting access to the system and changing the
character of work already in progress in the system

Evaluation Criteria. To evaluate the models, we exam-
ined how well they predicted impending failure in this new
context and then examined whether the models and correc-
tive actions allow players to play longer and score more
points. Since the models effectively work by trading some
points now in hope of scoring more points in the future, we
want to use corrective actions if and only if they’re actually
necessary. In Tetris terms, we want to minimize the number
of partial rows thrown away (by the corrective action strat-
egy) while maximizing the number of rows completed. Dif-
ferent corrective action strategies will create different cost-
benefit tradeoffs. To quantify this, we came up with an al-
ternative score where each completed row added one point
and each row thrown away while executing a corrective
action lost one point. We also assessed a penalty of 1 point
for each partially-filled row at each loss (or end of game).

4.3.3 Data Collection
In this study, we asked 10 CS grad students to use the

modified Tetris application. None of these students had

participated in the previous study. Each participant played
4, 15-minute periods. The first period was considered a
warm up. In the second period the participants used the
application without the corrective action strategy enabled
(NoModel). The third and the fourth periods involved the
corrective action strategy enabled applications. At the start
of the third game, one model was randomly selected and
used throughout that game. Since the models and strategies
we are using make it impossible to lose the game, we auto-
matically end the game after 15 minutes. The fourth game
was the same, but used the remaining model (Model-1 is the
univariate model, Model-2 the bivariate).

During each game we logged both models’ health indices
at each interval. In all, we collected data from 52 games in
the second period (with no corrective action) and 12 games
each from the third and fourth periods (with corrective ac-
tion) using 12 participants.

4.3.4 Data Analysis
To understand whether the predictive models from the

previous study were useful in this one, we examined when
the models would have raised alarms in the NoModel
games. Figure 10 shows that both models would have trig-
gered alarms before loss occurred and that on the average
Model-2 would have raised alarms 82s from failure, while
Model-1 would have raised alarms 64s from failure. Since
the models were built to predict failure 90s away, we con-
sider Model-2 to be closer to the desired behavior.

The results obtained by having participants play with no
corrective actions, and with corrective actions actuated by
Model 1 and Model 2 are summarized here:

Figure 11 shows the avg work performed with and with-
out models. No Model games had an average alternative
score of only 10. They processed 72 rows, but lost fre-
quently. Model-1 (83 processed and 21 thrown away)
games processed 62 more and Model-2 games (80 processed
and 25 thrown away) processed 55 more. Clearly, the mod-
els allowed longer, more effective play.

Model-1 Model-2

0
50

10
0

15
0

20
0

25
0

Alarms Raised
Figure 10: Advance warning by model type

Figure 9: Model 2 Alarms

The conclusion from this proof-of concept investigation
is that it possible (even in human-controlled) systems to
enhance overall system operation and maintenance strate-
gies by a combination of continuous system telemetry cou-
pled with pattern recognition. The pattern recognition mod-
ule can detect the incipience or onset of problems proac-
tively and trigger automated corrective actions.

5 Related Work
Our software dependability work is motivated by re-

search in predictive detection and software engineering
Several researchers, have understood the difficulty of build-
ing dependable systems. The Eternal system for fault-
tolerant CORBA is designed to enable the transparent inte-
gration of fault tolerance into existing applications 16.
France and Georg [13] separate fault tolerance code from
the core application code and weave it together using as-
pect-oriented techniques. Kalbarczyk et al. [18] describe a
Chameleon framework that allows different levels of avail-
ability requirements to be simultaneously supported in a
networked environment using configurable software
ARMOR modules that are tuned for specific failure modes.
Xu et. al. [14] provide a framework that allows systems to
trade off dependability and efficiency characteristics at run-
time based on design-time choices. Our framework also has
the goal of making it easy for application developers to get
the benefits of sophisticated dependability infrastructure
without making major modifications to their code bases.

Our work is also influenced by work on predictive detec-
tion, such as the Pinpoint system [15]. This work explores
techniques for analyzing time series data to understand its
effect on certain outcomes of events

Researchers in [11-13] have investigated the use of pre-
dictive algorithms for a closely related objective of enhanc-
ing performance for improved manageability of computing
systems. That research is leading to new system-

management innovations, improving the performance and
quality-of-service of complex uniprocessor and distributed-
processor systems. Our work focuses on software depend-
ability improvement for human-in-the-loop scenarios where
humans need information in a low-pressure setting with an
uncluttered, prioritized format to avoid "cognitive overload"
mistakes that can quickly compound into complete system
failure. In such settings where humans remain a part of the
decision/action process, we introduce here a quantitative
methodology for continuously assessing the "residual life"
of a system, which reflects not only the overall health of the
system but the likelihood of being able to perceive and react
to incoming information when system upset events occur
that may increase the rate incoming messages. The real
value of the methodology introduced in this investigation is
the ability of the SDF to automate the decision as to when it
is very unlikely that the present mitigation actions (which
may be a combination of human actions and those from
automated system management systems) will avoid com-
plete system failure. At this point, and with quantitative
confidence factors, the system can reject incoming work
and/or kill off the lowest priority processes until equilibrium
has been re-established. Finally, another difference between
the contributions in [11-13] and the approach we adopted is
the use of nonlinear, nonparametric regression as embodied
in MSET. Conventional predictive algorithms are based on
threshold-type rules. When there are three or more telemetry
metrics to be monitored, MSET has a significant advantage
over conventional threshold-limit rules as it is sensitive to
anomalies in the correlation patterns between and among
monitored dynamic variables. Thus, sensor "stuck-at" fail-
ure events and other degradation modes wherein telemetry
is faulty but nevertheless will not trip a threshold are causes
of misidentifications in conventional predictive algorithms.
MSET, by monitoring the correlation structure among moni-
tored metrics, gives sensitive alarms when signals go out of
bounds (as would conventional system management solu-
tions); but also when anomalies appear in the correlation
patterns among the monitored signals, even while those sig-
nals are still within their normal range of variation.

6 Summary
Modern software systems increasingly need to be de-

pendable. Yet the software engineering techniques and
tools for achieving it are limited, relying almost exclusively
on one-of-a-kind solutions and ad hoc optimizations. Con-
sequently, there is a great need for software engineering
tools and techniques that make it easier for developers to
build dependability into their systems.

We have developed the SDF to improve this situation.
This framework is based on a generic dependability strategy
in which systems are instrumented to produce runtime te-
lemetry data. These data are then analyzed by MSET,
which automatically produces statistical models intended to
predict impending failures well before they occur. These
models are then fed back to the system to allow a system to

No Model Model-1 Model-2

-5
0

0
50

10
0

Total Work

Figure 11: Total work by model type

monitor itself at runtime, raising alarms when the system is
believed to be approaching failure. To support this process
we developed tools, libraries, and an architecture complete
with reusable components.

We also presented a simple proof-of-concept study in
which we used our framework to instrument a simple appli-
cation. We then asked a number of subjects to use the ap-
plication, from which we automatically developed failure-
predicting models. We evaluated these models and demon-
strated that they indeed reliably predicted failure. Next we
linked the models back into the application and asked a dif-
ferent set of users to execute it. We found that the models
worked well in this new context - even though the applica-
tion is completely driven by human input.

For future work, we need techniques to efficiently trans-
mit telemetry data over the network for off board analysis
by centralized servers. We plan to quantitatively analyze
the overhead generated by telemetry data collection. Given
that more frequent telemetry sampling may allow us to build
better models of the system, but only at the price of in-
creased speed and space overhead, we will analyze the
cost/benefit tradeoff in telemetry sampling rates. We intend
to scale techniques up to larger systems in domains such as
ecommerce servers and applications.
7 References
1. Java Virtual Machine Profiler Interface (JVMPI). Sun

Microsystems. Feb.,1999
2. Tetris.com.The Tetris Company, LLC. 2003.
3. C. Talbot, “On-Condition Replacement,”, Proc.

MARCON 2001, “Maintenance and Reliability in the
21st Century”, Gatlinburg, TN, (May 6-9, 2001).

4. K. Validyanathan, R. E. Harper, S. W.d Hunter, and
K. S. Trivedi, “Analysis and Implementation of Soft-
ware Rejuvenation in Cluster Systems,” ACM Sigmet-
rics 2001/Performace 2001, June 2001.

5. K. C. Gross, K. Mishra, R. L. Bickford, “Proactive
Detection of Software Aging Mechanisms in Perform-
ance-Critical Computers,” Proc. 27th Ann. NASA SW
Eng. Sym., Greenbelt, MD, (Dec 4-6, 2002.)

6. E. D. Demaine, S. Hohenberger, and D. Liben-
Nowell, “Tetris is Hard, Even to Approximate,” Tech.
Rept. MIT-LCS-TR-865, MIT (Oct 21, 2002).

7. K. Cassidy, K. C. Gross, and A. Malekpour. "Ad-
vanced Pattern Recognition for Detection of Complex
Software Aging Phenomena in Online Transaction
Processing Servers," Int'l Performance and Dependabil-
ity Symposium, Washington, DC, June 23-26, 2002.

8. K. C. Gross, R. M. Singer, S. W. Wegerich, J. P.
Herzog, R. VanAlstine, and F. Bockhorst “Application
of a Model-based Fault Detection System to Nuclear
Plant Signals,” Proc. 9th Intnl. Conf. On Intelligent
Systems Applications to Power Systems, pp. 66-70,
Seoul, Korea (July 6-10, 1997).

9. R. M. Singer, K. C. Gross, J. P. Herzog, R. W.
King, and S. Wegerich, “Model-Based Nuclear Power
Plant Monitoring and Fault Detection: Theoretical

Foundations,” Proc. 9th Intnl. Conf. On Intelligent
Systems Applications to Power Systems, pp. 60-65,
Seoul, Korea (July 6-10, 1997).

10. Distributed Operations and Management, 2001. "A
Statistical Approach to Predictive Detection," Joseph L.
Hellerstein, Fan Zhang and Perwez Shahabuddin, Com-
puter Networks, January, 2000.

11. "Rule Induction of Computer Events," Ricardo Vilalta,
Sheng Ma, and Joseph L. Hellerstein, Distributed Op-
erations and Management, 2001.

12. "A Statistical Approach to Predictive Detection," Jo-
seph L. Hellerstein, Fan Zhang and Perwez Shahabud-
din, Computer Networks, January, 2000.

13. R. France and G. Georg. “An Aspect-Based Approach
to Modeling Fault Tolerance Concerns”. CSU Tech
Report, 2002.

14. J. Xu, A. Bondavalli and F. Di Giandomenico. "Dy-
namic Adjustment of Dependability and Efficiency in
Fault-Tolerant Software," in Predictably Dependable
Computing Systems, pp. 155-172, Brussels, Springer
Verlag, 1995. ISBN 3-540-59334-9

15. Chen, M., E. Kiciman, E. Fratkin, E. Brewer and A.
Fox. Pinpoint: Problem Determination in Large, Dy-
namic, Internet Services. Proceedings of the Interna-
tional Con. on Dependable Systems and Networks
(IPDS Track), Washington D.C., 2002.

16. P. Narasimhan, Ph.D. Dissertation, Technical Report
#99-18, Department of Electrical and Computer Engi-
neering, University

17. Kalbarczyk, Z.T., Iyer, R.K., Bagchi, S., Whisnant, K.
“Chameleon: A Software Infrastructure for Adaptive
Fault Tolerance”. IEEE Transactions on Parallel and
Distributed Systems, Vol. 10, No. 6, June 1999.

18. Thach, W. T. On the specific role of the cerebellum in
motor learning and cognition: Clues from PET activa-
tion and lesion studies in man. Behavioral and Brain
Sciences 19(3): 411-431, 1996.

