
Improved Bug Reporting and Reproduction through Non-intrusive GUI Usage
Monitoring and Automated Replaying

Steffen Herbold, Jens Grabowski, Stephan Waack
Institute of Computer Science

University of Göttingen, Germany
{herbold,grabowski,waack}@cs.uni-goettingen.de

Uwe Bünting
Mahr GmbH Göttingen

Carl-Mahr-Str. 1, 37073 Göttingen, Germany
uwe.buenting@mahr.de

Abstract

Most software systems are operated using a Graphical
User Interface (GUI). Therefore, bugs are often triggered
by user interaction with the software’s GUI. Hence, accu-
rate and reliable GUI usage information is an important
tool for bug fixing, as the reproduction of a bug is the first
important step towards fixing it. To support bug reproduc-
tion, a generic, easy to integrate, non-intrusive GUI usage
monitoring mechanism is introduced in this paper. As sup-
plement for the monitoring, a method for automatically re-
playing the monitored usage logs is provided. The feasibil-
ity of both is demonstrated through proof-of-concept imple-
mentations. A case-study shows that the monitoring mech-
anism can be integrated into large-scale software products
without significant effort and that the logs are replayable.
Additionally, a usage-based end-to-end GUI testing ap-
proach is outlined, in which the monitoring and replaying
play major roles.

1. Introduction

Most of today’s software applications are driven by
the interaction between the users and the Graphical User
Interface (GUI) of the software. Many bugs are triggered
as the result of a chain of interactions between the user and
the GUI. An important part of resolving bugs is to replicate
them and understand by what they are caused. Therefore,
detailed information about the interaction with the GUI is
an important means of the bug fixing process [1]. How-
ever, in most cases, the person who discovers a bug and the
one fixing it are not the same. When customers experience a

bug, they hopefully report it to the developers. The first task
of the developer is to reproduce the bug in order to confirm
it. The difficulty of this task depends to a large degree on
the available information about the customers interactions
with the application that triggered the bug. However, the
manual listing of the exact interactions with the application
is a tiresome and error-prone procedure. Therefore, a cus-
tomers bug report usually lacks information about detailed
user input. One way to resolve this are automatically gen-
erated reports that include the detailed user inputs and that
can be attached to bug reports.

In this paper, a generic usage monitoring mechanism is
introduced that does not require significant change of source
code, regardless of the size of the application that shall be
monitored. Thus, it can be integrated into already existing
applications at low costs and with little manual effort. The
mechanism itself resembles the capture phase of capture/re-
play approaches for GUI testing [6] in principle. However,
there are several key features of the monitoring approach
presented in this paper that make it unique. The presented
mechanism can be integrated directly into the software and
monitor the usage from the inside, in contrast to recorder
tools used for capture/replay that are seperate applications.
It can only monitor the applications it has been integrated
into in comparison to recorder tools that can potentially
monitor any application in the system. While this seems
like a drawback, it actually allows the deployment of the
monitoring to customers without raising too many security
concerns.

Additionally, no assumption about optional properties of
GUI objects are made. For example, the Java1 tool Abbot/-
Costello for testing Java GUIs assumes that each of the GUI

1http://www.oracle.com/java

components has a symbolic name. Another key feature of
our approach is that not only user interactions like mouse
clicks and keyboard input are monitored but also important
internal commands, i.e. part of the softwares internal com-
munication. This further enriches the information for de-
velopers who look for possible bugs, as it allows them to
analyze whether commands are sent as expected.

By integrating this usage monitoring mechanism into de-
ployed software, continuous monitoring is possible. In this
case, there always exists a detailed log of the user interac-
tions when a bug occurs. Customers only have to supply the
log instead of manually explaining what exactly they did.
To manage the size of the logs circular buffering is used,
i.e., information is only stored for a fixed amount of time
and is removed afterwards. The amount of time may vary
depending on the software under surveillance. The draw-
back of using circular buffering is that the cause for failures
might be to far in the past and is already removed.

To further support for maintainance process, an auto-
mated method for the exploitation of the monitored usage
data is presented in this paper. If a bug is reproduced and
verified, it needs to be specified how exactly it can be re-
produced. In the best case, developers create an automated
script that triggers the bug. This script can then be used as
a test case to evaluate if the bug has been fixed. To fur-
ther support bug reproduction, an automated replay mech-
anism is defined. In general, this replay is similar to that
of existing capture/replay techniques. The aim is not only
to accuratly replay the monitored usage logs, but also to be
independent of absolute screen coordinates. While this is a
rather simple task for some GUI interactions, for others it
can be difficult as they rely heavily on screen coordinates,
i.e., the location of the mouse pointer and GUI objects on
the screen.

On the one hand, to replay a button click, only the button
needs to be located, afterwards the click can be performed.
On the other hand, consider dragging a scrollbar with the
mouse. Only locating the scrollbar and sending messages
that it has been clicked is not sufficient, as the mouse move-
ment during the clicking needs to be accounted for. How-
ever, the mouse movement depends on screen coordinates.
In this paper, the abstraction from mouse movement us-
ing internal messages is presented. This is possible as the
mouse movement does not move the scrollbar directly, but
it rather triggers the generation of internal messages of the
program that cause the movement. It is shown, how these
indirectly generated messages can be used to replay usage
of the application without relying on screen coordinates.

Both mechanism have been prototypically implemented
and used in a case study to demonstrate their feasibility.

The contributions of these paper are twofold: 1) a
generic, easy to integrate, non-intrusive method for moni-
toring user actions; 2) a novel replay mechanism for previ-

ously monitored user actions.
The structure of this paper is as follows. The monitor-

ing and the replay mechanism are introduced in Sections 2
and 3. In the following, a proof-of-concept implementa-
tion is introduced in Section 4. Afterwards, Section 5 intro-
duces a case study performed to validate the feasibility of
the monitoring and replaying mechanisms. In Section 6 a
usage-based end-to-end GUI testing framework is outlined
that will be the defined and implemented as future work.
In Section 7 the related work is discussed. Finally, in Sec-
tion 8 the paper is concluded and an outlook on future work
is given.

2. Passive GUI Usage Monitoring

A primary objective of this work is the design of a
generic and easy-to-integrate GUI usage monitoring mech-
anism that is non-intrusive and can thus be deployed to cus-
tomers. To this aim, the mechanism needs to be able to log
all user interactions with the GUI. The mechanism devel-
oped as part of this work is aimed at Microsoft Windows
programs using the Microsoft Foundation Classes (MFC)2

as target platform. We believe the mechanism is also adapt-
able to other platforms, such as X-server based GUI-kits, as
they provide similar mechanisms.

Before the monitoring concept itself can be introduced,
two key features of the Windows Application Programming
Interface (API) must be explained: window handles and
messages. Each GUI object in Windows, be it an edit box,
a button, or the mainframe of a window has a unique win-
dow handle, referred to as HWND. The HWND is not only
unique for the GUI process, but system-global, i.e., no two
GUI object in the whole system have the same HWND.
When a GUI object is created it is assigned a free HWND.
After its destruction the HWND may be reused. There-
fore, the “same” GUI object will very likely have different
HWNDs in different program executions.

Messages are used for the communication with GUI ob-
jects. This includes communication of the operating system
with GUIs, communication between the programming logic
and the associated GUI as well as communication between
GUI objects. The messages have a type and two parameters.
How the parameters are used depends on the message type.
To link the messages to a specific GUI object, HWNDs are
used. Examples for messages are WM_CREATE, which is
sent when an GUI object is created or WM_LBUTTONDOWN,
which is sent when the left mouse button is pressed down.
The messages that are relevant for this work can be roughly
divided into three categories: 1) creation, destruction, or al-
teration of GUI objects; 2) user interaction with the GUI; 3)
internal commands.

2http://msdn.microsoft.com/en-us/library/d06h2x6e.aspx

Mail Application

New Mail
Generates Generates

WM_LBUTTONDOWN
WM_LBUTTONUP
to 0x100ABC

HWND 0x100ABC

HWND 0xB00A1F

WM_COMMAND
to 0xB00A1F

Figure 1. Messages generated by a button click

The first category enriches the log with information
about the current state of the GUI, e.g., which GUI ob-
jects exists, their parents, or whether they are modal3.
Developers can use these informations to analyze if win-
dows have been created and destroyed properly. Examples
for such messages are WM_CREATE, WM_DESTROY, and
WM_SETTEXT, which are sent when a GUI object is cre-
ated, destroyed or its title is changed respectively.

The second category consists of messages generated by
the operating system as a result of mouse or keyboard ac-
tivity by the user. This includes mouse movement, mouse
clicks, and keyboard input. Examples of such messages
are WM_LBUTTONDOWN for “left mouse button down”, or
WM_KEYDOWN when a key is pressed. The latter uses pa-
rameters to indicate which key has been pressed. For most
software, the mouse movement itself has no effect and it
is rather driven by mouse clicks and keyboard input only.
Therefore, mouse movement is often irrelevant for the us-
age monitoring. Thus, the logging of mouse movement is
optional, as it generates lots of messages clogging the log.

Monitoring messages of the third category is the strength
of the mechanism. The internally sent messages are used for
communication among GUI objects. For example, a button
telling its parent window that it has been clicked. Inter-
nal commands are, e.g., WM_COMMAND messages. These
messages are used by the application’s command handlers
to control its activity. By logging internal commands, it is
not only possible to record how the user interacted with the
GUI, but also which actions were triggered internally as a
result. This allows developers to check if messages are sent
as expected or if messages are adressed wrongly or missing.
Monitoring of this kind of message is a crucial feature ex-
ploited by the replay mechanism outlined in the following
section.

In Figure 1, a simple example of the message genera-
tion and sending process is shown. Consider a click on a
New Mail button. The operating system then generates two
messages, WM_LBUTTONDOWN and WM_LBUTTONUP and
sends them to the button using its HWND. As a reaction to

3A dialog blocking the rest of the application. Detailed explanation at
http://msdn.microsoft.com/en-us/library/aa984358.aspx

these messages, the button generates a WM_COMMAND mes-
sage to its parent, i.e., the Mail Application. The applica-
tion then handles the command accordingly, i.e., initiates
the procedure to write a new mail. This example shows how
internal messages are generated indirectly as a result of user
actions. Current GUI usage monitoring tools only capture
the WM_LBUTTONDOWN and WM_LBUTTONUP messages,
the novelity of our approach is to also capture the generated
WM_COMMAND message.

The monitoring concept itself is based on message
hooks4. A hook can be placed in the message processing
queue of a process to intercept messages. Each process has
one message processing queue, that is used by all GUI ob-
jects of the process. Therefore, hooks provide an elegant
method to monitor the internal communication of a process
in a centralized way, without altering the rest of the source
code. The hook procedure has two tasks.

The first is to determine which messages are logged.
Simply logging all messages is infeasible as windows appli-
cation send thousands of messages internally, most of which
are irrelevant for the purpose of usage monitoring. For ex-
ample, most widgets are constantly polled for their name
with the WM_GETTEXT message. This rapidly amounts to
thousands of such messages. However, these messages are
irrelevant for the monitoring. If all of these messages were
to be logged, it would produce huge amounts of data and
the applications performance would drop dramatically. A
small experiment where all messages were logged and in
which only a small test application was started an two clicks
performed already produced 13 MB of log data, and the ap-
plication was slowed down to a degree where using it was
infeasible. Therefore, the hook procedure must implement
a message filter and record only the three categories of mes-
sages described above. This filter is a simple pass-through
filter based solely on the message type: messages of the
three categories described above, like WM_LBUTTONDOWN
and WM_COMMAND, pass through; all other messages, like
WM_GETTEXT, are filtered from the logging. With this fil-
ter in place, the same experiment only produced 10 KB of

4http://msdn.microsoft.com/en-us/library/ms632589.aspx

Compose Mail

(no subject)

Send

Message:

Subject:
HWND: 0x001AB2

Title: “Compose Mail”

Class: Dialog

HWND: 0x001AB5

Title: “Subject:”

Class: Label

HWND: 0x001AB7

Title: “Message:”

Class: Label

HWND: 0x001AB6

Title: “(no subject)”

Class: TextField

HWND: 0x001AB8

Title: “”

Class: TextField

Window Tree Representation

HWND: 0x001AB9

Title: “Send”

Class: Button

Figure 2. A dialog and its window tree representation

log data and the application performed normally.
The second task of the hook procedure is not only to log

the messages themselves, but include information essential
to them. This can be additional information about the inter-
nal state of the program or the GUI object that a message
has been sent to. For example, when a GUI object is cre-
ated, its title is not included in the WM_CREATE message.
Instead, the title must be obtained by querying the created
object.

3. Replaying User Actions

In the following, a replay mechanism based on logs gen-
erated by the previously defined usage monitoring mech-
anism is introduced. The replay is robust to GUI layout
changes, resizing operations, and different screen resolu-
tions, because it does not depend on screen coordinates.
This improves the replayability of logs recorded on differ-
ent work stations. It will be defined how operations that
usually depend upon screen coordinates can be performed
in an indirect way without relying on the coordinates. The
mechanism can be split into two main components: a repre-
sentation of the software’s GUI state extracted from the log
and the replaying of actions itself.

The internal representation of the GUI state is used as a
means to match the GUI objects observed during the mon-
itoring to the GUI objects during the applications replay.
The state is represented in form of a window tree, where the
GUI objects are represented as nodes. The parent/child re-
leationships between the GUI objects are represented by the
tree’s structure: top-level windows are children of a virtual
root node; all other GUI objects are children of their respec-
tive parent. As each GUI object has a unique HWND, the
HWND is used as an ID for the nodes in the tree. In Fig-
ure 2 an example of a window tree for a dialog is given. The
elements of the dialog are its children in the window tree.
For the creation and maintainance of the window tree the
messages of the first category are used, i.e., those related

to the creation, alteration, and destruction of widgets. Each
time such a message is found in the log, the window tree
is adapted according to the message and thus remains con-
sistent. For example, if a WM_CREATE message is found,
the created GUI object is added to the tree. The nodes of
the tree contain information about the widget they repre-
sent, like the name and the class of the GUI object. If infor-
mation about a GUI object in the log is required, it can be
looked up in the window tree using its HWND. The window
tree provides a means to have a dynamic representation of
the GUI, as it always describes the state of the GUI “as is”
at all times.

The principle of replaying is rather simple: execute ev-
ery recorded user action exactly once and in the order they
have been recorded. As simple as this sounds, especially
the “exactly once” part is problematic. Consider “exactly”
as “at least once” and “at most once” at the same time.
To achieve “at least once”, for every action a replayable
message (or sequence of messages) that triggers the ac-
tion must be determined. If simply all messages are re-
played, this citerium is certainly fulfilled. However, if all
messages were to be replayed, some actions would almost
certainly be triggered more than once. The reason for this
are two characteristics of the messages. First, there are
many internal messages that are automatically generated.
To replay these messages may result in unwanted behav-
ior as the message would be duplicated. Second, a mes-
sage generated as a result of a user action almost certainly
triggers further actions, as it is depicted in Figure 1. If
both the user action and the triggered action were to be re-
played, the result of the action would be executed twice.
In the example, the WM_COMMAND message would be sent
twice. Therefore, the “at most once” part would be vio-
lated. Another remedy would be to restrict the replay only
to the messages directly resulting from user actions, i.e.,
WM_LBUTTONDOWN, WM_KEYDOWN and so on. As these
messages often depend on screen coordinates, this would
violate one of the goals of the replay mechanism. Thus, a

sophisticated method to select which messages must be sent
is necessary to meet the requirements.

To meet the principle of “exactly once”, it is translated to
“one action triggered per user interaction message”. There
are two general cases: either the user interaction can be di-
rectly replayed without relying on coordinates or not. In
the first case that is exactly what the replay does. The sec-
ond case is rather complex. If a non-replayable message is
found, the replay switches into the state “an action must be
replayed, but it is not known which yet”, including where it
should have been executed. No action is executed yet. In-
stead, the replay just continues evaluating the logged mes-
sages and looks for actionable messages, e.g., command
messages. Such actions are normally triggered directly as
a result of the user input. Therefore, to perform a user ac-
tion without the user interaction, the actionable message is
replayed instead of the interaction. The prime examples for
actionable messages are WM_COMMAND messages. In case a
WM_COMMAND is found, it can be checked if the HWND of
the command’s source is the same as the HWND where the
user action occured. If this is the case, the appropriate ac-
tionable message is found and it is sent to emulate the user
action.

4. Proof-of-Concept Implementation

The mechanism defined for usage monitoring and re-
playing of message logs defined in sections 2 and 3 are im-
plemented in two prototypes. In the following, these proto-
types are introduced and important implementation details
are discussed.

4.1. Monitoring

The monitoring prototype was designed to be easily inte-
gratable into any Windows application. To reach this goal,
it has been implemented as an independently loadable com-
ponent in a Dynamic Link Library (DLL)6. The loading of
a DLL is a simple task with little manual effort. Thus, a
DLL fits the requirement “easy-to-integrate”. The interface
of the DLL is kept simple and consists only of functions to
enable/disable the monitoring, which further simplifies the
integration of the monitoring.

The monitoring writes the logged information as textual
XML snippets. For each logged message a msg-node is
added to the end of the log. The type of the message is
stored as an attribute of the node. Each message can have
an arbitrary number of param nodes as children to store

5The message types, like WM CREATE are actually only C++ prepro-
cessor defintions, for example, #define WM CREATE 1

6http://support.microsoft.com/kb/815065/EN-US

additional parameters important for the message. The pa-
rameters themselves have two string attributes, containing
the type of the parameter and its value. In Figure 3, an
exemplary log excerpt is depicted. It shows the results of
a click with the left mouse button. After the messages
WM_LBUTTONDOWN and WM_LBUTTONUP for the mouse
click itself, a command message is generated as result of
the click. As it can be seen in the source parameter of
the command message, the source of the command is the
same as the HWND of the GUI object that was clicked.
This command triggers the creation of a new window. There
are four parameters recorded with the message that describe
the properties of the created window: its HWND, its par-
ents HWND, its resource ID, and its class. These parame-
ters are not the same as the parameters of the WM_CREATE
message during the program execution. For example, the
window.parent.hwnd parameter is determined using
the GetParent() function of the Windows API. The logs
themselves are stored as a time-depending circular buffer,
i.e., after a user-defined amount of time, the monitored data
is destroyed.

To wiretap the internal message communication, hooks
are used to intercept messages. The proof-of-concept
implementation uses two hooks: WH_GETMESSAGE and
WH_CALLWNDPROC. The usage of both hooks is manda-
tory, as both hooks do not intercept the whole internal com-
munication related to user interaction, only parts of it. How-
ever, the messages recorded by these hooks are not disjunc-
tive. Therefore, some messages are either recorded redun-
dantly or a message filter needs to be employed. As the
latter would reduce the perfomance of the monitoring, the
messages are recorded redundantly to keep the monitoring
lightweight. Instead, the replay needs to be able to identify
and ignore redundant messages.

The two hooks are process hooks, i.e., they can only in-
tercept messages that are sent to the process that created the
hook. Therefore, it is not possible to accidentally monitor
other applications. This is in contrast to using system-global
hooks that can intercept all messages. While it might seem
prudent to use global hooks for usage monitoring, as to “not
miss anything”, there are two important reasons for using
process hooks. The first is that global hooks decrease the
performance of the whole system, as each and every mes-
sage will be processed by it. Secondly, global hooks are less
likely to be accepted by customers. They can potentially
monitor the whole system (including all keystrokes!), which
might be looked upon as a security risk. Of course, the
monitoring of only the target application itself also raises
security and privacy concerns. However, the implementa-
tion provides functions for enabling and disabling the mon-
itoring at any time. Thus, a configuration dialog can pro-
vide users a simple means to disable the logging to protect
their privacy or to not raise security concerns and only en-

<msg type="513">

 <param name="window.hwnd" value="919280"/>

</msg>

<msg type="514">

 <param name="window.hwnd" value="919280"/>

</msg>

<msg type="273">

 <param name="window.hwnd" value="330554"/><param name="command" value="31067"/>

 <param name="source" value="919280"/>

</msg>

<msg type="1">

 <param name="window.hwnd" value="657830"/><param name="window.parent.hwnd" value="789102"/>

 <param name=”window.resourceId” value=”1034"><param name="window.class" value="#32770"/>

</msg>

WM_LBUTTONUP

WM_LBUTTONDOWN

WM_COMMAND

WM_CREATE

Figure 3. A listing of messages generated by a mouse click5

abling it if they encounter problems with the application.
Furthermore, the circular buffering can be used to prevent
long-term data about users, e.g., by setting it to one day.

4.2. Replay

The replaying prototype is implemented as a stand-alone
command line application. To process message logs, event-
based SAX7 parsing is used. The messages are handled
one at a time without lookahead. Messages of the types
WM_CREATE, WM_DESTROY, and WM_SETTEXT are used
to maintain the window tree. The tree node of each GUI
object stores its HWND, name, class, resource ID, and
whether it is a modal dialog.

When a user interaction is found in the log, the tool
decides if it can be replayed directly or if it must be re-
played indirectly using actionable messages. This decision
depends on the type of user interaction and the GUI object it
has been performed on. When this heuristic decides to send
a message – be it a user interaction or an actionable message
– the PostMessage() function of the Windows API is
used. It provides means to send messages to any GUI ob-
ject in the system, given its HWND. As the function sends
messages asynchronously, the replay tool pauses after send-
ing a message for 500 miliseconds to prevent flooding the
application that is target of the replay with (premature) mes-
sages. Timing the delays more accurate, is not supported by
the prototype.

To obtain the HWND of the target GUI object, the win-
dow tree is used. This is done by matching the ancestry
of the target GUI object to the windows currently exist-
ing in the system. To this aim, the EnumWindows() and
EnumChildWindows() procedures of the Windows API
are used. The EnumWindows() procedure enumerates all

7http://www.saxproject.org

Equal attributes Score

resource id, name, class 6
resource id, name 5
resource id 4
name, class 3
name 2
class 1
– 0

Table 1. Scoring function

top-level GUI objects, the EnumChildWindows() pro-
cedure enumerates all child objects of a given GUI object.
To match the windows, the ancestry is traversed from par-
ent to child and at each level a score is assigned to the enu-
merated windows. The score depends on the GUI objects
resource ID, name, and class. The scores are depicted in Ta-
ble 1. On the top-level and for modal windows, all currently
existing top-level windows are enumerated. Otherwise only
the child objects of the previously found GUI objects with
the highest score are considered. If the score is lower than 3
a warning is logged, as the similarity is rather small re-
sulting in possible errors, e.g., if only the name “Ok” is
matched. If the score is 0, there is no existing GUI object
that matches target GUI object and the replay aborts with
an error.

The proof-of-concept implementation of the replay
mechanism only supports a subset of user interactions with
the system. This includes actions performed on buttons, ra-
dio and check boxes, edit boxes, slider, tool bars, scroll bars
with both mouse and keyboard input. Furthermore, system
commands based in keyboard input are supported, e.g., the
popular “Alt+F4” key combination used to close applica-
tions. Interaction with menus is only partially supported.

Only distinguishable
by coordinates

Figure 4. Toolbar

It is possible to trigger actions from menus, e.g., open an
about box by clicking on “Help” → “About”. However, the
replay does not actually open the menu, instead only the
action, i.e. open the about dialog, is performed.

The case of clicking on tool bars exemplifies the strength
of using internal messages. Normally, the tool bar resolves
which icon has been clicked using the screen coordinates of
the mouse during the click and thereby determines the ac-
tion. The tool bar icons themselves have no identifiers like
the HWND (see Figure 4). Thus, replaying tool bar actions
normally requires screen coordinates. However, clicking on
a toolbar triggers an internal message, e.g., WM_COMMAND
that can be observed and used to replay the action without
reliance on screen coordinates.

5. Case Study

As part of a cooperation with Mahr GmbH Göttingen
(Germany), the usage monitoring and replay prototypes
have been tested with the software MarWin. MarWin is a
large scale industrial software platform, designed to be the
basis of software products for both existing and future mea-
suring devices in the field of dimensional metrology. It is
written in C++ and consists of more than 2 million lines of
code. Several hundreds of products based on MarWin are
shipped each year. The software is subject to continuous
development and long-term evolution.

The foremost goal was the integration of the usage mon-
itoring prototype into the software. The first step for the
integration was to load the DLL that implements the mon-
itoring and to enable logging at the start of the application
and afterwards to disable the logging and to unload the DLL
at its termination. Including error checking, only 15 lines
of code needed to be added to achieve this. Afterwards, the
usage monitoring is fully functional. The second part of
the integration into MarWin was to utilize an already exist-
ing tracing mechanism. The log file already in place was
to contain the additional information. The resulting log is a
mixture of trace messages and usage information. To differ-
entiate between the two, the prefix “UL:“ is used to identify
usage information. For this purpose, a patched version of
the monitoring DLL was created. As only the actual writ-
ing of the information needed to be modified, the changes

were also minimal with 12 lines of code. Altoghether, only
27 lines of code needed to be modified to fully integrate the
usage monitoring into an industrial software.

To determine the impact of the monitoring on the per-
formance, we modified version of the monitoring DLL, to
count the number of messages received (before filtering),
the number of messages logged (after filtering) and to mea-
sure the time consumed by the monitoring. In an experi-
ment, 64 user actions were performed. A total of 20.221
messages were received of which 506 were recorded. The
time consumed for the monitoring was 1361 milliseconds.
In average, the time consumed to record a message is about
2.7 milliseconds and 21 milliseconds per action. The size of
the generated log was 139 Kilobytes. These numbers show
the importance of the message filtering, as only 2.5% of the
messages are actually recorded. Furthermore, the average
time per action is with 21 miliseconds very low. Thus, the
monitoring does not impact the performance negatively.

The second goal was to validate the replaying mech-
nanism with large-scale industrial software. In many as-
pects, such software is different from small-scale projects
laboratory projects. With regard to GUI testing, there are
many more widgets, which makes locating them for the
replay more difficult. Furthermore, the widgets are costu-
mized to a higher degree and thus deviate more from stan-
dard examples. Even so, the proof-of-concept implemen-
tation of the replay can be used successfuly to execute the
currently implemented actions with Mahr’s software.

6. Future Work

In the long run, the usage monitoring and the replay-
ing of the monitored logs shall be part of a usage-based
approach towards an end-to-end GUI testing framework.
There are two big challanges associated with GUI testing.
The first is insufficient automation of the testing process [8].
The second problem is that GUI-based applications often
have a very large state space. Exhaustive testing is time
and cost expensive and therefore infeasible. Even more so
due to the poor automation. Therefore, GUI testing is often
done in an ad-hoc and manual fashion. To cope with these
issues a usage-based framework is suggested. Usage-based
testing has successfully been applied to other event driven
software, like Web applications [4, 12, 14] and to a lesser
degree also GUI testing [2]. The testing framework is based
upon the integration of three mechanism and the resulting
synergy effects: 1) GUI usage monitoring; 2) replaying of
usage logs; 3) stochastical usage models. The first two have
been introduced in this paper, the third is outlined in the
following.

Stochastical usage models are a means to describe user
behavior. The models can, e.g., be based on Markov-
Models (MMs). Figure 5 shows an examplary usage model

(NewMailButton,

LeftMouseClick)

(SendEMail,

LeftMouseClick)

(MessageField,

KeyboardInput)

(SubjectField,

KeyboardInput)

0.3 0.1

0.7

0.1 0.3

0.8

0.6

0.1

Figure 5. Examplary GUI Usage Model

of a simple e-mail application. Based on this example, the
features and capabilities of such models will now be ex-
plained. The example is a first-order MM, i.e., in every
state of the model, there is a fixed probability for each pos-
sible state transition that does not depend on the previous
actions. In other words, in such a model, the users do not
remember their last actions, only where they currently are.
The states of the model are tuples describing the last user
action: the action that was performed and the GUI object it
was performed on. For example, a click with the left mouse
button on the new mail button. The labels on the state tran-
sitions define the probability with which action will take
place next. For example, after keyboard input in the sub-
ject field, there is a 60% chance that there will be further
input, a 30% chance that there will be keyboard input in
the message field, and a 10% chance that the user will click
on the send button. These transition probabilities are esti-
mated by analyzing usage data. The states of the model are
either modeled manually by an expert or extracted from us-
age data. While a first-order MM is used in this example,
more sophisticated models will be used in our work, e.g.,
n-th order MM, Prediction by Partial Match (PPM) [3], or
Context-Tree Weighting (CTW) [15].

For end-to-end testing several tasks need to be per-
formed. To improve the automation, the framework tries
to tackle the difficulties of GUI testing as a whole, not only
small portions seperatly. For example, existing capture/re-
play tools are capable of automating the GUI test execuc-
tion. Otherwise, they are poorly integrated into the testing
process, e.g., with test case generation. Vice versa, a test
case generation approach may generate execution paths to
be tested, but not scripts to be used by replay tools.

In Figure 6, the envisioned framework is outlined. The
highlighted part is covered by this paper. Through Monitor-
ing of Usage, Actual Usage Traces are gained that can be
added to Bug Reports and used as input for the Replaying of
GUI Actions. Furthermore, Stochastical Usage Models can
be trained based on the actual usage traces. The stochasti-
cal model is then used to Randomly Generate Traces. This
a test case generation mechanism and the traces can be ex-

Monitoring of Usage

Stochastical Usage
Models

Replaying
GUI Actions

Usage
Statistics

Traces of Replay

Randomly Generated
Traces

Bug
Reports

Actual Usage Traces

Input

Lo
gs

Creates

In
p

u
t

Com
par

iso
n

C
o

m
p

ar
is

o
n

Lo
gs

Cre
ate

s

Added To

Figure 6. A usage-based end-to-end GUI test-
ing approach

ecuted using the the replaying mechanism. By using the
monitoring mechanism during the replay, a Traces of Re-
play of the test cases are generated. Through Comparison
between the replay traces and the input traces, replay test
verdicts (e.g., pass and fail) can be determined. If the usage
information is insufficient to generate verdicts, tracing in-
formation can be added to the log – as has been done in the
case study – to allow further comparison. Additionally, Us-
age Statistics about the software can be gained by analyzing
the actual usage traces and stochastical usage models.

As the outline shows, by using the three mechanism
for usage monitoring, replaying and stochastical modeling,
many testing tasks can be automated.

7. Related Work

The usage monitoring approach and replaying mecha-
nism presented in this work have many similarities with ex-
isting capture/replay techniques.

The capture/replay tool jRapture is based on the a mod-
ified version of the Java API [13]. By replacing parts of
the Java API with a modified version, all kinds of input are
monitored, including mouse events, keyboard events and
file input. This mechanism is similar to the hooks used in
this work. However, in contrast to this work, a virtual ma-
chine and bytecode are manipulated and the monitoring is
not directly integrated into the application. Furthermore, it
is vulnerable to changes to the Java API, e.g., if a new class
is added, the modified API would not monitor its usage.

This work proposes the use of elemental API functions and
is thus more stable towards API changes.

Another approach similar to hooks is presented as part
of the GUITAR8 suite [9]. The authors use Java’s reflection
mechanism to manipulate event and action handlers used
by Java GUI objects, by wrapping own handlers around the
already existing ones. The new handler then performs the
monitoring and delegates the actual handling of the action to
the original handler. This is the same concept as used in this
work based on hooks: the events – in this case messages –
are intercepted to perform the monitoring but are otherwise
handled as usual. In contrast to the monitoring presented in
this work, the monitoring of internal events and extraction
of information about the GUI structure are not parts of their
work.

A different approach to define a deployable monitor-
ing approach for capture/replay applications is to use in-
strumentation to modify the deployed code [10]. Instead
of monitoring the user interaction, method calls and field
manipulations are logged. The generated binary code is
changed through instrumentation, by modifying method
signatures and field manipulations. In comparison to our
approach, this is highly intrusive as it changes the actual bi-
nary code of the application instead of deploying the moni-
toring as a seperate component. Additionally, the monitor-
ing is on a lower level of abstraction, as all method calls
are monitored and not only those related to the software’s
usage.

The HP WinRunner is a capture/replay tool and part of
a functional software testing suite [5]. It uses a GUI Map
that is similar to our window tree. However, the GUI Map is
obtained by inspecting the GUI objects as they are opened
and is otherwise static. This is a difference to the window
tree, that is dynamic and changes as the GUI changes during
the recorded usage. Another structure similar to the window
tree is the GUI forest [7]. The GUI forest is a structure of
all windows of the application and can be obtained by using
a tool called GUI Ripper. Same as the GUI Map, the GUI
forest is static and does not reflect the current state of the
application, but rather what objects could possibly exist in
the GUI.

A different approach towards GUI testing was devel-
oped by [11]. They defined a model-based GUI testing
methodology for the .Net platform as an extension of the
Spec Explorer9 tool for model-based specification and test-
ing. To this aim, they describe the GUI as a Finite State
Machine (FSM) from which test cases can be derived auto-
matically with Spec Explorer. Furthermore, they provide a
GUI mapping tool to support the task of mapping the FSM
to the actual implementation of the GUI.

8http://guitar.sourceforge.net
9http://research.microsoft.com/en-us/projects/specexplorer

8. Conclussion and Future Work

In this paper, a generic, non-intrusive, easy-to-integrate
usage monitoring mechanism for message-based GUI sys-
tems was introduced. Based on the usage logs produced
by the monitoring, an automated replay mechanism was de-
fined and implemented. The feasibility of both the mon-
itoring and the replay mechanism has been demonstrated
by means of proof-of-concept implementations. In a case
study, the monitoring prototype was successfully integrated
into a large-scale industrial software with little effort. In this
industrial setting, the replay was successfully applied. Fur-
thermore, a usage-based end-to-end GUI testing approach
was outlined and the role of the monitoring and the replay-
ing in this approach was described.

Future work on this project is manyfold. On the one
hand, the replaying mechanism will be extended to be able
to replay a larger set of actions, with the aim of being able to
fully replay all logs. To reach this goal, the monitoring will
also be extended to enrich the log with further data about
the internal communication. In addition to the work on re-
play and monitoring, the stochastical usage models will be
defined and implemented, including a method for the esti-
mation of the model parameters from usage logs. Further-
more, the outlined GUI testing approach will be defined in
detail, e.g., how the stochastical usage models can be used
to generate test-cases automatically. Additionally, further
integration into Mahr software is planned, including using
the monitoring during actual alpha tests.

References

[1] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software
engineering, pages 308–318, New York, NY, USA, 2008.
ACM.

[2] P. A. Brooks and A. M. Memon. Automated gui testing
guided by usage profiles. In ASE ’07: Proceedings of the
twenty-second IEEE/ACM international conference on Au-
tomated software engineering, pages 333–342, New York,
NY, USA, 2007. ACM.

[3] J. Cleary and I. Witten. Data compression using adaptive
coding and partial string matching. IEEE Transactions on
Communications, 32(4):396 – 402, 1984.

[4] S. Elbaum, G. Rothermel, S. Karre, and M. F. II. Leveraging
user-session data to support web application testing. IEEE
Transactions on Software Engineering, 31:187–202, 2005.

[5] Hewlet-Packard Company. HP Functional Testing, 2010.
[6] J. H. Hicinbothom and W. W. Zachary. A tool for auto-

matically generating transcripts of human-computer inter-
action. In Human Factors and Ergonomics Society 37th
Annual Meeting, volume 2 of Special Sessions, page 1042,
1993.

[7] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Re-
verse engineering of graphical user interfaces for testing. In
WCRE ’03: Proceedings of the 10th Working Conference
on Reverse Engineering, page 260, Washington, DC, USA,
2003. IEEE Computer Society.

[8] A. M. Memon. Gui testing: Pitfalls and process. IEEE Com-
puter, 35(8):87–88, 2002.

[9] A. Nagarajan and A. Memon. Refactoring using event-based
profiling. In in Proceedings of The First International Work-
shop on REFactoring: Achievements, Challenges, Effects
(REFACE), 2003.

[10] A. Orso and B. Kennedy. Selective capture and replay of
program executions. In WODA ’05: Proceedings of the
third international workshop on Dynamic analysis, pages 1–
7, New York, NY, USA, 2005. ACM.

[11] A. Paiva, J. Faria, N. Tillmann, and R. Vidal. A model-
to-implementation mapping tool for automated model-based
gui testing. In Formal Methods and Software Engineering,
volume 3785 of LNCS, pages 450–464. Springer, 2005.

[12] J. Sant, A. Souter, and L. Greenwald. An exploration of sta-
tistical models for automated test case generation. In WODA
’05: Proceedings of the third international workshop on
Dynamic analysis, pages 1–7, New York, NY, USA, 2005.
ACM.

[13] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture:
A Capture/Replay tool for observation-based testing. SIG-
SOFT Software Engineering Notes, 25(5):158–167, 2000.

[14] P. Tonella and F. Ricca. Statistical testing of web appli-
cations. Journal of Software Maintenance and Evolution,
16(1-2):103–127, 2004.

[15] F. Willems, Y. Shtarkov, and T. Tjalkens. The context-tree
weighting method: basic properties. IEEE Transactions on
Information Theory, 41(3):653 –664, 1995.

