
Is there a future for 
Empirical Software Engineering?

Victor R. Basili
Department of Computer Science

University of Maryland
College Park, Maryland

ISESE 2006



© University of Maryland 2006 2

Approach

• Claes asked me to take a 40 year perspective (-20, now, +20)

• This talk provides a personal perspective on the evolution of empirical 
software engineering

• I will try to map change across several variables
– Kinds of studies 
– Set of methods
– Publication/review issues 
– Community of researchers 
– Replication / Meta analysis 
– Attention to context variables



© University of Maryland 2006 3

Outline

• Phase I 
– Early days: Running studies

• Phase II
– Tying studies together within an environment and domain

• Phase III
– Expanding out across environments, limiting techniques

• Phase IV
– Focusing on a domain 



Phase I: 1974 – 1985

Early days: Running isolated studies for a particular purpose

Independently using case studies and controlled experiments



© University of Maryland 2006 5

Phase I
Iterative Enhancement Case Study

• Problem: Can we quantitatively measure the effect of the 
application of a method on the product?

– Method produced incremental versions of the product, each 
with more functionality

• Empirical Approach: Case study

• Issues: quantitative, observations over time, measuring the 
product, comparing a product with itself (baseline issue), using
feedback

• V. Basili and A. Turner, “Iterative Enhancement: A Practical Technique for Software 
Development,” IEEE Transactions on Software Engineering, vol. 1(4), December 1975



© University of Maryland 2006 6

Learned

• single study, single project, single environment
– Like what Belady and Lehman did on OS360
– we were authors of the method and builders of the system
– thought we should be able to empirically demonstrate what 

people said about the product and whatr we thought hsould
have happened

• Learned: 
– about developing metrics, 
– the measurement process, 
– running an empirical study, 
– evaluating needs a basis for comparison (baselines)



© University of Maryland 2006 7

Phase I
Methodology Evaluation Controlled Experiment

• Problem: Can we measure and differentiate the effects of 
different processes on products?

• Empirical Approach: A replicated study (controlled experiment) 
with three treatments

• Issues: controlled experiment, unobtrusive observations, multiple 
treatments, teams as a unit of measure

• V. Basili and R. Reiter, Jr., “A Controlled Experiment Quantitatively Comparing Software 
Development Approaches” IEEE Transactions on Software Engineering, vol. 7(3): 299-320 
(IEEE Computer Society Outstanding Paper Award), May 1981.(early version in 1979)



© University of Maryland 2006 8

Learned

• Single study, set of methods, single environment
– ~ Jerry Weinberg did but with teams and on bigger programs
– we were neither method authors nor system builders
– trying to study the proposed methods of the time

• It was difficult to advice for performing a controlled experiment in 
the software engineering domain
– Chose Educational Research as the model to follow
– Campbell and Stanley became our bible for many years.

• Learned: 
– About controlled experiments, 
– using nonparametric statistics, 
– developing proxies for measures, 
– automated measures, ..



© University of Maryland 2006 9

Phase I
The Early Software Engineering Laboratory

• Problem: Can we increase the quality of the ground support software 
systems NASA/GSFC produces by improved processes?

• Empirical Approach: 
– Build baselines of various project variables (defects, effort, project 

metrics) and identify where methods might make a difference.
– Choose methods from what is currently available.

• Issues: Collecting data from live projects, feedback on data collection 
and measures,  large amounts of data to collect, store, analyze

• V. Basili and M. Zelkowitz, “Analyzing Medium Scale Software Development,” Proceedings 
of the Third International Conference on Software Engineering, May 1978. 



© University of Maryland 2006 10

Learned

• Multiple projects,  Set of methods, Single environment and domain

• Learned:
– Importance of the understanding the environment (context variables?)
– Need to build our own models to understand and characterize 
– Need to model the environment, projects, processes, products, etc.
– Data collection has to be goal driven and well defined

Many studies on effort estimation, defects classification, identification of 
common projects

Goal/Question/Metric Approach 
V. Basili and D. Weiss, “Evaluation of a Software Requirements Document by the 
analysis of Change Data,” Proceedings of the Fifth International Conference on 

Software Engineering, pp. 314-323, March 1981.



© University of Maryland 2006 11

New Thinking after Phase I

• Software development follows an experimental paradigm, 
– Design of experiments is an important part of improvement
– Evaluation and feedback are necessary for learning

• Need to experiment with technologies to reduce risk, tailor to 
the environment, make improvements

Quality Improvement Paradigm
V. Basili, “Quantitative Evaluation of Software Methodology,” Keynote Address, Proceedings 
of the First Pan Pacific Computer Conference, vol. 1, pp. 379-398, September 1985.



© University of Maryland 2006 12

Phase I: State of the Variables

• Running Studies
– Mostly characterizing in a single environment, single domain 

• Publication/ Reviews:  many project studies, mixed reviews

• Community of Researchers: almost empty: model builders and other 
individuals 

• Set of methods for empirical study: mostly quantitative, nonparametric, 
nominal and ordinal measurement

• Context variables: taken as a given, not measured

• Replication / Meta Analysis:?



Phase II 1986 - 1999

Tying studies together in one environment, one domain

Controlled experiments, case studies, quasi-experiments, 
qualitative analysis tied together



© University of Maryland 2006 14

Defining an Experimentation Framework

• For the 10th anniversary of TSE (1986), we defined a framework for 
experimentation in software engineering to 
– Help structure the process and provide a classification scheme 

for understanding and evaluating experimental studies
– Classify experiments from the literature according to the 

framework
– Identified problem areas and lessons learned

• State of the Field
– References: 116, (not only studies)
– Mostly 

• Empirical studies of programmers in the small doing 
controlled experiments 

• Data collection on projects in the large



© University of Maryland 2006 15

The Experimentation Framework

The set of categories

• Definition
– Motivation, Object, Purpose, Perspective, Domain, Scope

• Planning
– Design, Criteria, Measurement

• Operation
– Preparation, Execution, Analysis

• Interpretation
– Context, Extrapolation, Impact

• V. Basili, R. Selby, and D. Hutchens, “Experimentation in Software Engineering,” IEEE 
Transactions on Software Engineering vol. 12(7): 733-743, July 1986



© University of Maryland 2006 16

The Experimentation Framework

Experiment Scopes

#Projects

One More  than  one

# of One Single Project Multi-Project
Variation

Teams 

per More than Replicated                     Blocked
Project one Project Subject-Project



© University of Maryland 2006 17

Phase II
Mixing the Software Engineering Laboratory 

with Classroom Studies

• Problem: Can we use empirical studies to identify and tailor potential 
quality improving processes, 
– reducing the risk to projects, 
– to increase the quality of the ground support software systems at 

NASA/GSFC?

• Empirical Approach: Use the university to test out techniques, transfer 
them to NASA and evolve them based upon observation

• Issues: Collecting data from live projects, costs, minimizing 
aggravation of developers, feedback on data collection and measures



© University of Maryland 2006 18

Experimental Learning Mechanisms

Series of Studies

# Projects

One More than one

# of 
Teams

per
Project

One

More than Reading vs. Testing 
one

Code reading, functional and structural testing
Unit test size programs seeded with faults
Blocked subject-project: Fractional factorial design
Three replications: 42 UM (2), 32 NASA/CSC



© University of Maryland 2006 19

Lessons Learned

• Intuition is not always consistent with reality

• Motivation about the technique (treatment variable) plays a key 
role

• Methods and techniques are different
– reading vs. testing, inspections vs. test plan

• Different techniques, methods may be more effective for 
different types of defects (problems, environments, product 
characteristics)



© University of Maryland 2006 20

Experimental Learning Mechanisms

Series of Studies

# Projects

One More than one

# of 
Teams

per
Project

One

More than 2. Cleanroom 1. Reading vs. Testing 
one at Maryland

Scaled up to teams and larger projects
Compared 15 teams using Cleanroom and not using it
When reading is motivated it is very effective



© University of Maryland 2006 21

Experimental Learning Mechanisms

Series of Studies

# Projects

One More than one

# of 
Teams

per
Project

One 3. Cleanroom
(SEL Project 1)

More than 2. Cleanroom 1. Reading vs. Testing 
one at Maryland

Training and tailoring of Cleanroom for the SEL
Integrated into the existing process
Very effective on live project (40K SLOC) at NASA



© University of Maryland 2006 22

Experimental Learning Mechanisms

Series of Studies

# Projects

One More than one

# of 
Teams

per
Project

One 3. Cleanroom 4. Cleanroom
(SEL Project 1) (SEL Projects, 2,3,4,...)

More than 2. Cleanroom 1. Reading vs. Testing 
one at Maryland

Effective over a series of projects
Some modification for contracted out projects
Recognized need to reading at higher level, 
e.g. Requirements reading



© University of Maryland 2006 23

Experimental Learning Mechanisms

Series of Studies

# Projects

One More than one

# of 
Teams

per
Project

One 3. Cleanroom 4. Cleanroom
(SEL Project 1) (SEL Projects, 2,3,4,...)

More than 2. Cleanroom 1. Reading vs. Testing 
one at Maryland 5. Scenario reading vs. ...

Developed perspective based reading techniques
Experimented with requirements reading
Effective on controlled experiments with NASA developers



© University of Maryland 2006 24

Lessons Learned

• Multiple studies, multiple experimental designs,  two 
environments NASA and small projects, multiple project types 
and sizes

• Learned:
– Can reduce risk by running smaller experiments off-line
– Can build confidence in a theory based upon multiple 

treatments
– Studies need to be focused on the opportunities
– There is a measurable relationship between process and 

product
– Techniques can be developed based upon goals



© University of Maryland 2006 25

New Thinking after Phase II

• Experience needs to be evaluated, tailored, and packaged for reuse
– Software processes must be put in place to support the reuse of 

experience
– Packaged experiences need to be integrated

Evolved QIP (packaging) and GQM (templates and models)
V. Basili and H.D. Rombach, “The TAME Project: Towards Improvement-Oriented Software 
Environments,” IEEE Transactions on Software Engineering, vol. 14(6), June 1988.

Formalized the organization via the Experience Factory Organization
V. Basili, “Software Development: A Paradigm for the Future,” Proceedings of COMPSAC 
‘89, pp. 471-485, September 1989.



© University of Maryland 2006 26

State of the Variables: Phase II

• Studies to
– Package knowledge (build models) to improve software 

quality based upon experience in an environment
• Publication/ Reviews:  project-based stuff easier, experiments 

not so easy to publish in conferences
• Community of Researchers: ISERN  (1993), EMSE (1996)
• Set of methods for empirical study: mostly quantitative, 

nonparametric,  some qualitative, nominal and ordinal 
measurement, 

• Context variables: taken as a given but recognized a important
• Replication/Meta analysis: can build a sequence of studies 

that vary the context, threats to validity; building knowledge 
across studies about a particular technology 



Phase III 2000 - 2004

Expanding out across domains, environments

Focusing on building knowledge for a limited number of  
techniques in different environments and domains
i.e., studying the effect of context on techniques



© University of Maryland 2006 28

CeBASE
Center for Empirically Based Software Engineering

Problem: Can we build a body of knowledge about specific 
techniques (defect reduction, COTS based development, agile 
development) supported by empirical evidence?

CeBASE Project Goal: Enable a decision framework and 
experience base that forms a basis and infrastructure needed to 
evaluate and choose among software development technologies

CeBASE Research Goal: Create and evolve an empirical 
research engine for building the research methods that can 
provide the  empirical evidence of what works and when

Partners: Victor Basili (UMD), Barry Boehm (USC)



© University of Maryland 2006 29

CeBASE Approach

Empirical Data

Predictive Models

(Quantitative 
Guidance)

General Heuristics

(Qualitative 
Guidance)

Observation and 
Evaluation Studies 

of Development 
Technologies and 

Techniques

E.g. COCOTS excerpt:

Cost of COTS tailoring = f(# parameters  
initialized, complexity of script writing, 
security/access requirements, …)

E.g. Defect Reduction Heuristic:

For faults of omission and incorrect 
specification, peer reviews are more 
effective than functional testing.



© University of Maryland 2006 30

CeBASE Basic Research Activities

Define and improve methods to

• Formulate evolving hypotheses regarding software development decisions

• Collect empirical data and experiences

• Record influencing variables (context)

• Build models (Lessons learned, heuristics/patterns, decision support 
frameworks, quantitative models and tools)

• Integrate models into a framework

• Testing hypotheses by application

• Package what has been learned so far so it can be used and evolved 



© University of Maryland 2006 31

Lessons Learned

• There is a great deal more research to do before we can solve 
this problem
– Building the research engine
– Building the decision support system with partial knowledge
– Integrating the process

• Context can change everything and is hard to identify

• This is big science, involving many researchers, many 
environments, many domains

• Won’t evolve the knowledge base without collaboration

• Need to shrink the focus



© University of Maryland 2006 32

Applied Research
NASA High Dependability Computing Program

Problem: How do you elicit the software dependability needs of 
various stakeholders and what technologies should be applied to 
achieve that level of dependability? 

Project Goal: Increase the ability of NASA to engineer highly 
dependable software systems via the development of new 
technologies in systems like Mars Science Laboratory

Research Goal: Quantitatively define dependability, develop high 
dependability technologies and assess their effectiveness under 
varying conditions and transfer them into practice

Partners: NASA, CMU, MIT, UMD, USC, U. Washington, 
Fraunhofer-MD



© University of Maryland 2006 33

What are the top level research problems?

System Users Failures Space

Research Problem 3
What set of technologies should be 
applied to achieve the desired 
quality? (Decision Support)Research Problem 1

Can the quality needs be 
understood and modeled? 

Technology Developers Fault Space

System Developers

Research Problem 2
What does a technology do?
Can it be empirically demonstrated?



© University of Maryland 2006 34

Lessons Learned

• Collecting experience across environments, domains, 
technologies, is very difficult

• Studying and maturing techniques require testbeds
– Can be built for classes of techniques
– Need to be maintained

• Technologists need to be more specific about what their 
technologies do and do not do

Evolved empirical evidence about various techniques
• B. Boehm and V. Basili, “Software Defect Reduction Top 10 List,” IEEE Computer, vol. 

34(1): 135-137, January 2001. 
• J82. V. Basili and B. Boehm, “COTS-Based Systems Top 10 List,” IEEE Computer, vol. 

34(5): 91-93, May 2001. 



© University of Maryland 2006 35

New Thinking after Phase III

• The problems are 
– eliciting and quantifying (non-functional) requirements
– Specifying the effects of technologies
– Empirically identifying the effects, limits and bounds of 

techniques
– Integrating the processes to satisfy the developers need to 

satisfy the users’ needs 

• We need to concentrate on building a body of knowledge based 
upon empirical evidence



© University of Maryland 2006 36

State of the Variables: Phase III

• Studies to evaluate techniques in multiple contexts and define 
the relationship between user needs and what’s available 

• Publication/Reviews: domain journals and conferences, SE 
journals

• Community of Researchers: ISERN, EMSE, ISESE ISESEM  
• Set of methods a rich palate of tools: full mix of qualitative and 

quantitative methods, controlled and quasi-experiments, case 
studies, surveys, folklore gathering, structured interviews and 
reviews, …

• Context variables: being studied and characterized
• Replication: numerous repetitions of a few experiments (PBR, 

reading vs. testing)
• Meta Analysis: building knowledge across studies 



Phase IV now and the future

Focusing on a domain to build a body of knowledge 

Folklore gathering, interview, case studies, controlled 
experiments, experience bases, …



© University of Maryland 2006 38

Building an Experience Base 
DARPA High Productivity Computing Systems

Problem: How do you improve the time and cost of developing high end 
computing (HEC) codes?

Project Goal: Improve the buyers ability to select the high end computer 
for the problems to be solved based upon productivity, where 
productivity means 
Time to Solution = Development Time + Execution Time

Research Goal: Develop theories, hypotheses, and guidelines that 
allow us to characterize, evaluate, predict and improve how an HPC 
environment (hardware, software, human) affects the development of 
high end computing codes. 

Partners: MIT Lincoln Labs,  MIT, UCSD, UCSB, UMD, USC, FC-MD



© University of Maryland 2006 39

Development Time Goals

• Obtain a more complete view of the total time to solution
• Better understand software development for HPC
• Provide empirical evidence for assumptions made by the HPC 

community about development time issues
• Develop criteria for HPC systems productivity evaluation
• Provide better guidance for planning and decision-making in HPC 

code development

By evolving a series of studies with novices and professionals
– Controlled experiments (grad students)
– Observational studies (professionals, grad students)
– Case studies (class projects, HPC projects in academia)
– Surveys, interviews (HPC experts)



© University of Maryland 2006 40

Overall Research Plan

Class assignments

Single programmer (expert studies)

KernelsSingle programmer 
classroom Studies and 
Observational  studies

Team projects
Class projects

compact applications

Case studies

Program Duration

Pr
ob

le
m

 S
ca

le porting

HEC community Beliefs

Evolving measurements, Models, Hypotheses

HEC community provides questions to study that lead 
to successively larger and more complex experiments



© University of Maryland 2006 41

Study Locations

UCSB
3 studies

USC
4 studies

UCSD
1 study

MIT
3 studies

UMD
10 studies

Mississippi State
2 studies

U Utah
ASC-Alliance

Iowa State
1 study

CalTech
ASC-Alliance

UIUC
ASC-Alliance

U Chicago
ASC-Alliance

Stanford U
ASC-Alliance

U Hawaii
1 study SDSC

Multiple 
studies



© University of Maryland 2006 42

Elements of the Knowledge Base

• Testbeds:
– Classroom assignments (Array Compaction, the Game of Life, 

Parallel Sorting, LU Decomposition, …
– Compact Applications (Combinations of Kernels, e.g., 

Embarrassingly Parallel, Coherence, Broadcast, Nearest Neighbor
– Full scientific applications (nuclear simulation, climate modeling, …

• Experience  Bases:
– Results EB: Hypotheses, evidences, implications
– Defect EB: Defect patterns, symptoms, causes cures, preventions, …)

• Experimenters’ Package:
– A checklist for instructors and experts running studies. 
– Includes templates, forms, and reusable project descriptions
– Experiment Manager that supports data collection and analysis



© University of Maryland 2006 43

Journey

• Phase I 
– Early days: Running isolated studies for a particular purpose
– Independently using case studies and controlled 

experiments
• Phase II

– Tying studies together in one environment, one domain
– Controlled experiments, case studies, quasi-experiments, 

qualitative analysis tied together
• Phase III

– Expanding out across domains, environments, technologies
– Focusing on building knowledge for a couple of techniques

• Phase IV
– Focusing on a domain to build a body of knowledge 
– Folklore gathering, interview, case studies, controlled 

experiments, experience bases, …



© University of Maryland 2006 44

Evolving Empirical Studies Since 1976

• Early work was to characterize the effects of various methods, 
(fixed all study variables)
– e.g., Iterative Enhancement, Chief Programmer Teams

• Then built baselines of various project variables (defects, effort, 
product and project metrics) for a single domain and 
environment, identifying where methods might make a 
difference (fixed context, varied techniques)
– e.g., ground support software at NASA/GSFC  (SEL).

• Then expanded out across several domains, environments, 
focusing on building knowledge for a couple of techniques (fixed 
the techniques to study context), 
– e.g., defect removal techniques, COTS-based development, 

and agile methods (CeBASE) 



© University of Maryland 2006 45

Evolving Empirical Studies Since 1976

• Then did empirical work to elicit and quantitatively define the 
software dependability needs of various stakeholders, identify 
the appropriateness and effectiveness of technologies to satisfy
those needs under varying conditions before transferring them 
into practice, (introduced testbeds (context) to study techniques)
– e.g., increasing the ability of NASA to engineer highly 

dependable software systems via new technologies (HDCP)

• Now working on building knowledge in a particular domain, 
packaging that knowledge in an experience base so it can be 
used by others, demonstrating the effectiveness of various 
approaches and in what context they are effective (fixed domain, 
studying techniques and context variables)
– e.g., building a software domain experience base to help 

understand and increase the time and cost of developing 
high end computing (HEC) codes (HPCS)



Where are we and where are we going?



© University of Maryland 2006 47

Types of Studies (1)

• Studies of Techniques
– Feasibility

• No technique should be published without trying it out
– Feedback for improvement

• Technique should be tested to see where they can be 
improved

– Evaluation
• We need to test the bounds and limits of each technique

– Integration
• We need to see how techniques can be integrated and 

what their integration buys you 



© University of Maryland 2006 48

Types of Studies (2)

• Building knowledge of a domain
– Identify folklore, theories, …

• Ethnographic studies, interviews, observations, …
– Build models

• Grounded theory, case studies, quasi-experiments, 
controlled experiments, …

– Evolve models supported by evidence
– Test models and hypotheses 

• experiments of all kinds
– Integrate models 
– Find out what works



© University of Maryland 2006 49

Community of Empiricists

• We have been evolving a community that talks to each other

• This is the 14th ISERN workshop and the number of members 
has grown dramatically

• The Empirical Software Engineering Journal is 11 years old 
and has a very good ISI Impact rating (.965, among SE journal)

• ISESE is in its fifth year 

• But we need more of a community that works with each other
– we haven’t solved the terminology problem 
– Collaboration is necessary for defining a research agenda



© University of Maryland 2006 50

Publication
Experiment Guidelines

• Victor Basili, et. al.
– Experimentation in Software Engineering, TSE 1986

• Barbara Kitchenham, et. al.
– Preliminary Guidelines for Empirical Research in Software Engineering, 

TSE 2002

• Dag Sjoberg, et. al.
– A Survey of Controlled Experiments in Software Engineering, TSE 2005

• Textbooks:  Claes Wolin, et. al., Natalia Juristo, et. al.

• Others: Andreas Jedlitschka , ISERN 2004,



© University of Maryland 2006 51

Publication
Support Material

• Guidelines very long, especially for conference papers

• Need to be able to break studies into
– Small useful modules
– Backed up by TRs that deal with all guideline issues
– Backed up by web site material

• Where to publish
– Journals better than conferences due to feedback and dialog
– We need to identify conference guidelines
– Need to write Technical Reports



© University of Maryland 2006 52

Publication
Reviews Issues

• Papers need to build on each others work
– Part of the history of isolated events
– There is now a lot more literature
– Need to grow a culture of reading, referencing, and 

assimilating existing material

• Example:
– Criticized for lots of studies about “inspections” that don’t seem 

to recognize or integrate with the past work
– Issue 1: there are many reading techniques, like many testing 

techniques that need to be developed, evolved, evaluated, etc. 
– Issue 2: as a community we have not always distinguished so 

why should anyone else – we need to be more scholarly 



© University of Maryland 2006 53

Context Variables

• This is the biggest problem

• There are the small variances, e.g., professional vs. student

• There are the big categories: environment, domain, class of SE 
technologies applied (how many variables are hidden in these?)

• If we are to build knowledge – we need to focus on specific 
domains, classes of technologies, environments, expanding out 
slowly, unifying across the differences

• Like we did in a single environment like the SEL.



© University of Maryland 2006 54

Replications / Meta-Analysis

• Building theories requires replication 
– Varying the threats
– Varying the artifacts 
– Varying the population
– …

• Requires coordination and collaboration
– It takes a team to run an experiment, hard to do alone
– Multiple groups
– Multiple disciplines



© University of Maryland 2006 55

Convincing a software domain community

• This is our best bet at trying to 
– study the effectiveness of techniques 
– build a body of knowledge 

• Look at the work of
– Barry Boehm (government contractors and agencies)
– Nancy Leveson (aeronautical engineering)
– Elaine Weyuker (Telephony software)
– …

• So do we work with software engineers or with software 
engineers in a domain?



© University of Maryland 2006 56

Convincing the software engineering research 
community

• Empirical Study is here to stay
– Software engineering techniques need to do studied 

empirically if it is  to be anything other than a theoretical 
discipline

– Many technology developers are already doing feasibility 
studies (although not called that) to study

– They are not empiricists and don’t want to or need to learn 
what it takes to do it

– We need to supply them with some goals and methods, etc. 
or team with them

• What is the role of our community?
– To develop such techniques and/or work with them, e.g., the 

HPCS project



© University of Maryland 2006 57

Is there a future for empirical software 
engineering?

We have matured a lot in terms of the questions we 
ask, the types of studies we perform, and the 

development of a community

Software Engineering is “big science”; 
and empiricism is a necessary ingredient of any big 

science


	Is there a future for Empirical Software Engineering?Victor R. BasiliDepartment of Computer ScienceUniversity of Marylan
	Approach
	Outline
	Phase I: 1974 – 1985
	Phase IIterative Enhancement Case Study
	Learned
	Phase I Methodology Evaluation Controlled Experiment
	Learned
	Phase IThe Early Software Engineering Laboratory
	Learned
	New Thinking after Phase I
	Phase I: State of the Variables
	Phase II 1986 - 1999
	Defining an Experimentation Framework
	The Experimentation Framework
	The Experimentation Framework
	Phase IIMixing the Software Engineering Laboratory with Classroom Studies
	Lessons Learned
	Lessons Learned
	New Thinking after Phase II
	State of the Variables: Phase II
	Phase III 2000 - 2004
	CeBASE  Center for Empirically Based Software Engineering
	CeBASE Approach
	CeBASE Basic Research Activities
	Lessons Learned
	Applied ResearchNASA High Dependability Computing Program
	What are the top level research problems?
	Lessons Learned
	New Thinking after Phase III
	State of the Variables: Phase III
	Phase IV now and the future
	Building an Experience Base DARPA High Productivity Computing Systems
	Development Time Goals
	Study Locations
	Elements of the Knowledge Base
	Journey
	Evolving Empirical Studies Since 1976
	Evolving Empirical Studies Since 1976
	Where are we and where are we going?
	Types of Studies (1)
	Types of Studies (2)
	Community of Empiricists
	PublicationExperiment Guidelines
	PublicationSupport Material
	PublicationReviews Issues
	Context Variables
	Replications / Meta-Analysis
	Convincing a software domain community
	Convincing the software engineering research community
	Is there a future for empirical software engineering?

