
Software Improvement Feedback Loops:
The SEL Experience

Victor R. Basili

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland
and

Fraunhofer Center - Maryland

25 Years of Learning

Experiences with the Software Engineering Laboratory (SEL)

Consortium of
NASA/GSFC
Computer Sciences Corporation
University of Maryland

Established in 1976

Goals have been to
- better understand software development
- improve the process and product quality

at Goddard, formerly in the Flight Dynamics Division,
now at the Information Systems Center

- using observation, experimentation, learning, and model building

Observation, Feedback, Learning, Packaging

Learned a great deal
Observation played a key role
Feedback loops have provided an environment for learning
Generated lessons learned that have been packaged into our

process, product and organizational structure

Used the SEL as a laboratory to build models, test hypotheses,
Used the University to test high risk ideas
Developed technologies, methods and theories when necessary
Learned what worked and didn’t work, applied ideas when applicable
Kept the business going with an aim at improvement, learning

Quality Improvement Paradigm

Characterize the current project and its environment with respect to the
appropriate models and metrics

Set quantifiable goals for project and corporate success and improvement

Choose the appropriate project processes, supporting methods and tools

Execute the processes, construct the products, collect, validate and
analyze the data to provide real-time feedback for corrective action

Analyze the data to evaluate current practices, determine problems,
record findings, recommend improvements for future project

Package the experience in the form of updated and refined models and
save it in an experience base to be reused on future projects.

Quality Improvement Paradigm

Characterize
& understand

Set
goals

Choose
processes,
methods,
techniques,
and tools

 Package &
store experience

Analyze
results

Execute
process

Provide process
with feedback

Analyze
results

CorporateCorporate
 learning learning

 Project Project
learninglearning

Maturing the Improvement Paradigm
Major Activity Evolution

Characterize
metrics ----> baselines ----> models

Set Goals
 data driven ----> goal driven ----> goal/model driven

Select Process
 heuristic ----> defined ----> high impact ----> evolving

combinations technologies combinations processes
Execute Process
 add-on data collection ----> less data ----> data embedded in process
Analyze

correlations , regressions ----> quantitative/qualitative analysis

Package
recording ----> lessons learned ----> focused tailored packages
 defect , resources , product ----> process x product
baselines models characteristics relationships

Quality Improvement Paradigm
1976 - 1980

Characterize/Understand Apply Models
Looked at other people’s models, e.g., Rayleigh curve, MTTF models

Set Goals Measurement
Decided on measurement as an abstraction mechanism
Collected data from half a dozen projects for a simple data base
Defined the GQM to help us organize the data around a particular study

Select Process Study Process
Used heuristically defined combinations of existing processes
Ran controlled experiments at the University

Execute Process
Data collection was an add-on activity and was loosely monitored

Analyze Data Only
Mostly built baselines and looked for correlations

Package Record
Recorded what we found, built defect baselines and resource models

Quality Improvement Paradigm
 1976 - 1980

 Learned

Need to better understand environment, projects, processes, products, etc.
which factors create similarities and differences among projects
how to choose the right processes for the desired product characteristics
how to evaluate and feed back information for project control

Need to build our own models to understand and characterize locally
- can’t just use other people’s models

Data collection has to be goal driven
- can’t just collect data and then figure out what to do with it

...

Developed the Goal/Question/Metric Paradigm

Quality Improvement Paradigm
Goal/Question/Metric Paradigm

A mechanism for defining and interpreting operational, measurable goals

It uses four parameters:

a model of an object of study,
e.g., a process, product, or any other experience model

a model of one or more focuses,
e.g., models that view the object of study for particular characteristics

a point of view,
e.g., the perspective of the person needing the information

a purpose,
e.g., how the results will be used

to generate a GQM model

relative to a particular environment

Goal Goal Goal

QuestionQuestion Question

Metric Metric Metric

Goal/Question/Metric Paradigm
Goal and Model Based Measurement

A Goal links two models: a model of the object of interest and a model of the focus
to develop an integrated GQM model

Goal: Analyze the final product to characterize it with respect to the
various defect classes from the point of view of the organization

Question: What is the error distribution by phase of entry?

Metric: Number of Requirements Errors, Number of Design Errors, ...

*Data from 11 Flight Dynamics projects (mid 1980s)

COMPUTA-
TIONAL

15%

DATA
27%

INTERFACE
22%

LOGIC/
CONTROL

20%

INITIALIZA-
TION
16%

TEST
30%

DESIGN
23%

CODE
21%

OTHER
26%

85% code writing

15% code reading

NASA/SEL PROCESS BASELINE EXAMPLE
Effort Distribution* Classes of Errors*

Source Code Growth Rate*

93M11U1.007

P
er

ce
nt

 s
ou

rc
e

co
de

 g
ro

w
th

 (L
O

C
)

PROJECT PHASE

0

20

40

60

80

100

DESIGN CODE SYSTEM
TEST

ACCEPTANCE
TEST

The Goal/Question/Metric Paradigm
Creating Baselines

GRO COBE GOES UARS
0

200

400

600

800

0

10

20

30

40

50

12

23

%
 R

eu
se

NASA/SEL Product Baseline Example

Reuse
(1985-1989

)

Error Rates (Development)
(1985-1989)

Cost (staff
months)

(1985-1989)

Early FORTRAN
(4 similar systems)

Early Ada
(4 similar
systems)

Average =
~20%

GROSI

MG
RO

D
Y
GROAGSS

CO
BS

I

M
CO

BE
AGSS

GOES
AGSS GOESI

MGOFO
R

GOAD

A
UARS

AGSS

UARS
TE

L

S

0

2

4

6

8

10

E
rr

or
s/

K
LO

C
 (

de
ve

lo
pe

d)

Average =
~4

T
ot

al
 s

ta
ff

m

on
th

s

Average =
~440

The Goal/Question/Metric Paradigm
Creating Baselines

Characterize/Understand
Built our own baselines/models of cost, defects, process, etc.

Set Goals
Set GQM goals to study multiple areas
Incorporated subjective metrics or indices

Select Process
Experimented with well defined technologies, e.g., Ada & OOD

Execute Process
Combine experiments and case studies
Collected less data

Analyze
Emphasis on process and its relation to product characteristics

Package Record
Recorded lessons learned
Formalize process, product, knowledge and quality models

Quality Improvement Paradigm
 1981 - 1985

Quality Improvement Paradigm
 1981 - 1985

Learned
Software development follows an experimental paradigm, i.e.,

Design of experiments is an important part of improvement
Evaluation and feedback are necessary for learning

Need to experiment with technologies

Need to learn about relationships
- process, product, and quality models need to be better defined

Reusing experience of all kinds is essential for improvement

Can drown in too much data, especially if you don’t have goals and models

...

Developed the QIP as:
 Characterize, Set goals, Choose process, Execute, Analyze, and Record

Characterize/Understand
Captured experience in models

Set Goals
Goals and Models commonplace driver of measurement
Built SME, a model-based experience base with dozens of projects

Select Process
Tailored and evolved technologies based on experience
Experimentation and feedback made explicit in the QIP

Execute Process
Embedded data collection into the processes

Analyze
Demonstrated various (process, product) relationships

Package
Developed focused tailored packages, e.g., generic code components
Learned to transfer technology better through organizational structure,

experimentation, and evolutionary culture change

Quality Improvement Paradigm
 1986 - 1990

Learned

 Experience needs to be evaluated, tailored, and packaged for reuse
There is a tradeoff between reuse and improvement
Software processes must be put in place to support the reuse of experience
A variety of experiences can be reused,

e.g., process, product, resource, defect and quality models
Experiences can be packaged in a variety of ways,

e.g., equations, histograms, parameterized process definitions
Packaged experiences need to be integrated
...

Evolved GQM, QIP
Formalized organizational structure via the Experience Factory Organization

Quality Improvement Paradigm
 1986 - 1990

The Experience Factory Organization

Project Organization Experience Factory

1. Characterize
2. Set Goals
3. Choose Process

Execution
 plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons
learned,
models

6. Package

Generalize

Tailor

Formalize

Disseminate

Experience
Base

environment
characteristics

tailorable
knowledge,
consulting

project
analysis,
process

modification

data,
lessons
learned

The Experience Factory Organization

A Different Paradigm
Project Organization Experience Factory
 Problem Solving Experience Packaging

Decomposition of a problem Unification of different solutions
into simpler ones and re-definition of the problem

Instantiation Generalization, Formalization

Design/Implementation process Analysis/Synthesis process

Validation and Verification Experimentation

Product Delivery within Experience / Recommendations
Schedule and Cost Delivery to Project

An Example Experience Factory

SEL STRUCTURE

DEVELOPERS
(SOURCE OF EXPERIENCE) (PACKAGE EXPERIENCE FOR REUSE)

DATA BASE SUPPORT
(MAINTAIN/QA EXPERIENCE INFORMATION)

Development
measures for each

project

Refinements to
development

process

STAFF 275-300 developers

TYPICAL PROJECT
SIZE 100-300 KSLOC

ACTIVE PROJECTS 6-10 (at any given time)

PROJECT STAFF SIZE 5-25 people

TOTAL PROJECTS
(1976-1994) 120

STAFF 10-15 Analysts

FUNCTION • Set goals/questions/metrics
 - Design studies/experiments

 • Analysis/Research

 • Refine software process

 - Produce reports/findings

PRODUCTS
(1976-1994) 300 reports/documents

SEL DATA BASE

FORMS LIBRARY

REPORTS LIBRARY

160 MB

220,000

• SEL reports
• Project documents
• Reference papers

STAFF 3-6 support staff

FUNCTION • Process forms/data

• QA all data

• Record/archive data

• Maintain SEL data base

• Operate SEL library

NASA + CSC + U of MDNASA + CSC

NASA + CSC

PO PROCESS ANALYSTS
EF

Quality Improvement Paradigm
 1991 - 1995

Characterize
Built baselines and used them to show differences, improvements
Built (process,product) relationship models

Set Goals
 Used baselines to establish usable goals, provide evaluation criteria

Select Process
Studied process conformance and domain understanding
Developed reading techniques (understanding for use)
Developed OO framework for flight dynamics software

Execute Process
Captured the details of experience - more effective feedback

Analyze
More qualitative analysis to extract experiences, e.g., interviews

Package
Evolved and packaged the Experience Factory Organization for export

Quality Improvement Paradigm
 1991 - 1995

 Learned

Can develop technology based upon need, e.g., reading techniques

Need to provide projects with short term results

Learning in an organization is time consuming and sequential

Need to find ways to speed up the learning process

Can better understand the criteria for sharing best practices

Can package the meta-models, e.g., Experience Factory

Quality Improvement Paradigm
1991-1995

E rror R ates (development)

0

2

4

6

8

10

Early Baseline
8 similar systems

Current
7 similar systems

E
rr

o
rs

/K
L

O
C

 (
d

ev
el

o
p

ed
)

Average ~4.5

Average ~1Low 1.7

Low 0.2

High 2.4

High 8.9

0

200

400

600

800
Cost (staff months)

Early Baseline
8 similar systems

supporting 4 projects

Current
7 similar systems

supporting 4 projects

S
ta

ff
 m

o
n

th
s

Average ~490

Average ~210

Low 357

High 755

Low 98

High 277

Reuse

Early Baseline
8 similar systems

Current
8 similar systems

%
 R

eu
se

FORTRAN
(3 systems)

Ada
(5 systems)

0

20

40

60

80

100

Average
~79%

61

90

IE
E

E
39

Average
~20%

Early Baseline = 1985-1989
Current = 1990-1993

Decreased 75% Reduced 55%

Increased 300%

The Software Engineering Laboratory was awarded the first
IEEE Computer Society Award for Software Process Achievement in 1994
for demonstrable, sustained, measured, significant process improvement

Effects of the SEL Activities
1996 - 2000

 Continuous Improvement in the SEL

Decreased Development Defect rates by
75% (87 - 91) 37%(91 - 95)

Reduced Cost by
55% (87 - 91) 42% (91 - 95)

Improved Reuse by
300% (87 - 91) 8% (91 - 95)

Increased Functionality five-fold (76 - 92)

CSC
officially assessed as CMM level 5 and ISO certified (1998),
starting with SEL organizational elements and activities

Fraunhofer Center
for Experimental Software Engineering - Maryland created 1998

CeBaSE
Center for Empirically-Based Software Engineering created 2000

Expanding the Learning Organization
Motivation

• Software development teams need to understand the right models and
techniques to support their projects. For example:
– When are peer reviews more effective than functional testing?
– When should you use a procedural approach to code reviewing?
– How should you tailor a lifecycle model for your environment?

• We need to develop an empirically based software development process
– covering high-level lifecycle models to low-level techniques
– in which the effects of process decisions are well understood
– relative to the development context and project goals

• Involves a mix of applied research and technology transfer activities

Example Projects

• Applied Research Projects
– Experience Management System EMS
– COTS based Development
– Software Reading Techniques
– ...

• Technology Transfer Projects
– NSF CeBASE Center (UMD,USC, FC-MD, MSU, UNL)
– High Dependability Computing Consortium Project (NASA Ames,

UMD, FC-MD, USC, CMU, MIT, …)
– SEC (ABB, Boeing, Daimler Chrysler, Motorola, Nokia, FC-MD,

FIESE)
– ...

Applied Research
Building an Experience Base

Goals of the EMS project
define, study, and experiment with the concept of automated support
for building a learning organization

EMS consists of
– different tools, techniques and methodologies for Experience

Management
– support for representing various kind of experience

We are building several prototypes for different organizations
– A not-for-profit organization (FC-MD)
– Lessons learned EB (car interior design)
– A software consulting organization
– An EB for implementing CMMI (just started)

Components of the FC-MD EMS

Backend:

Frontend:

HyperWave
Information Server

(Distributed File
management, version

control)

FAQ
(Light weight,simple

interface, low threshold,
turns daily questions into

experience)

VQI
(Complex queries ~ data
mining, portal, advanced

interface, higher threshold)

Chat
(Light weight,simple

interface, low threshold,
enables turning discussions

into experience)

HyperWave Portal
(Discussion groups, file

sharing etc etc)

Z: Drive
File Server & Web

Server
(Internal file
management)

Applied Research
COTS Based System Development

Goal of the CBS project
support the development of COTS-based software systems

CBS research include
- observation of CBS development at various sights
- development of empirical models

COTS evaluation and selection
cost estimation (COCOTS)
architectural incompatibilities

Current work involves the
- study and evolution CBS development process at NASA
- definition & application of classification schemes for COTS integration
- building of cost estimation/integration models for CBS development

Applied Research
Empirically Based Technique Development

Goals of the project are to develop:
Families of techniques empirically evaluated for context
Evaluation approaches and criteria to assess the techniques
An expanding Experience Base of technique evaluations

For example: We have defined an approach to generating a family of
reading techniques, called operational scenarios, that are

- document and notation specific
- procedurally defined
- goal driven
- tailorable to the project and environment
- focused to provide a particular coverage of the document
- empirically verified to be effective for its use
- usable in existing methods, such as inspections

So far, five techniques have been defined and evaluated in a series
of experiments. They analyze requirements documents, object
oriented design, user interface design, and frameworks

Applied Research
Abstracting across Reading Experiments

We have generated useful empirical results for technique definition
guidance

• For a reviewer with an average experience level, a procedural
approach to defect detection is more effective than a less procedural
one.

• Procedural inspections, based upon specific goals, will find defects
related to those goals, so inspections can be customized.

• A set of readers of a software artifact are more effective in uncovering
defects when each uses a different and specific focus.

Technology Transfer
CeBASE Project

The goal of the Center for empirically-Based Software Engineering
(CeBASE) is to accumulate empirical models to provide validated
guidelines for selecting techniques and models, recommend areas for
research, and support education

A first step is to build an empirical experience base
continuously evolving with empirical evidence
to help us identify what affects cost, reliability, schedule,...

To achieve this we are
Integrating existing data and models
Initially focusing on new results in two high-leverage areas

Defect Reduction, e. g. reading techniques (see top ten issues)
COTS Based Development (see top ten issues)

Examples of Using Empirical Results
 for development, research, education

 Technique Selection Guidance

When are peer reviews more effective than functional testing?

• Peer reviews are more effective than functional testing for faults of
omission and incorrect specification (UMD, USC)

Implications for empirically based software development process:
• If , for a given project set, there is an expectation of a larger number of

faults of omission or incorrect facts than use peer reviews.
Implications for software engineering research:
• How can peer reviews be improved with better reading techniques for

faults of omission and incorrect fact?
Implications for software engineering education:
• Teach how to experiment with and choose the appropriate analytic

techniques

Examples of Useful Empirical Results
 Lifecycle Selection Guidance

Lifecycle Selection Guidance
• The sequential waterfall model is suitable if and only if

– The requirements are knowable in advance,
– The requirements have no unresolved, high-risk implications,
– The requirements satisfy all the key stakeholders’ expectations,
– A viable architecture for implementing the requirements is known,
– The requirements will be stable during development,
– There is enough calendar time to proceed sequentially. (USC)

• The evolutionary development model is suitable if and only if
– The initial release is good enough to keep the key stakeholders

involved,
– The architecture is scalable to accommodate needed system growth,
– The operational user organizations can adapt to the pace of evolution,
– The evolution dimensions are compatible with legacy system

replacement,
– appropriate management, financial, and incentive structures are in

place. (USC)

Technology Transfer
High Dependability Computing Project

The goal of the HDC Project is to develop high dependability technologies,
study their effectiveness under varying conditions, and transfer them
into practice

Approach: View each technology passing through a series of testbeds.

Testbeds are used to

– stress the technology and demonstrate its context of effectiveness
– help the researcher identify the strengths, bounds, and limits of the

particular technology at different levels
– provide insights into the models of dependability
–

Goals are defined as measurable (GQM)
– help define models of dependability
– establish criteria for each technology
– identify testbed characteristics and vary with the testbed level
– represent the effectiveness of the collection of the technologies

Technology Transfer
Software Experience Center

The goal of the Software Experience Center (SEC) is to leverage the
experience of several leading software competency companies by
sharing their experiences in software process improvement

The approach is to
Run Workshops (2x a year)
Develop Experience Packages in various forms

“Real-time” workshop packages of presentation and discussion
materials

Post-workshop packages of application-level methods, processes
for use by SEC user community (tech-transfer to business
units)

Support On-line interaction
Cooperative workspace for use by SEC personnel and their

companies
Open access to selected topic areas

25 Years of Learning
Conclusion

Improvement of software competence is an essential business need

The software engineering discipline needs to
 build software core competencies as part of overall business strategy
 create organizations for continuous learning to improve software competence
 generate a tangible corporate asset: an experience base of competencies
 build an empirically-based, tailorable software development process

QIP/GQM/EF represents a Lean Software Development concept and a CMM
level 5 organizational structure

Since 1976 have learned a great deal about software improvement
 Learning process has been continuous and evolutionary
 Supported by the symbiotic relationship between research and practice
 Packaged what’s been learned into our process, product and structure

