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ABSTRACT 
Regression testing is an expensive and frequently executed 
maintenance process used to revalidate modified software. To 
improve it, regression test selection (RTS) techniques strive to 
lower costs without overly reducing effectiveness by carefully 
selecting a subset of the test suite. Under certain conditions, some 
can even guarantee that the selected test cases perform no worse 
than the original test suite.  

But this ignores certain software development realities such as 
resource and time constraints that may prevent using RTS 
techniques as intended (e.g., regression testing must be done 
overnight, but RTS selection returns two days worth of tests). In 
practice, testers work around this by prioritizing the test cases and 
running only those that fit within existing constraints. 
Unfortunately this generally violates key RTS assumptions, 
voiding RTS technique guarantees and making regression testing 
performance unpredictable.  

Despite this, existing prioritization techniques are memoryless, 
implicitly assuming that local choices can ensure adequate long 
run performance. Instead, we proposed a new technique that bases 
prioritization on historical execution data. We conducted an 
experiment to assess its effects on the long run performance of 
resource constrained regression testing. Our results expose 
essential tradeoffs that should be considered when using these 
techniques over a series of software releases. 
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1. INTRODUCTION 
After modifying software, developers typically want to know that 
unmodified code has not been adversely affected. When such 
unmodified code is adversely affected, we say that a regression 
error has occurred. Developers often do regression testing to 
search for such regression errors. The simplest regression testing 
strategy is to rerun all existing test cases. This method is simple to 
implement, but can be unnecessarily expensive, especially when 

changes affect only a small part of the system.  

Consequently, an alternative approach, regression test selection 
(RTS) technique, has been proposed (e.g., [1],[3],[6],[7], 
[13],[17]). With this approach only a subset of test cases are 
selected and rerun. Since, in general, optimal test selection (i.e., 
selecting exactly the fault-revealing test cases) is impossible, the 
cost-benefit tradeoffs of RTS techniques are a central concern of 
regression testing research and practice.  

Our understanding of these techniques, however, is limited. One 
reason is that researchers commonly study this problem by finding 
or creating base and modified versions of a system and 
accompanying test suites. Next, they run test selection algorithms 
and compare the size and effectiveness of the selected test suite to 
the size and effectiveness of the original test suite (e.g., 
[5],[14],[19],[21]). There are two critical limitations to this 
approach: (1) it models regression testing as a one-time activity 
rather than as the continuous process it is, and (2) it does not take 
real world time and resource constraints into consideration. The 
fact is that regression testing is far better modeled as an ordered 
sequence of testing sessions, each of whose performance may 
depend upon prior testing sessions, and each of which is subject to 
time and resource constraints.  

From these observations two conjectures flow. One is that there 
can be a big difference between what an ideal regression tester 
should do and what the actual one can afford to do. For example, a 
recent study of ours [9] suggests that the amount of changes made 
between testing sessions strongly affects the performance of 
different RTS techniques. In fact, one approach, called a safe 
technique [17], routinely selected almost all test cases when more 
than a few (2 or 3) changes were made to the subject programs. If 
this situation arises in practice (like when a system is undergoing 
heavy modifications in a time-constrained development 
environment), then RTS techniques can’t be used as intended. 
Instead the RTS-selected test cases must be reduced even further 
so they can be executed under given constraints. This is called test 
case prioritization (e.g., [20],[22]). 

A second conjecture is that historical test case performance data, 
which current RTS and test case prioritization techniques ignore 
entirely, might be used to improve long run regression testing 
performance. Current RTS and prioritization techniques are 
memoryless. They are based only on the analysis of source code 
and test case profiling information taken from the current and 
immediately preceding software versions. This implicitly assumes 
that local information can ensure adequate long run performance. 
But prioritization voids RTS technique guarantees, making 
regression testing performance unpredictable. Consequently, in 

 



 

  

 

situations where we must resort to test case prioritization, we must 
admit the possibility that new techniques not based solely on local 
information might have merit. 

In this article, we begin exploring these conjectures. In particular, 
we evaluate how several RTS techniques perform under severe 
time and resource constraints. We also present and evaluate one 
simple heuristic that uses historical information to do test case 
prioritization. We hypothesize that such heuristics can, over the 
long run, reduce the cost and increase the effectiveness of 
regression testing in constrained development environments. If 
this hypothesis is true, testing practitioners may be able to better 
manage and coordinate their integration and regression testing 
processes, thereby saving time and money. Therefore we have 
designed and implemented an experiment to examine this 
hypothesis.  

In the remainder of this paper we review the relevant literature, 
describe our research hypotheses, present the design and analysis 
of our experiment and discuss our conclusions and future research 
directions.  

2. BACKGROUND  
2.1 Regression Testing 
Let P be a procedure or program, let P′ be a modified version of P 
and let T be a test suite for P. A typical regression test proceeds as 
follows: 

1. Select T′⊆ T, a set of test cases to execute on P′. 

2. Test P′ with T′. Establish P′’s correctness with respect to T′. 

3. If necessary, create T″, a set of new functional or structural 
test cases for P′. 

4. Test P′ with T″, establishing P′’s correctness with respect to 
T″. 

5. Create T″′, a new test suite and test history for P′, from T, T′, 
and T″. 

Each of these steps is important. However, we restrict our 
attention to step 1 - the regression test selection problem. 

2.2 RTS Techniques 
Several regression test selection techniques have been 
investigated in the literature (see [16]). Here we briefly describe 
several techniques and give a representative example of each. 

2.2.1 Retest-All Technique 
This method reruns all test cases in T. It may be used when test 
effectiveness is the utmost priority with little regard for cost. 

2.2.2 Random/Ad-Hoc Technique 
Testers often select test cases randomly or rely on their prior 
knowledge or experience. One such technique is to randomly 
select a percentage of test cases from T. 

2.2.3 Minimization Technique 
This approach (e.g., [4], [7]) aims to select a minimal set of test 
cases from T that covers all modified elements of P′. One such 
technique randomly selects test cases from T until every program 
statement added or modified to create P′ is exercised by at least 
one test case. 

2.2.4 Safe Technique 
These techniques (e.g., [3],[17]) select, under certain conditions, 
every test case in T that covers changed program entities in P′. 
One such technique selects every test case in T that exercises at 
least one statement that was added or modified to create P′, or that 
has been deleted from P.  

2.3 Leung and White’s Cost Model 
Leung and White [10] present a simple model of the costs and 
benefits of RTS strategies. Costs are divided into two types: direct 
and indirect. Indirect costs include management overhead, 
database maintenance, and tool development. Direct costs include 
test selection, test execution, and results analysis. Savings are 
simply the costs avoided by not running unselected test cases.  

Let T′ be the subset of T selected by a certain regression test 
selection strategy M for program P, and let |T′| denote the 
cardinality of T′. Let s be the average cost per test case of 
applying M to P to select T′, and let r be the average cost per test 
case of running P on a test case in T and checking its result. Leung 
and White argue that for RTS to be cost-effective the inequality: 
s|T′| < r(|T| - |T′|) must hold. That is, the analysis required to 
select T′ should cost less than running the unselected tests, T – T′.  

One limitation of this model is that it overlooks the cost of 
undetected faults. Since a primary purpose of testing is to detect 
faults, it is important to understand whether, and to what extent, 
test selection reduces fault detection effectiveness. 

2.4 Previous Empirical Studies 
Initially, cost-effectiveness, as defined by Leung and White, was 
the central focus of regression test selection studies.  

Rosenblum and Weyuker [15] applied their technique to 31 
versions of the KornShell and its test suites. Rothermel and 
Harrold [17] conducted a similar study with their technique, using 
several 100- to 500-line programs and a larger (50 KLOC) 
program. These two studies seem to indicate that in some cases, 
regression test selection can be cost-effective. Later studies, 
therefore, begin to compare different methods.  

Rosenblum and Rothermel [14] compared the performance of two 
safe techniques in terms of test selection. The study, however, did 
not compare other techniques nor consider fault detection. 

Graves et al. [5] examined the costs and benefits of several 
regression test selection techniques. They examined five 
techniques: minimization, safe, dataflow, random, and retest-all, 
focusing on their abilities to reduce test suite size and to detect 
faults. The researchers drew the following overall conclusions: 

Some program analysis based (PAB) techniques (e.g., safe and 
dataflow) were effective in detecting faults, but the variance in the 
number of test cases selected was quite large.  

Equally sized, randomly selected test suites were nearly as 
effective as PAB techniques. 

Minimization yielded the smallest and the least effective test 
suites. 

Kim et al. [9] investigated how the number of changes made 
between base and subsequent versions affected the performance of 
several RTS techniques. They drew the following conclusions: 



 

  

 

The percentage of test cases selected by safe RTS techniques 
grew to almost 100% when as few as 3 changes were made. 

Random selection was surprisingly cheap and effective and its 
effectiveness was not greatly affected by change activity. 

Minimization selected very few tests and became much more 
effective as the number of changes increased. 

Profile data on P using T became much less predictive of 
execution behavior as the number of changes grew.  

Some work has also been done to study test case prioritization. 
Wong et al. [22] proposed several techniques: (1) modification-
based test selection then block-coverage-preserving minimization 
and (2) modification-based test selection then prioritization based 
on the increasing order of additional cost per coverage. They 
conducted a case study in which their techniques were applied to a 
5000 line program with ten faulty versions. They concluded that 
both techniques could be cost-effective alternatives in constrained 
environments.  

Rothermel et al. [20] also proposed and evaluated a family of 
prioritization techniques. Based on several different programs and 
test suites, their study suggested that their techniques could 
improve fault detection rate (faults/number of test cases run). It 
also suggested that more expensive techniques might not be as 
cost-effective as other less expensive techniques.  

Both of these efforts involved memoryless prioritization 
techniques and modeled regression testing as a one-time activity 
ignoring possible effects across multiple software releases. 
Finally, neither took time or resource constraints into 
consideration. This leads us to consider several open questions. 

2.5 Open Questions 
In this research, we consider three facets of RTS:  

The test selection technique, 

The application policy - the conditions that trigger regression 
testing: periodic execution (daily, weekly, or monthly), or rule-
based execution (after all changes, after changing critical 
components, or at final release), and  

Process factors such as resource constraints and deadline - when 
regression testing is done in constrained environments developers 
may have to limit their testing efforts.  

Most previous studies have focused on the first facet while 
ignoring the second and third. Yet, these latter facets are 
important because they may greatly affect the practical costs and 
benefits of regression test selection.  

We recently studied the second facet [9], showing that it strongly 
affects RTS costs and benefits. This paper continues that line of 
research, investigating how process factors such as time and 
resource constraints affect the regression testing process. In 
particular, we focus on test case prioritization techniques. Our 
goal is to see whether basing test case prioritization on historical 
data affects the long-term performance of regression testing done 
in constrained environments.  

3. EVOLUTION MODELS  
Previous studies model regression testing as a set of unordered, 
independent testing sessions. Regression testing is far better 
modeled as an ordered sequence of testing sessions, each of which 

may be dependent on the previous testing sessions. Ignoring this 
distinctions risks: 

Losing important information. For example, minimization 
techniques focus testing on parts of the program that have changed 
since the last testing session. So it is possible that a change, once 
tested, is never re-tested. If that change contains a fault, we have 
only one chance to find it. Unless we consider interactions 
between testing sessions, we won’t uncover those kinds of 
situations. 

Misinterpreting results. Our previous research shows that 
regression testing frequency affects performance. Existing studies 
haven’t considered this issue, which severely limits the 
applicability of their results. 

Missing improvement opportunities. Regression testing generates 
huge amounts of data that are currently ignored. Analysis of this 
data might reveal dependencies that can be exploited. For 
example, such analysis might uncover groups of test cases that 
perform similarly (have correlated pass/fail behavior), allowing 
test suites to be pruned. 

Thus we believe that there is an overwhelming need for more 
rigorous and more realistic regression testing models. In this 
paper, we use two different models of regression testing. 

3.1 Model 1 
Here we model an evolving software system: P0,P1,…Pn-1,Pn, 
where P0 is the base version, and Pi+1 is Pi with a single change 
applied. With our available subject programs, each single change 
is faulty. Our regression test process starts with versions P0 and 
P1, then P1 and P2. The process continues until all the faults 
inserted are detected, (but no new changes are added after Pn.) 

3.2 Model 2 
Here we model a fault removal process: P0,P1,…Pn-1,Pn, where P0 
contains all existing faults, Pi+1 is the subsequent version of Pi 
after applying some RTS technique and then removing any 
identified fault(s). This process continues until all known faults 
are detected. 

4. TEST CASE PRIORITIZATION 
Until now researchers have assumed that developers could, if 
necessary, rerun all test cases in a single testing sessions. As we 
have said, this is not always possible. For example, if we want to 
regression test every night, then compilation and testing time must 
take less than, say 8-10 hours. Also, regression testing of 
embedded systems is often done using sophisticated simulation 
environments. Such environments are expensive and, as they are 
usually shared by multiple projects, access to them is very limited. 
Current RTS techniques are oblivious to these constraints and, 
thus, may select more test cases than can be run in a given testing 
session. In such cases we must find a way to further reduce the 
selected test suite. 

At a high level, test case prioritization works as follows:  (1) apply 
an RTS technique to test suite T, yielding T′, (2) assign a selection 
probability to each test case in T′, (3) draw a test case from T′ 
using the probabilities assigned in step 2, and run it, and (4) repeat 
step 3 until testing time is exhausted. 

The key question is how to set/assign the selection probabilities. 
Our idea is to use information about each test case’s prior 
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use pairs, etc. Without loss of generality, let’s use functions as the 
program entity of interest. Our goal is to give higher priority to 
test cases that cover functions infrequently covered in past testing 
sessions. Thus, for every testing session, i, we execute the 
following two steps. First, we assign a weight to each function 
such that infrequently covered functions have much higher 
weights than frequently covered ones. Specifically, we calculate 
the number of test cases that covered each function. Then we 
weight each function such that its weight has an inverse 
exponential relationship to the number of test cases that covered it 
and such that the total weights over all functions sums to 1. 
Second, we define the test history, Htc. Specifically, hi is the sum 
of the weights for all functions that tc covered. If we use high α-
value, we will assign high selection probabilities to test cases that 
cover functions not recently exercised. The net effect would be to 
limit the possibility that any particular function goes unexercised 
for ling periods of time. 

4.1 Constraint-aware Prioritization Methods 
For this article we have implemented a prioritization method 
based on test execution history and we compare it against two 
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controls:  

1. Lru(n): This approach uses the test execution history 
described in the previous section, with α set as close to 0 as 
possible (actual value is machine dependent). Additionally 
we assume that time constraints allow us to execute only n% 
of the original test suite. Therefore, lru(n) chooses the n% of 
the test suite with the highest selection probabilities. One of 
the virtues of this method is that it cycles through all test 
cases over multiple testing sessions. 

2. Safe-random(n): As a control we examined another approach 
called safe-random(n). This approach starts by using a safe 
RTS technique. If the number of test cases selected by the 
safe technique is greater than the limit (n% of original test 
suite), then, from this set, we select the appropriate number 
of test cases on a random basis. The rest are timestamped and 
saved in a repository. If, instead, the number of test cases 
selected by the RTS technique is fewer than the limit, then 
we use the entire selection, and add test cases randomly 
selected from the repository. 

3. Random(n): Randomly select n% of the original test suite. 

5. THE EXPERIMENT 
5.1 Hypotheses 
We hypothesize that history-based test prioritization methods help 
to reduce the cost and to increase the effectiveness of regression 
testing process in the long run.  

5.2 Measures 
To investigate our hypothesis we need to measure the costs and 
benefits of each test selection and prioritization technique. To do 
this we constructed two models: one for calculating savings in 
terms of total efforts, and another for calculating costs in terms of 
age of fault. We restrict our attention to these costs and benefits, 
but there are many other costs and benefits these models do not 
capture. Some other costs and benefits are mentioned in Section 0. 

5.2.1 Measuring Total Effort 
Reducing test suite size saves time because we run fewer test 



 

  

 

cases, examine fewer test results, and manage less test data. In our 
experiment we used each RTS technique until all faults were 
detected or we reached 50 testing sessions. We then summed the 
number of test cases run across all testing sessions. This allowed 
us to measure the total effort expended across all sessions.  

This approach makes several simplifying assumptions. It assumes 
that the cost of all test cases is uniform and all the constituent 
costs can be expressed in equivalent units (e.g., we don’t 
differentiate between CPU time and human effort). It also does 
not measure the savings that may result from reusing analyses 
done during early testing sessions during later testing sessions.  

5.2.2 Measuring Fault Age 
We considered two types of costs. The first comes from the 
analysis needed to select test cases. The second may occur when 
the selected test cases do not detect faults that could have been 
detected by the original test set. Our cost model focuses on the 
latter cost, assuming that regression test selection is cost-effective 
under the definition given by Leung and White (see Section 2.3). 

To determine whether a given test selection approach reduces 
fault detection effectiveness we need to know which test cases 
reveal which faults in P′. Because this information is difficult to 
obtain, we estimate it in the following way [9]. At the end of each 
testing session we determine which faults were identified.  

In order for a test case t to detect a fault f, three conditions must 
be satisfied: (1) t must traverse the program point containing f 
in P′, (2) immediately after t traverses the program point 
containing f in P′, key program state must be perturbed (3) the 
final program state of P′ for test case t must be different from 
that of P run on test case t.  

If a given fault was not identified we increment a counter 
associated with that fault. Testing continues until either all the 
faults have been detected and removed or until 50 testing sessions 
have been conducted. The value of these counters at the end of the 
testing process is called the fault age of that fault. 

5.3 Experimental Instrumentation 
5.3.1 Programs 
For our study, we obtained eight C programs with a number of 
modified versions and test suites for each program. The subjects 
come from two sources. One is a group of seven C programs 
collected and constructed initially by Hutchins et al. [8] for use in 
experiments with dataflow- and control-flow-based test adequacy 
criteria. The other, Space, is an interpreter for an array definition 
language (ADL) used within a large aerospace application. We 
slightly modified some of the programs and versions in order to 
use them with our tools. Table 1 describes the subjects, showing 
the number of functions, lines of code, distinct versions, test pool 
size, and the size of the average test suite. We describe these and 
other data in the following paragraphs. 

Siemens Programs: Seven of our subject programs come from a 
previous experiment done by Hutchins et al. [8]. These programs 
are written in C, and range in size from 7 to 21 functions and from 
138 to 516 lines of code.  

For each of these programs Hutchins et al. created a pool of black-
box test cases [8] using the category partition method and 
Siemens Test Specification Language tool [12]. They then 
augmented this set with manually created white-box test cases to 

ensure that each exercisable statement, edge, and definition-use 
pair in the base program or its control flow graph was exercised 
by at least 30 test cases.  

Hutchins et al. also created faulty versions of each program by 
modifying code in the base version; in most cases they modified a 
single line of code, and in a few cases they modified between 2 
and 5 lines of code. Their goal was to introduce faults that were as 
“realistic” as possible, based on their experience with real 
programs. 

Ten people performed the fault seeding, working “mostly without 
knowledge of each other’s work” ([8], p. 196). To obtain 
meaningful results, the researchers retained only faults that were 
detectable by at least 3 and at most 350 test cases in the associated 
test pool. 

Space Program: The Space system, written in C, is an interpreter 
for an array definition language (ADL). The program reads a file 
that contains ADL statements, and checks the contents of the file 
for adherence to the ADL grammar, and to specific consistency 
rules. If the ADL file is correct, Space outputs an array data file 
containing a list of array elements, positions, and excitations; 
otherwise the program outputs error messages.  

Space has 30 versions, each containing a single fault that was 
discovered either during the program’s development or later by 
the authors of this study.  

The test pool was constructed in two phases. First we obtained a 
pool of randomly generated test cases created by Vokolos and 
Frankl [21]. Then we added new test cases until every 
dynamically executable edge1 in the program’s control flow graph 
was exercised by at least 30 test cases.  

5.3.2 Versions 
In this experiment program versions needed to contain several 
faults at the same time. To do this, we identified “mutually 
independent” faults. That is faults that could be automatically 
merged into the base program without interfering with each other. 
For example, if fault f1 is caused by changing a single line and 
fault f2 is caused by deleting the same line, then these 
modifications interfere with each other. Table 1 shows the number 
of mutually independent versions for each subject program, 
ranging from 5 to 30.  

5.3.3 Test Suites 
We used test pools to obtain augmented edge-coverage-adequate 
test suites for each program. To do this, we took the test pool for 
the base program and its associated test coverage information and 
used it to generate 1000 edge-coverage-adequate test suites for 
each base program. Then we augmented each test suite, making 
sure that the test suite contained at least one fault revealing test 
case for each fault. This augmentation prevents us from confusing 
an inadequate test quite with an ineffective test selection and 
prioritization approach.  

5.3.4 Test Selection Techniques and Tools 
To perform the experiments, we needed implementations or 
simulations of regression test selection tools. For the safe 

                                                                 
1 Excluding those edges that can be exercised only by the 
occurrence of malloc faults. 



 

  

 

technique we used an implementation of Rothermel and Harrold’s 
DejaVu tool [18]. For minimization, we created a tool that selects 
a minimal test suite T′ such that T′ has at least one test case that 
covers every node in the control flow graph for P that was 
changed between P and P′. For the random(n) technique we 
created a tool that randomly selects n% of the test cases from the 
suite. We implemented our own lru(n) technique. To do this we 
needed to save the test history from each regression testing 
session. We implemented the safe-random(n) technique by first 
calling the safe technique. This returns a set of test cases that we 
call the selected test cases. Our goal is to run x test cases, where x 
is equal to n% of the original test suite. If there are more than x 
test cases in the selected test suite, then we randomly select x of 
them and place the rest into a repository. Otherwise, we use all 
selected test cases and then add some more from the repository 
until we have selected a total of x test cases. Retest-all does not 
require any tools. 

5.4 Experimental Design 
5.4.1 Variables 
The experiment manipulated three independent variables: 

1. The subject program (there are 8 programs, each with a 
variety of modified versions). 

2. The test selection technique (one of safe, minimization, 
retest-all, random(5), random(10), random(20), lru(5), 
lru(10), lru(20), safe-random(5), safe-random(10), and safe-
random(20)). 

3. Two different evolution models (see Section 3). 

For each combination of program and technique we applied 100 
augmented edge-coverage-adequate test suites. On each test run, 
with base program P, modified version P′, technique M, and test 
suite T, we measured: 

1. The number of test cases in the selected test suite T′. 

2. The number and identity of faults revealed by T and T′.  

From these data points we computed two dependent variables: 

1. Total testing effort. 

2. Average fault age. 

The experiment used a full-factorial design with 100 repeated 
measures. That is, for each subject program we selected 100 test 
suites from the test suite universe. For each test suite, we then 
applied each test selection technique and measured the size and 
fault detection effectiveness of the selected test suites.  In total, 
the experiment required us to run nearly 4,000,000 test cases. 

5.4.2 Threats to Validity 
In this section we consider some of the potential threats to the 
validity of our study.  

Threats to internal validity are influences that can affect the 
dependent variables without the researcher’s knowledge. They 
can thus affect any supposition of a causal relationship between 
the independent and dependent variables. In our study, our 
greatest concern is that instrumentation effects can bias our 
results. Instrumentation effects may be caused by differences in 
the experimental instruments (in this case the test process inputs: 
the code to be tested, the locality of the program changes, the 

composition of the test suite, or the composition of the series of 
versions). One related issue is that all modifications to our subject 
programs are considered faults. In reality, some modifications will 
not result in faults. In this study we used augmented edge-
coverage-adequate test suites. However, at this time we do not 
control for the structure of the subject programs, or for the locality 
of program changes. To limit problems related to this, we run our 
test selection algorithm on each suite and each subject program. 

Threats to external validity are conditions that limit our ability to 
generalize the results of our experiment to industrial practice. One 
threat to external validity concerns the representativeness of the 
subject programs. The subject programs are of small and medium 
size, and larger programs may be subject to different cost-benefit 
tradeoffs. Also, the Siemens programs contain seeded faults 
although every effort to make them as realistic as possible was 
taken. Another issue is that these faults are roughly the same 
“size”. Therefore, a program with, say, ten faults has been 
changed more than a program with one fault. Industrial programs 
have much more complex error patterns. Another threat to 
external validity for this study is process representativeness. This 
arises when the testing process we used is not representative of 
industrial ones. This may endanger our results since the test suites 
we utilized may be more or less comprehensive than those that 
could appear in practice. Also, the modifications we make do not 
change the program specification. In practice, this does happen. 
We have tried to allow for different kinds of evolution by using 
two different software evolution models. These threats can only be 
addressed through additional studies using a greater range of 
software artifacts. 

6. DATA AND ANALYSIS 
In this paper, we use box plots (e.g., Figure-1) to represent data 
distributions. In these plots, a box represents each distribution. 
The box’s width spans the central 50% of the data and its left and 
right ends mark the upper and lower quartiles. The bold dot within 
the box denotes the median. The dashed horizontal lines attached 
to the box indicate the tails of the distribution; they extend to the 
standard range of the data (1.5 times the inter-quartile range). All 
other detached points are “outliers”.  

6.1 Model 1 
Model-1 involves a correct base version with testing after each 
new change. 

6.1.1 Fault Age 
Figure-1 is a box plot showing the distribution of fault age for 
each RTS technique under Model-1. Table-2 shows the median, 
average and standard deviation of fault age for each RTS 
technique under Model-1. 

As each test suite is augmented edge-coverage-adequate, the 
retest-all and safe techniques immediately detect each fault in 
each version. The other techniques sometimes missed faults, 
which passed into subsequent versions, raising average fault age. 

Minimization had the highest median and average fault age and 
the largest standard deviation.  

One interesting observations is that the standard deviation of fault 
age for the lru(n) techniques is less that that for the other 
techniques. This is because the lru(n) techniques found all faults 
well before the 50 testing session cutoff. In contrast, the 
minimization, safe-random(n) and random(n) techniques allowed 



 

  

 

faults to go undetected over 50 testing sessions. Moreover, since 
the cutoff is simply an artifact of the experiment, it is likely that 
the faults would persist even longer in practice. 

We now compare the prioritization methods in more detail. 

LRU vs. Random. For equal values of n, the median fault age of 
random(n) is slightly lower2 than that of lru(n). The mean and 
standard deviation, however, are lower for lru(n). Note that the 
“outliers” for random(5) and random(10) reach the cutoff value of 
50, implying that these statistics might be higher in practice. 

Random vs. Safe-Random. For equal values of n, the fault age 
for safe-random(n) had a lower median, average, and standard 
deviation random(n) did. Both techniques, however, have outliers 
at 50 testing sessions, indicating that in some cases faults went 
completely undiscovered.  

LRU vs. Safe-Random. For equal values of n, safe-random(n) 
performed better than lru(n) in terms of median and average fault 
age. However, the standard deviation is lower for the lru(n) 
technique. Also, the difference in standard deviation increases as 
n decreases. 

6.1.2 Total Effort 
Figure-2 contains a box plot showing the distribution of total 
effort across different RTS techniques.  

Total effort is defined as 100 times the proportion of the total 
number of test cases executed by a given technique to the total 
number of test cases executed by retest all. For example, the 
Space program has 30 versions and its average test suite has 80 
test cases. Retest-all detects all faults after 30 regression test 
sessions, using 2400 test cases in total. Let’s assume that a given 
                                                                 
2 We say that one method performed better (worse) than another 
only if such a statement is supported by a t or wilcoxon test with p 
< 0.5. Qualifiers like slightly or substantially are subjective. 

experimental run applied lru(5) to the Space program, involved 4 
test cases per testing session, and required 40 sessions to identify 
all faults. Here the total effort would be 5 ― 100 times 120 (the 
total number of test cases executed across all runs of lru(5)) 
divided by 240 (the total executed by retest-all). Table-3 shows 
the median and average total efforts for each different RTS 
techniques for Model-1. 

We draw several observations from this data. The total effort for 
the safe technique is less than that of retest-all, although the 
variance (not shown) is quite large. At least for these programs 
this is consistent with our earlier observation that safe techniques 
may be difficult to use in constrained environments.  

We also see that the total effort of minimization is very low 
(median 5.1). The tradeoff, as we saw in the previous section, is 
that it takes longer to find faults this way. (median fault age 7).  

Finally, all methods besides retest-all required less total effort 
than the safe technique. 

We now compare the prioritization methods in more detail. 

LRU vs. Random. For equal values of n, lru(n) required less total 
effort than random(n) both in terms of the median and the 
average.  

Random vs. Safe-Random. For equal values of n, safe-
random(n) required less total effort than random(n) both in terms 
of the median and the average.  

LRU vs. Safe-Random. For equal values of n, safe-random(n) 
performed slightly better than lru(n) in terms of median and 
average total efforts.  

6.1.3 Cost-Benefit Tradeoffs 
Safe. The operating assumption in this paper is that we are in a 
constrained environment that prevents us from using unmodified 
safe techniques (or retest-all). In this study, we saw that the 
average safe test suite was roughly 60% as large as the original 
test suite (although it varied considerably). These data are 

Table-2: Median, Average and Standard Deviation of 
Fault Age by RTS Technique (Model-1). 

 median average std. 
dev. 

safe 1 1 0 

retest-all 1 1 0 

min 7 11.0 13.0 

lru(5) 6 7.4 6.3 

lru(10) 4 5.2 4.9 

lru(20) 2 3.5 3.8 

rand(5) 5 8.7 10.0 

rand(10) 3 5.8 6.8 

rand(20) 2 3.7 4.5 

safe-rand(5) 3 6.5 9.1 

safe-rand(10) 2 3.9 5.4 

safe-rand(20) 1 2.5 3.8 

Figure-1: Fault Age by RTS Technique (Model-1). 



 

  

 

consistent with our conjecture that in some cases unmodified safe 
techniques may be inappropriate (although this is obviously 
situation dependent). It is also interesting to note that all other 
techniques (besides retest-all) required much less total effort than 
the safe technique at the cost of delaying fault detection for a few 
testing sessions. 

Minimization. Minimization presents an interesting alternative. It  
had the smallest total effort (≈ 6% on the average), but had the 
highest fault age (11 regression test sessions on the average). 
Therefore it might be cost-effective when testing sessions must be 
short and when the cost of failures is low. We should also note 
that with minimization can’t guarantee the maximum number of 
test cases selected.  

Random(n). The random(n) technique is arguably dominated by 
the safe-random(n) and lru(n) methods. Its average fault age is 
higher than theirs and has a much larger standard deviation. Also, 
its total effort is considerably higher than theirs. 

Safe-random(n). On the average, this technique detected faults 
earlier and with less effort than both lru(n) and random(n). One 
drawback is that the standard deviation of fault age is 
substantially higher than that of lru(n). This appears to be because 
safe-random(n), like random(n), allowed some faults to go 
entirely undetected. The effect of this in practice needs to be 
studied further. This technique might be cost-effective when the 
cost of failures is not too high. 

Lru(n).  This approach appeared to be competitive with others in 
terms of fault age and total effort, but was not the best performer 
under either measure. It did, however, have the lowest standard 
deviation for fault age and was the only technique that detected all 
faults before the experimental cutoff of 50 testing sessions. We 
believe that this property is quite interesting and deserves further 
study. 

6.2 Model 2 
In Model-2 P0 contains all existing faults. After each regression 
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Table-3: Median and Average Total Effort by 
RTS Technique under Model-1. 

 median average 

safe 61.3 60.1 

retest-all 100 100 

min 5.1 5.7 

lru(5) 12.1 12.7 

lru(10) 14.3 16.2 

lru(20) 25.0 26.5 

rand(5) 15.6 17.7 

rand(10) 20.4 23.2 

rand(20) 28.3 31.4 

safe-rand(5) 9.9 11.4 

safe-rand(10) 13.6 15.8 

safe-rand(20) 22.2 25.0 

 
Figure-2: Distribution of Total Effort (Model-1).
sting session any newly identified faults are removed and 
gression testing is done once more. This continues until all 
ults are detected or 50 testing sessions have been conducted. In 

eneral we see that many faults are detected early in the process 
fter 1 or 2 testing sessions), but that the remaining faults are 

ometimes quite persistent (many runs were stopped only when 
ey hit the cutoff of 50 testing sessions).  

.2.1 Fault Age  
igure-3 contains a box plot showing the distribution of fault age 
y RTS technique under Model-2. Table-4 shows the median, 
verage, and standard deviation of fault age for each RTS 
chnique.  

ll techniques had a low median fault age, but a substantially 
igher average fault age with a large standard deviation. This is 
ecause the majority of faults were detected during the initial 
sting sessions, while the remaining ones were sometimes quite 
ard to detect. Even retest-all and the safe technique were not able 
 immediately detect every fault (i.e., unlike in Model-1, some 
ults have age greater than 1).  

lthough for minimization the median fault age was 2, the average 
as roughly 6 with a standard deviation of about 12. Again, this is 
ue to the fact many testing runs reached the 50-session cutoff 
ithout detecting all the faults. 

e had expected that lru(5) would need no more than 20 or so 
sting sessions to detect all defects since that would have been 

nough to execute each test case at least once. But as shown by 
e outliers in Figure-3 some faults took over 30 test sessions to 

etect. Nevertheless, no lru(n) technique reached the cutoff of 50. 
xcept for random(20) all other techniques did reach the cutoff 
oint without detecting all faults. 

e now compare the prioritization methods in more detail. The 
edian fault ages are nearly the same, so we will focus on the 

verage and standard deviation. 

RU vs. Random: For equal values of n, lru(n) has a slightly 
wer average fault age than random(n) does. Its standard 

eviation is also lower. An important difference between them, 



 

  

 

however, is that lru(n) detected every fault, while random(n) did 
not (i.e., random(5) and random(10) sometimes ran to the cutoff 
point of 50 testing sessions). 

Random vs. Safe-Random: For equal values of n, safe-
random(n) performed better than random(n) in terms of average 
fault age. Its standard deviation is also smaller. 

LRU vs. Safe-Random: For equal values of n, the average fault 
age of lru(n) is nearly identical to that of safe-random(n). The 
standard deviation of lru(n) is smaller, however.  

6.2.2 Total Effort 
Figure-4 contains a box plot showing the distribution of total 
effort for each RTS technique. Table-5 shows the median, 
average, and standard deviation. 

NOTE: Our measure of total effort under Model-2 is different 
from that of Model-1. Here we normalize by the size of the 
original test suite, not by the total effort expended by retest-all. 
We did this because behavior of retest-all varies considerably 
from program to program.  

The total effort required by the safe technique (117% of original 
test suite size) is less than that required by retest-all (200% of 
original test suite size).  

Here again, minimization required the least total effort (median 
value 51.7% of original test suite size or about 25% of effort 
required for retest-all). Yet, in contrast to Model-1, here 
random(n) required more effort than the safe method. 

We now compare the prioritization methods in detail. 

LRU vs. Random: For equal values of n, lru(n) requires much 
less effort than random(n) in terms of the median and average. In 
addition, the variance of lru(n) is much smaller. 
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Figure-3: Distribution of Fault Age (Model-2). 
andom vs. Safe-Random: For equal values of n, safe-
ndom(n) requires less effort than random(n) in terms of the 
edian and the average.  
Table-4: Median, Average and Standard Deviation 
Fault Age by RTS Technique (Model-2). 

 median average std. dev. 

safe 1 1.2 0.4 

retest-all 1 1.2 0.4 

min 2 6.1 11.8 

lru(5) 1 4.5 5.6 

lru(10) 1 2.7 2.8 

lru(20) 1 1.8 1.5 

rand(5) 2 5.9 9.0 

rand(10) 1 3.5 5.3 

rand(20) 1 2.1 2.5 

safe-rand(5) 2 4.7 7.1 

safe-rand(10) 1 2.7 3.8 

safe-rand(20) 1 1.8 1.8 
RU vs. Safe-Random: For equal values of n, safe-random(n) 
rformed better than lru(n) in terms of median, but there is no 
fference in the average total effort. On the other hand, we see 
at the variance is much higher for safe-random(n).  

.2.3  Cost-Benefit Tradeoffs 
hen we consider both the costs and the benefits of the different 

TS techniques for Model-2, we find both similarities and 
fferences with Model-1. 

fe. As with Model-1 we assume that the safe technique cannot 
 used in a constrained environment. Again, the data is consistent 
ith the assumption even though this specific point at which the 
chnique exceeds its constraints will be situation-dependent. One 
fference is that under Model-2 the safe technique required less 
fort than the random(n) methods did. 

inimization. The minimization expended the smallest total 
fort and had the greatest average fault age. In contrast with 
odel-1, however, the difference in total effort between 
inimization and other techniques is less pronounced. This 
chnique might be cost-effective when the cost of executing test 
ses is very high.  

andom(n). As with Model-1, random(n), appears to be 
minated by safe-random(n) and lru(n). Under this model, 
wever, the total effort is substantially higher than that of the 
her methods. 

fe-random(n). Safe-random(n) detects fault earlier and with 
ss effort than random(n), but behaves similarly to lru(n). One 

itation is that allowed faults to go undetected. This technique 
ight be cost-effective when the cost of test execution is high and 
e cost of failures is low. 

ru(n). From the perspective of fault age and total effort, lru(n) 
ay be more attractive under Model-2 than under Model-1. 



 

  

 

Nevertheless, in both cases it detected all faults within the cutoff 
of 50 testing sessions. With the exception of rand(20), no other 
prioritization techniques did that. Thus, lru(n) might be most 
especially cost-effective when the cost of failures is high. 

7. CONCLUDING REMARKS 
We have presented the initial results of an empirical study on 
using historical test execution data to prioritize test case selection 
in a constrained regression testing process. We investigated some 
of the costs and benefits of several RTS techniques under two 
different software evolution models. Our results highlight several 
differences among RTS and test case prioritization techniques, 
illustrate tradeoffs, and provide directions for further research. 

As we discussed earlier, this study has several limits to its 
validity. Particularly, several threats to external validity limit our 
ability to generalize our results. These threats can only be 
addressed by extensive experiments with a wider variety of 
programs, test suites, series of versions, type of faults, etc. 
Keeping this in mind, we tentatively draw several conclusions. 

Our experimental results strongly support our first conjecture that 
regression testing may have to done differently in constrained 
environments than non-constrained ones. They also support our 
second conjecture – that historical information may be useful in 
reducing costs and increasing the effectiveness of long-running 
regression testing processes.  

As has been shown in other studies, safe techniques select widely 
varying and sometimes large numbers of test cases. In a 
constrained environment, such an approach may be simply 
infeasible. In other environments, of course, it may be a very 
powerful tool. Clearly, the decision to use or forego this technique 
must be made on a case-by-case basis. One interesting 
observation, however, was that under Model-2, the total effort for 
the safe technique was less than that of the random(n) method. 

Minimization chose the smallest test suites, but was the weakest at 

detecting all faults. Nevertheless, it did detect many of the faults 
at low cost. For example, under Model-2 it detected most faults in 
one or two sessions while running only a handful of test cases. 
Thus, although it will miss some faults, it may be cost-effective 
for some part of the regression testing process (possibly in 
conjunction with some other technique). We should note however, 
that minimization, like safe and safe-random(n), have substantial 
analysis costs that were not considered in this study. 

Experience tells us that random techniques are cheap and 
reasonably effective, but it also tells us that their effectiveness 
increases considerably as n increases. This study, however, 
suggests that for severely constrained environments (i.e., at low 
settings of n) other approaches may be more attractive. 

Under certain conditions safe methods guarantee that the selected 
test suite detect any defects that retest-all would have. As we see 
in this study, prioritization nullifies this guarantee. In fact, we saw 
that safe-random(n) had fault ages greater than 1 and that some 
faults escaped detection completely. Still its average fault age and 
total effort were better than those of other methods under Model-
1. Under Model-2, only lru(n) did as well. As with minimization, 
analysis costs are high for safe-random(n), but have not been 
factored into this study. 

In terms of both fault age and total effort, lru(n) was competitive 
with other prioritization methods. One particularly interesting 
result was that the standard deviation of fault age when using 
lru(n) was less than that obtained from other methods. This 
appears to be because lru(n) always detected all faults long before 
the cutoff point. We assume that this is because lru(n) effectively 
cycles through the test suite eventually using each test case. We’re 
obviously intrigued by this result and believe that it supports our 
conjecture that historical information may be useful in test case 
prioritization. 

We are continuing this family of experiments. We plan to (1) 
improve our cost models to account for factors such as the 
overhead of each individual testing session and source code 
analysis costs, (2) extend our experiment to larger programs with 
a wider variety of naturally-occurring faults, (3) implement and 

Table-5: Median and Average Total Efforts by 
RTS Technique (Model-2) as a percentage of 

the Original Test Suite Size 

 median average 

safe 117.2 119.6 

retest-all 200 165.8 

min 51.7 56.4 

lru(5) 95.4 85.0 

lru(10) 98.5 84.2 

lru(20) 100 92.7 

rand(5) 132.1 145.3 

rand(10) 132.3 156.1 

rand(20) 123.9 149.4 

safe-rand(5) 62.6 83.3 

safe-rand(10) 59.0 88.6 

safe-rand(20) 77.1 96.0 

 
Figure-4: Distribution of Total Efforts for Model-2 



 

  

 

evaluate other history-based prioritization techniques such as 
those described in Section 4, and (4) compare these methods to 
other non-history-based methods described in the literature. 
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