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Abstract—Model-based GUI software testing is an emerging
paradigm for automatically generating test suites. In the
context of GUIs, a test case is a sequence of events to be
executed which may detect faults in the application. However,
a test case may be infeasible if one or more of the events
in the event sequence are disabled or made inaccessible by
a previously executed event (e.g., a button may be disabled
until another GUI widget enables it). These infeasible test
cases terminate prematurely and waste resources, so software
testers would like to modify the test suite execution to run only
feasible test cases. Current techniques focus on repairing the
test cases to make them feasible, but this relies on executing
all test cases, attempting to repair the test cases, and then
repeating this process until a stopping condition has been
met. We propose avoiding infeasible test cases altogether by
predicting which test cases are infeasible using two supervised
machine learning methods: support vector machines (SVMs)
and grammar induction. We experiment with three feature
extraction techniques and demonstrate the success of the
machine learning algorithms for classifying infeasible GUI test
cases in several subject applications. We further demonstrate
a level of robustness in the algorithms when training and
classifying test cases of different lengths.

Keywords-GUI testing; software testing; event based testing;
support vector machines; grammar induction; machine learn-
ing

I. INTRODUCTION

As graphical user interfaces (GUIs) become nearly ubiqui-

tous, researchers have proposed several methods for testing

GUIs. One such method is a directed-graph based model [1]

which supports automatic test case generation. The event-

flow model captures all possible event sequences in the

GUI; however, some event sequences may be prohibited

by state-based constraints [2], and thus the event sequence

which comprises a test case may be infeasible, meaning

that the event sequence contains at least one event which is

expected to be available at that point during execution but

the event is not allowed by the GUI’s state. An event could

be unavailable for a number of reasons, possibly because of

a bug in the GUI or because of a constraint between events

in the GUI specification.

Previous work by Huang et al. [2] used a genetic al-

gorithm to repair these infeasible test cases. The work in

the present paper takes an alternate approach and uses

supervised machine learning algorithms to predict which test

cases will be infeasible. We will use these algorithms to

make predictions by analyzing actual executions of real test

cases.

In this paper we present two methods for predicting

test case infeasibility: support vector machines (SVMs) [3]

and induced grammars [4]. The two classifiers show two

approaches: SVMs are known to be highly effective in

many different fields but may not necessarily reveal the

causes of infeasible test cases, whereas grammar induction

is considered to be a hard problem [5] but the results

could potentially yield human-readable results that allow the

software tester to identify the causes of infeasible test cases.

By predicting which test cases are infeasible, the software

tester may choose a course of action, such as removing

the predicted infeasible test cases before they are executed,

prioritizing the test suite, or examining the test cases to

determine why they are predicted to be infeasible.

SVMs are a family of supervised learning algorithms

for classification and regression analysis. SVMs construct a

maximum margin hyperplane to predict which binary label

should be applied; however, SVMs require that input data

points (i.e., test cases) be converted to real-valued vectors. In

Section III-A we discuss three feature extraction techniques

to construct real-valued vectors from test cases. Many people

consider SVMs to be one of the best off-the-shelf classifiers

currently available; for this reason we have applied it to the

present problem of classifying test cases.

Our other approach is to induce grammars from the

infeasible test cases and use them to classify other test cases.

In many cases it is likely that GUI test case generation

could be thought of as sentence generation from a grammar

G, where infeasible test cases would be generated from a

grammar G′ whose sentences are a subset of the sentences

generated by G. To see this, consider that the sequence of

events in a GUI test case must be valid sequences as defined

by the event-flow model [6], but an infeasible test case will

violate constraints in the GUI. (This assumes that events



will always be unavailable because of constraints among

events rather than due to external conditions such as a button

disabled at certain times of day.) Thus we would like to learn

the grammar(s) which generate infeasible test cases. (Note

that there may be multiple grammars that need to be learned

since there may be multiple constraints in the GUI.)

We evaluated each test case classification technique on

seven subject applications which contain realistic patterns of

infeasible event sequences. Overall both classifiers showed

promising results: on average across the subject applications

SVMs correctly classified up to 95% of the test cases

depending on the feature extraction algorithm and the test

case length, and induced grammars correctly classified up

to 80% of the test cases depending on the test case length.

However, grammar induction performed considerably slower

than SVMs which limited the amount of data we were able

to collect for grammar induction.

II. BACKGROUND AND RELATED WORK

We present the following outline of background material

on graph model-based GUI testing, and machine learning

techniques and software testing.

A. Graph Model-based GUI Testing

Our work focuses on classifying GUI test cases generated

from a graphical model, so we provide a brief discussion of

graphical models in GUI testing. Related work on automated

model-based GUI testing uses specifications and Finite State

Machines to automatically generate test cases [7], but here

we restrict our discussion to graphical models.

An event-interaction graph (EIG) is a model of a GUI

which represents all possible event sequences that can be

executed on the GUI. The EIG is a directed graph where

each node is a GUI event (such as a button, but not including

opening/closing menus or opening new windows) and an

edge between two nodes means that one event can be

executed immediately after the other. See Figure 1 for an

example GUI and its EIG.

After an EIG has been generated for a GUI, test cases

can be generated by walking the graph to produce sequences

of events. However, the EIG generated for a GUI through

GUI Ripping [1] may be only an approximation which does

not necessarily capture a complete or correct representation

of the GUI. Furthermore, the EIG does not capture state-

based relationships. Therefore, event sequences generated

from the EIG may contain infeasible sequences (i.e., there

is at least one event which the model expects to be available

but is actually unavailable/disabled at that moment during

sequence execution). Memon offers more information about

EIGs in [6].

Huang et al. [2] implemented a genetic algorithm to au-

tomatically repair infeasible test cases generated from EIGs.

However, this approach modifies the underlying test suite,

which may be preferred if the software tester needs a feasible

(a)

(b)

Figure 1. (a) A simple GUI. (b) The EIG for the GUI. Taken from Huang
et al. [2].

test suite, but it also may be undesirable if the test suite has

other properties the tester wishes to retain. Furthermore, this

approach requires repeatedly executing modified test cases

to determine whether they are infeasible, which potentially

slows down test suite execution by executing many times

more test cases than were in the original test suite. The

constraints which cause a test case to be infeasible may

change as the software evolves, faults are fixed, and new

faults are introduced.

B. Machine Learning and Software Testing

Many research endeavors, like the ones conducted by

Hoefel and Elkan [8], have been performed using supervised

machine learning algorithms. Several, like Chen et al [9],

have used several different classification approaches, of

which support vector machines (SVMs) are very popular and

are considered to be one of the best off-the-shelf classifiers

for supervised learning problems.

One common characteristic of many machine learning

techniques is that some data pre-processing must be per-

formed in order to provide the classifier appropriate features

from which to learn. One feature extraction method of

particular interest is pairwise combination generation. It is

often implemented for problems involving sequenced strings

as input. An example of research implementing this type of

transformation can be found in Liao and Noble [10], where

pairwise sequence combination similarity and support vector

machines are combined for homology detection.

Little work has been performed in the software testing

field using machine learning [11]; especially for predicting

the feasibility of test sequences. Briand et al. use deci-

sion trees to learn about relationships among conditions in

category-partition test suites in order to aid the software



tester in understanding the strengths and weaknesses of the

test suite [12]. Briand [13] also outlines the use of machine

learning for improved fault localization. Yilmaz et al. [14]

use classification trees for testing system configurations.

These models are built from a training set of system config-

urations with known failure/success outcomes.

Perhaps the most similar work is by Baskiotis et al. [11]

who developed a system called EXIST that retrieves feasible

paths on control flow graphs (CFGs). EXIST relies on an

initial labeling of the CFG and the use of a constraint solver.

CFGs differ somewhat from EIGs because constraints are

built into the CFG. Moreover, we would like a general

method to predict infeasible GUI test cases regardless of

the underlying model that generated them.

It is not immediately obvious which is the best technique

for classifying strings of sequential data. Other research

has similar goals to ours, but differs in key points: they

wish to predict events in the near future [15], work on

long sequences [16], learn from noisy data [17], learn a

single grammar [18], use machine learning to refine other

results [19], learn features from non-sequential data [4], or

use algorithms that make assumptions incompatible with our

data [20].

Grammar induction seems to be a promising approach

for learning infeasible event sequences, although grammar

induction is acknowledged to be a hard problem [5]. The

general idea is to learn a grammar G = (N,Σ, P, S) from a

set of data, where N is the set of nonterminal symbols, Σ is

the set of terminal symbols which are the lexical elements

of the language, P is the set of production rules which

define how sentences are constructed from terminals and

nonterminals, and S is the set of start symbols. If the exact

grammar is learned, then the language L of the data is

represented by L(G).

C. Support Vector Machines

Support vector machines (SVMs) are a set of related su-

pervised learning methods, which are popular for performing

classification and regression analysis using data analysis

and pattern recognition. Methods vary on the structure

and attributes of the classifier. The most commonly known

SVM is a linear classifier, predicting each input’s member

class between two possible classifications. A more accurate

definition would state that a support vector machine builds

a hyperplane or set of hyperplanes to classify all inputs in a

high dimensional or even infinite space. The closest values

to the classification margin are known as support vectors.

The SVM’s goal is to maximize the margin between the

hyperplane and the support vectors.

Support vector machines are very popular and many con-

sider them as the best off-the shelf classifier. Furthermore,

there are a wide selection of environments and toolboxes

that implement SVMs. For these reasons we chose to apply

SVMs to the problem of classifying infeasible test cases.

D. Grammar Induction

There are many types of grammars which vary widely

in their expressive power. Some of the least expressive

grammars are Regular Grammars; yet despite having com-

paratively little power, Regular Grammars in the form of

regular expressions are still an extremely powerful tool for

string processing. Researchers have inferred general regular

expressions from noisy sequences [17], and induced Regular

Grammars from XML documents to infer Document Type

Definitions [18].

Another type grammar is the Context-Free Grammar

(CFG), which is more expressive than Regular Grammars

[21] and could conceivably capture a wide variety of GUI

constraints. Some grammar induction techniques induce

CFGs [22], but CFGs may be too general for detecting

infeasible test cases. Ideally we would like to learn the

simplest possible model that explains our data, and as

explained in Section IV-A the constraints in our data can

all be modeled using regular grammars which are a subset

of CFGs [21].

III. METHODS

A. Support Vector Machines

We used the SVM implementation provided in Matlab

7.10.0.499, svmtrain() and svmclassify(), using a

Gaussian Radial Basis Function kernel with a default scaling

factor of 1. This method offers great classification flexibility

in that it is able to set more complex margins than linear

classifiers while not losing the kernel invariability in space

characteristic, from which polynomial classifiers suffer.

We applied SVM classifiers following standard procedures

for all machine learning techniques. It is commonly known

that machine learning techniques include a data modeling

phase, so that the data is shaped in a way that the algorithm

can work with and consequently obtain the best possible

results.

SVMs require that the data be real-valued vectors; how-

ever, test cases are sequences of IDs which need to be

converted to real-valued vectors. In order to identify useful

feature extraction algorithms to create the vectors, we imple-

mented three separate algorithms to generate three potential

SVM input vectors which we call Basic, Pairwise, and Full

Pairwise. We then compared the classification accuracy for

each type of input vector, which we discuss in Section V-C.

Having this in mind, the generation of the Basic, Pairwise,

and Full Pairwise vectors consisted of four stages.

The first stage handles the value assignment of the first

N vector attributes, where N is the number of different IDs

in the sequence. Index i in the resulting vector corresponds

to the number of times that event i appears in the test case.

The output of this stage is the N -dimensional Basic vector,

but this output is also used for Pairwise and Full Pairwise

vectors. For example, if we have a GUI with event IDs in

{0, 1, 2} and we have the original test case



0 1 2 1 2

then the Basic vector would be

1 2 2

In this step, we simply count the number of appearances of

each ID.

The second stage is an intermediate step which determines

all the possible pairwise combinations. In other words, we

create a vector P which lists all the possible combinations

of the available IDs by iterating from the lowest ID to the

highest. We exclude combinations of the same ID, i.e.,

22

Each event ID i will have N − 1 ordered pairs that start

with ID i, where N is the number of different IDs in the

GUI. For the input vector above, the resulting combinations

vector P would be:

01 02 10 12 20 21

The third stage then iterates through the input test case

counting all the appearances of each combination found

in vector P (e.g., counting the number of times that 0

occurs immediately before 1, the number of times 0 occurs

immediately before 2, etc.). Each count is appended to the

Basic vector, so that the N2-dimensional Pairwise vector

looks like:

1 2 2 1 0 0 2 0 1

where 1 2 2 is the original Basic vector and

1 0 0 2 0 1

are the counts of each pair in P that occurs in the test case.

The fourth stage iterates through the test case counting

all the appearances of each generated combination as well,

with one difference to the third stage: this run counts all the

times the second pair ID appears after the first pair ID in

the given test case. For example, for the pair 01, this stage

counts the number of times 1 occurs anywhere after 0 in

the test case. Likewise, this process is performed for every

pair. Each of these results is appended to the Basic vector as

well, so that the final N2-dimensional Full Pairwise vector

for the above test case would look like:

1 2 2 2 2 0 2 0 1

Basic, Pairwise, and Full Pairwise vectors were generated

for all test cases.

In our data, GUI event IDs may be in {0, 1, 2},
{0, 1, 2, 3}, or {0, 1, 2, 3, 4} depending on the program an-

alyzed (see Section IV-A). Thus, our transformed vectors

will have 9, 16, or 25 attributes respectively. Because the

length of the vectors will vary depending on the number of

distinct GUI event IDs, we will need three separate SVM

implementations for each vector size.

It is worth mentioning that none of the Basic, Pairwise,

or Full Pairwise vectors can accurately model consecutive

events with the same ID, such as the sequence

1 1 1 1 1

. Although in some GUIs it is possible that repeated events

result in an infeasible sequence, repeating an action in a

test case for our subject GUIs will not cause the test case

to become infeasible. A more general feature vector would

account for consecutive events with the same ID.

B. Grammar Induction

In our present application, the desired process is to esti-

mate the conditional probability that a test case is infeasible

given that it contains a certain event sequence (string of

events). We assume that infeasible events in a test case

are completely determined by the events that precede them,

i.e., there is some grammar G = (N,Σ, P, S)—where Σ is

the set of possible events in the GUI, and P characterizes

the constraints in the GUI—such that the language of

that grammar, L(G), is the set of infeasible test cases on

the GUI. Trivially, the set of all test cases is given by

T = L(Σ). Therefore, the set of feasible test cases is given

by L(Σ) \ L(G) = ¬L(G). These assumptions hold in our

subject applications; however, this may not be the case for

all real-world applications.

It follows that each test case t is a sentence which can be

generated by G. Therefore, we would like to learn a set of

rules so that we can correctly classify, for all test cases t in

a test suite T , whether t ∈ L(G). Clearly, N , Σ, and P will

vary depending on the GUI and its underlying application,

so a separate set of grammars will need to be induced from

each subject. Next we present a high-level description of the

training algorithm, followed by a more detailed psuedocode

algorithm.

We will learn a set of regular grammars Ri =
{r1, r2, . . . , rk} from each infeasible test case ti (with

1 ≤ i ≤ |T | = n), where each of r1 is a regular grammar

that has a high chance of matching only infeasible test

cases. Presently, if a test case matches any rule rj ∈ G =
R1∪R2∪· · ·∪Rn then we classify the test case as infeasible;

otherwise the test case is marked feasible.

The algorithm starts by using the test case as a regular

expression, and then iteratively modifying each regular ex-

pression by replacing specific events with general patterns.

When modifications no longer improve the quality of the

regular expression, it is added to the final set of regular

expressions.

Where the objective function f(r) is given by

f(r) =
|{t : r matches t ∧ t is infeasible}|2

|{t : t is infeasible}| · |{t : r matches t}|
. (1)

Thus, we are essentially estimating the probability

p(r matches t|t is infeasible)·p(t is infeasible|r matches t).



1: R← ∅
2: for all infeasible test cases t ∈ T do

3: l ← index of last event executed in t

4: new_regexs← ∅
5: new_regexs.push(subsequence of t from 0 to l)
6: while new_regexs 6= ∅ do

7: r ← new_regexs.pop()

8: for all event indices i ∈ r do

9: if i is not modified then

10: for all event e ∈ E do

11: q ← copy_of(r)
12: if e 6= q.index(i) then

13: q.index(i)← (#− e)∗

14: else

15: q.index(i)← (e)∗

16: end if

17: if f(q) ≥ f(r) then

18: new_regexs.push(q)
19: end if

20: end for

21: if no new rules added to new_regexs then

22: R.push(r)
23: end if

24: end if

25: end for

26: end while

27: end for

Figure 2. Algorithm to generate a set of regular expressions (regexs) that
identify infeasible test cases from the training test suite T from events
e ∈ E. f(r) is defined in Equation 1

Selecting regular expressions with a high objective value will

increase the likelihood that the regular expression will match

as many infeasible test cases as possible and as few feasible

test cases as possible. The above optimization technique is

a simple hill-climbing algorithm to find a local maximum.

Although this technique searches for regular grammars

that have a high probability of matching infeasible test cases,

it does not verify that the constraints in the grammars cause

test cases to be infeasible.

IV. EVALUATION

Below we describe our test case data and evaluation

methodology.

A. Test Case Data

We use the UNL.Toy.2010 data from the Comet group,

which is a joint effort between the E2 laboratory at UNL

and the GUITAR group at UMD1. This is the same data

used by Huang et al. for GUI test case repair [2].

The data is a set of test suites, where each test suite is

a set of test cases. Each test case of length n is composed

1http://comet.unl.edu/

of a string of n integer tokens which denote GUI events.

These are followed by a boolean token indicating whether

the test case is feasible, and a 0-based index denoting the

failure point (if the test case is feasible then the index is n).

For example,

1 0 3 2 4 F 3

is a test case of length 5 which is infeasible and failed on the

event at index 3 (which corresponds to event 2). All the test

cases in this data are of length 5, 10, 15, or 20. Test suites

are comprised of between 55 and 1303 test cases depending

on the covering array used to generate the test suite and the

number of events in the GUI application. GUI event IDs

may be in {0, 1, 2}, {0, 1, 2, 3}, or {0, 1, 2, 3, 4} depending

on the GUI application.

The test cases were generated from six different GUI

applications:

• 2cons: Clicking the Event 1 button disables the Event

2 button, and clicking any button other than Event 1

re-enables Event 2.

• 3cons: The same as 2cons, except Event 3 is disabled

by clicking Event 1 followed immediately by Event 2,

and clicking any other button re-enables Event 3.

• 2excl: Clicking the Event 1 button causes Event 2 to be

disabled for the remainder of the program execution.

• 3excl: The same as 2excl, except Event 3 is disabled

by clicking Event 1 followed immediately by Event 2,

and Event 3 remains disabled for the remainder of the

program execution.

• disb: Event 1 is always disabled.

• reqs: Event 3 begins disabled, but clicking Event 2

causes Event 3 to be enabled for the remainder of the

program execution.

• cmpd: This features the 2cons, 3cons, and reqs con-

straints all in one GUI.

All of these constraints can be modeled with regular

grammars. For example, feasible test cases for 2cons would

be given by the grammar ((# − Event1)∗(Event1)∗(#−
Event2)∗)∗.

The test cases for each of these applications were gener-

ated using covering array generation using a combinatorial

interaction technique [23]. Each subject application is de-

scribed by two variables: one for the CIT model and one

for the explicit constraints in the application.

The covering array file has the following format:

• The strength of testing (all t-way combinations of

events).

• The test case length (k events in the test case).

For example, if we are creating a 2-way test case of length

k = 5, the covering array would be abbreviated as t2k5. See

Huang et al. [2] for a full description of the applications and

the test case generation methodology.



B. Partitioning the Test Case Data

In order for the classification algorithms to learn to

classify feasible and infeasible test cases, the training data

must include both types of test cases. To ensure the training

data includes both feasible and infeasible test cases, we

partition the data as follows.

We create five pairs of training data sets Tr and testing

data sets Tt where for each pair x% of the test cases in the

test suite T are in the training data and (100−x)% of the test

cases are in the testing data (for x ∈ {10, 20, 30, 40, 50}).
We generate Tr and Tt from test cases TC ∈ T as follows:

1) Create the sets I = {tc ∈ T |tc is infeasible} and F =
{tc ∈ T |tc is feasible}.

2) If |I| = 1 (or |F | = 1) then add the test case in I (or

F ) to the set of training test cases Tr, and add x% of

the test cases in F (or I) to Tr and add the remaining

test cases to Tt; otherwise add x% of the I and x%

of F to Tr and put the remaining test cases in Tt. In

otherwords, put x% of the feasible test cases and x%

of the infeasible test cases in Tr and the remaining

test cases in Tt, and ensure that Tr contains at least

one feasible test case and at least one infeasible test

case.

Other than the approach described above, no attempt was

made to randomize the assignment of test cases to the

training or testing data sets.

The decision to include at least one test case of each type

(if possible) is justified because when a software tester is

executing a test suite, there is no need to prioritize test cases

unless it is known that infeasible test cases exist, and this

can only be known at execution time. As long as I is empty

there is no need to run a classifier.

C. Experimental Design

We evaluated our algorithms by addressing the following

questions:

• Question 1: Determine the effect of training data set

size on classification errors.

• Question 2: Determine whether a classifier trained on

one test case length can correctly classify test cases of

a different length.

It is worth mentioning that application 3excl does not have

t2k5, t2k10, t2k15, and t2k20 covering arrays. Therefore,

when computing the average results, only t3k5 and t3k10

include 3excl.

D. Question 1

To answer Q1, we trained the SVM classifiers on a

percentage of the test cases for each cover array and each

GUI application, and then used the remaining test cases to

test the classification error. The percent size of the training

set was 10%, 20%, 30%, 40%, and 50% of the test cases for

that GUI application and covering array. We then averaged

Figure 3. The plot shows the results for the average results of the Basic
algorithm’s performance.

Figure 4. The plot shows the results for the average results of the Pairwise
algorithm’s performance.

the percent correct classification across all GUI applications.

This data is shown in Figures 3, 4, and 5.

We attempted to test the effect of training data set size

on the effectiveness of the induced grammars; however,

the training algorithm was too slow in all cases except

when training on 10% of the data. Moreover, we did not

have sufficient time to allow the algorithm to finish training

on test cases longer than length 10. Figure 6 shows the

average results across all GUI applications for training and

classifying t2k5 and t2k10.

Figure 5. The plot shows the results for the average results of the Full
Pairwise algorithm’s performance.



Figure 6. The average correct classification rate across all GUIs for induced
grammars. The size of the training data is fixed at 10% of the data.

Figure 10. A graph of the average performance of the induced grammars
for two covering arrays as training data vs. the remaining array as test data.

E. Question 2

To answer Q2, we trained the SVMs on one data set with

test cases of a certain length and then tested the classifier

on test cases of different lengths. The classification rates are

shown in Figures 7, 8, and 9. In all cases the SVMs used

30% of the data during the training phase and 70% during

the testing phase, based on the results from Question 1.

We performed a similar experiment with grammar induc-

tion, but using 10% of the data for training and 90% for the

testing phase. These results are shown in Figure 10.

V. RESULTS

A. Question 1

From Figures 3 and 4 we see that there is a moderate

improvement in classification rate as the SVMs with Basic

and Pairwise feature extractions train on larger data sets,

but only the SVM with Pairwise shows any continued

improvement when training on more than 30% of the data

sets. In Figure 5 we see the Full Pairwise SVM has a large

variation in its performance and has no clear pattern as

we change the size of the training data set. In all feature

extraction techniques we mostly see correct classification

rates at or above 75%.

The data collected for the induced grammars is limited,

but from Figure 6 we see that even when training on only

10% of the data it correctly classifies the data close to 80%

of the time.

From these results we concluded that we should use 30%

of the data during the training phase for the SVMs, and 10%

of the data during the training phase for inducing grammars.

This answered Question 1.

B. Question 2

For the SVMs, we notice a general trend where the

classifiers perform best when they are training and testing

on data of similar lengths. Due to lack of data we are unable

to draw general conclusions for the induced grammars, but

we can say that for the data shown in Figure 10 the grammar

induction performs above 70% correctly in both cases, but

the difference between the two sets of trained grammars is

10%.

This answered Question 2, and shows that the SVM and

feature extraction methods are moderately robust to changes

in test case length, despite the fact that the values in the

feature vectors are highly sensitive to the test case length.

C. Discussion

We have observed encouraging results for Question 1.

This demonstrates the effectiveness of machine learning

techniques in general, and SVMs and grammar induction

in particular, for predicting test case feasibility. As stated

previously, determining infeasible test cases is difficult for

known automated software testing tools. This work offers

the community an innovative and effective method to help

solve this complex problem.

The classification rates shown in this paper are an av-

erage across several GUI applications with different event

constraints. The classification results remain high despite

this variation, which demonstrates a robustness across GUI

applications.

SVMs using Full Pairwise feature vectors demonstrated

results that are more chaotic than the Basic and Pairwise

feature vectors, but despite this the classification results were

still high in many cases. Overall, however, simple feature

extraction techniques may be equally as effective as more

complex techniques while providing more consistent results.

Some test suites have a very high density of infeasible test

cases; in some cases close to or equal to 100%. This is likely

caused by the simple nature of the GUI applications, which

have between three and five different events. This greatly

increases the likelihood that longer test cases will attempt

to execute an infeasible event sequence. These two features

could potentially affect the validity of our results since

this may not be indicative of real-world GUI applications.

Furthermore, if a test suite contains only infeasible test cases

then the classifier should trivially correctly classify all test

cases in the test suite, which would cause the classifier to

perform better on average than it would in a more realistic

scenerio.



Figure 7. A graph of the average performance of the Basic algorithm for each covering array as training data vs. the remaining arrays as test data.

Figure 8. A graph of the average performance of the Pairwise algorithm for each covering array as training data vs. the remaining arrays as test data.

The classifiers yielded unexpected results when training

on test cases of a different length than they were classifying.

At first glance, it seems unlikely that SVMs would be able to

perform well under these circumstances given that the output

of the feature extraction algorithms is highly dependent on

the test case length. The results demonstrate that SVMs with

Pairwise feature extraction are robust to small changes in test

case length between the training set and the testing set, but

large differences may result in unsatisfactory results.

There are some limitations to these methods. First, as

mentioned in Section III-A, the feature extraction algorithms

do not model consecutive events with the same ID. This may

affect the robustness of the SVM approach if the subject GUI

has a constraint where one button may not be pressed twice

consecutively (e.g., pressing “Save” and then “Save” again).

Second, the grammar induction algorithm searches for

regular expressions that have a high correlation with infeasi-

ble test cases. Because regular expressions are an implemen-

tation of regular grammars, the learned regular expressions

cannot express complex constraints such those modeled by

context-free grammars. Furthermore, the regular expressions

merely correlate with infeasible test cases; they are not

demonstrated to cause infeasibility.

Third, the grammar induction algorithm cannot learn

generalized regular expressions such as (e∗(# − e)∗)+.

However, the algorithm in Figure 2 can learn e∗(# − e)∗,

and if a test case is matched by the regular expression

(e∗(#− e)∗)+ then it will also be matched by e∗(#− e)∗.



Figure 9. A graph of the average performance of the Full Pairwise algorithm for each covering array as training data vs. the remaining arrays as test data.

Fourth, our data sets were generated from relatively

simple applications. Although convenient for this initial

research, future work should investigate the scalability of

these techniques with more complex GUIs. In particular, it

would be important to consider subject GUI applications that

have the same density of infeasible event sequences as we

see in real applications.

VI. CONCLUSION

In this paper we have demonstrated the effectiveness of

using two supervised learning algorithms for classifying

infeasible test cases: support vector machines, and induced

grammars. The results of the induced grammars are limited

due to the computational costs, but they demonstrate the

effectiveness of this approach. One advantage to grammar

induction is that the induced grammars can show software

testers the types of event sequences that cause infeasible

test cases. An optimized grammar induction algorithm could

provide overall good classification results while enabling the

software tester to learn about the constraints in the GUI.

Furthermore, the grammar induction algorithm described

here is very limited in the types of constraints it can discover

in the data. Future work could provide a faster algorithm that

can induce more complex grammars.

Support vector machines were very effective depending

on the feature extraction algorithm. The Pairwise algorithm

performed the best for our subject applications, and even

demonstrated robustness when training test cases of one

length and classifying on test cases of a different length.

The results have demonstrated that classifying test case

feasibility is possible. The behavior of the application under

test and the consequent understanding of its nature could

be proven very useful when selecting the appropriate clas-

sification tools. Investigation in this topic would deliver

results that save time and resources, thereby extending the

availability of resources for testing.
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