
© 2008 Fraunhofer Center Maryland

Fraunhofer USA
Center for Experimental
Software Engineering

A Methodology for Using Measures to
Assess Software Safety Risk from an

Independent Testing Perspective

Victor R. Basili, Kathleen Dangle, Linda Esker
Fraunhofer Center

for Experimental Software Engineering, Maryland

ITEA Symposium

© 2008 Fraunhofer Center Maryland
2

Fraunhofer USA
Center for Experimental
Software Engineering

Outline
• Problem

• Safety Context and Visibility

• Approach Overview

• Approach Details

• Steps and Examples

• Benefits and Future Work

© 2008 Fraunhofer Center Maryland
3

Fraunhofer USA
Center for Experimental
Software EngineeringThe Problem

• Independent evaluation of the safety of a system is traditionally done at
the end of the system’s development life cycle, i.e., during independent
test, (e.g., DT)
– Late visibility into problems
– Limited time to do analysis and test

• Resources during independent software test for safety are limited
– Time and effort are limited resources
– Need to be used effectively

• There is a need to improve the safety analysis during independent
software test to gain more confidence in the safety of a system

• There is a need to maximize the opportunity of identifying potential safety
risks that may not be exposed during operation

© 2008 Fraunhofer Center Maryland
4

Fraunhofer USA
Center for Experimental
Software EngineeringThe Problem:

More specifically
• There is insufficient start up information to assess the cost and schedule

for independent testing:
– How do we plan effective use of resources?

• Developer processes are insufficient or lack safety deliverables
– What kind of useful information can we gather?
– How do we do it contractually?

• There is a need to focus resources by understanding where the higher
risks are
– How do we take advantage of this information in a cost effective way?

• There is a need for assessment of independent software safety test
– How do we focus and evaluate our activities?

© 2008 Fraunhofer Center Maryland
5

Fraunhofer USA
Center for Experimental
Software EngineeringContext

Independent System Test

Field Test

During development, measures are
needed to monitor and track safety activities
from a program management perspective

While in development, planning for independent
software test begins

A SAR isn’t done until the end, don’t even know
what is fragile until the end of the development
phase

SAR
System Development Phase

Independent Software Test

SAR = Safety Assessment Report

© 2008 Fraunhofer Center Maryland
6

Fraunhofer USA
Center for Experimental
Software EngineeringContext

• From a safety point of view, in independent software test
– Testing and analysis are both required

• Analysis involves assessing the hazards, the causes, the
controls, and the verification for completeness and correctness,
and testing involves checking that verifications on controls are
complete, regression testing of those verifications as new
changes are made, etc.

– Testing and analysis are complex
• Emphasis on “rainy day” testing vs. “sunny day”
• Software by its nature introduces more off-nominal and out-of-

bounds cases into the system
– It is the last milestone focused on assuring software safety

© 2008 Fraunhofer Center Maryland
7

Fraunhofer USA
Center for Experimental
Software Engineering

Visibility Into System Safety Risks
• What happened before? What is independent software test receiving?

– What kind of information can be gathered from development that will
provide the testers insights into the focus, amount, and types of analysis
and testing needed?

• How can we leverage prior safety activities performed, so that independent
software testing can be tailored to the system it is receiving?
– What functionality of the system is ready for independent software

testing?
– What are the high risk safety issues for this system?

• How can we measure our progress during independent test and prioritize
our activities according to highest safety risk issues?

© 2008 Fraunhofer Center Maryland
8

Fraunhofer USA
Center for Experimental
Software EngineeringApproach

• Goal is to develop and implement a set of metrics that provide
management visibility into system (and software) safety

• For the purpose of asking the right questions, identifying safety risks
and monitoring the quality of the safety process

• Measure process OUTPUTS, intermediate products generated during
development and test

• Is sufficient material there? Where are the potential risks based upon
missing information?
– This is a syntactic, quantitative analysis.
– Can be measured directly; can be automated

• Is the right material there?
– This is a semantic analysis
– Can generate statistical samples, based upon the lack of sufficient

materials, that can be manually inspected for quality attributes, e.g.,
correctness

© 2008 Fraunhofer Center Maryland
9

Fraunhofer USA
Center for Experimental
Software EngineeringApproach

• Apply a set of metrics to objectively assist in identifying areas where
safety may not have been properly addressed

• Use development knowledge to focus analysis and test
– Understand what data is available and how we might reinterpret

that data from an independent test viewpoint
– Develop an independent test plan that focuses on high risk areas
– Whenever possible, use existing data (i.e., do not impose additional

costs, time burden)

• For example
– During development perform this syntactic and semantic analysis
– Make data available to independent software safety tester for

planning
– During independent test, perform this syntactic and semantic

analysis to provide insight into safety concerns

© 2008 Fraunhofer Center Maryland
10

Fraunhofer USA
Center for Experimental
Software EngineeringDefining Measures to Provide

Insights into Software Safety
1. Articulate the purpose of the safety related activity and Identify

potential insight areas that sufficiently cover the important aspects
of the software safety process for the specific environment

2. State the goals associated with each insight area
3. Develop a set of Readiness Assessment questions that

– Provide initial insight into the areas of interest
– Allow a quick and easy status report of the area
– Identify whether it is possible to go deeper into the area

4. Define Software Safety Visibility goals and questions to expose
risks associated with outputs of the safety analysis process

5. Develop/enumerate measures and models to define what will be
measured and how it will be interpreted

6. Identify responses to potential risks indicated by measures
outside the model thresholds and further actions to be taken

7. Apply the measures and interpret the results

© 2008 Fraunhofer Center Maryland
11

Fraunhofer USA
Center for Experimental
Software Engineering

Example Steps and Measures

• We have applied this approach to the development of a DoD safety
critical complex system of systems
– It provided insights into problems during development to program

management
– It was effective in pointing out a number of risk areas that were not

getting sufficient attention

• To illustrate the approach and the kinds of measures and models that
can be used, we use a sample from those goals, questions, measures
and models to demonstrate the specifics of the process

• We then extrapolate to the activities relevant to independent software
test

© 2008 Fraunhofer Center Maryland
12

Fraunhofer USA
Center for Experimental
Software Engineering

• Considerations for selecting areas may depend on
– Information and data available
– Processes/ technologies used
– Life cycle being followed
– Historical data pointing to specific problem types
– Contribution to insights
– …

• Example program management insight areas
– Software Safety Analysis Process
– Hazard and Mitigation Identification
– Hazard Monitoring
– Appropriate Level of Rigor for Software Safety
– Safety Defects

Select areas based on cost and schedule constraints

1. Identify Potential Insight Areas

© 2008 Fraunhofer Center Maryland
13

Fraunhofer USA
Center for Experimental
Software EngineeringSafety Defects: Steps 2, 3, and 4

2. State the goals associated with each insight area
Insight Area Goal: Identify whether any safety problems remain
in the system for the Safety Assessment Reports (SARs) by
verifying that all safety controls/ requirements have been tested

3. Develop a set of Readiness Assessment questions
– Are safety-related failures/faults identified as such in the

Software Problem Reporting System?
– Are safety-related test cases identified as such?
– Are defect closures recorded?

4. Define Software Safety Visibility goals and questions to expose
risks associated with outputs of the safety analysis process
Goal: Check if software safety-related defects are being dealt
with appropriately
Question: Are software safety-related defects being closed at a
reasonable rate over time?

© 2008 Fraunhofer Center Maryland
14

Fraunhofer USA
Center for Experimental
Software Engineering

Safety Defects: Steps 5 and 6

5. Develop/enumerate measures and models to define what will be
measured and how it will be interpreted

Measure: COSRTR = count by priority of open safety-related
software trouble reports at time i

Model: If COSRTR ≠ 0 then there are open defects that need
further analysis

6. Identify responses to potential risks indicated by measures
outside the model thresholds and further actions to be taken

Development Response: If all safety related defects are not
closed, then create the list of open defects, prioritize and
investigate the reasons. This measure should be taken
periodically starting at the beginning of test, up until SAR delivery

© 2008 Fraunhofer Center Maryland
15

Fraunhofer USA
Center for Experimental
Software Engineering

The Expanded Process Steps
for Independent Software Safety Test

A. Apply the approach during development and this information is available
to independent software test for planning purposes
• Provides program management with visibility into development

B. This data can be used for planning independent software test, by
creating new goals, measures, models, or responses
• Apply a modified approach, constrained by available data
• Permits planning a more efficient independent test

C. Apply the approach to the execution of independent software test
phase, identifying new areas of interest, goals, metrics, models, etc.
• Increases confidence in the safety of the released system

© 2008 Fraunhofer Center Maryland
16

Fraunhofer USA
Center for Experimental
Software EngineeringB. Software Safety Risk Reduction

for Independent Software Test Planning

1. Insight Areas: Focused for independent software test planning

2. Insight Area Goals: May be same areas used during development
phase, but looked at them more from an independent safety
test/analysis perspective

3. Readiness Questions: Do we have sufficient data from development
to support each of these new goals?

4. Software Safety Visibility Goal/Questions: Can very within limits

5. Measures and models: Can very within limits

6. Responses: Modified to focus on independent test actions

7. Apply

© 2008 Fraunhofer Center Maryland
17

Fraunhofer USA
Center for Experimental
Software Engineering

Safety Defects: Steps 5 and 6

Measure: COSRTR = count of open safety-related software trouble
reports

Model: If COSRTR ≠ 0 then there are open defects that need further
analysis

Development Response: If all safety related defects are not closed,
then create the list of open defects, prioritize and investigate the
reasons. This measure should be taken periodically starting at
the beginning of test, up until SAR delivery

Independent Test Response: Given the list of safety related defects
not closed:
(1) Assess their impacts on safety and determine in coordination
with safety community which problems are 'must fix' for
immediate use or can be deferred.
(2) Plan for robust independent test, including them in the
sample set of issues to be semantically checked.

© 2008 Fraunhofer Center Maryland
18

Fraunhofer USA
Center for Experimental
Software EngineeringC. Software Safety

Risk Reduction For Deployment
1. Identify insight areas that cover the independent test activities
2. Focus the goals associated with each insight area on the evolving

product in independent test
3. Apply a set of Readiness Assessment questions that

• What data do I have from development to jump start my
analysis, e.g., estimated bounds and ranges?

4. Define/focus Software Safety Visibility goals and questions to
expose risks associated with outputs of the safety analysis process

5. Develop/enumerate measures and models
6. Identify responses to potential risks indicated by measures

outside the model thresholds and further actions to be taken
7. Apply the measures and interpret the results

© 2008 Fraunhofer Center Maryland
19

Fraunhofer USA
Center for Experimental
Software EngineeringExample Insight Areas and

Questions for Independent Software Test

Potential insight areas that support development and tailoring of
independent safety test

1) Review of Hazard Tracking System (HTS) Data
2) Analysis of Software Requirements
3) Analysis of Software Design

4) Review of Contractor Software Problem Reports (SPRs)

5) Analysis of Developer Software Test Planning and Execution

6) Review of Safety Assessment Report (SAR)

© 2008 Fraunhofer Center Maryland
20

Fraunhofer USA
Center for Experimental
Software EngineeringBenefits

• Leverages development activities/data to plan independent software test
– Helps make efficient use of test resources

• Makes clear what is needed for the safety engineer to make maximum use
of independent test resources for safety

• Provides for independent test activities to focus on high risks in a cost
effective way

• Offers an evaluation of the safety activities for the safety engineer
– Increases confidence in the safety of the released system
– Identifies risks resulting from the application of the safety hazard

analysis process (or lack there of) and assesses the potential for
achieving a safe system

Metrics will not tell us whether the system is safe, but they
provide indicators of potential problems and risks.

© 2008 Fraunhofer Center Maryland
21

Fraunhofer USA
Center for Experimental
Software EngineeringFuture Work

• The expanded processes for independent software test is
preliminary and has not been applied

– We would like to identify potential systems for application

• The remaining question: How do we incorporate this into the whole
acquisition process?

• We believe the essence of the approach can be applied to
independent test in general, not just for safety

© 2008 Fraunhofer Center Maryland
22

Fraunhofer USA
Center for Experimental
Software EngineeringContact Information

Vic Basili
Fraunhofer Center Maryland

University of Maryland
basili@fc-md.umd.edu

301-403-2705

Kathleen Dangle
Fraunhofer Center Maryland

kdangle@fc-md.umd.edu
301-403-8973

Linda Esker
Fraunhofer Center Maryland

lesker@fc-md.umd.edu
301-403-8967

