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Setting the Context

• Software engineering is an engineering discipline

• We need to understand products, processes, and the relationship
between them (we assume there is one)

• We need to experiment (human-based studies), analyze, and 
synthesize that knowledge

• We need to package (model) that knowledge for use and evolution

Recognizing these needs changes how we think, what we do, 
what is important, and the nature of the discipline 
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Motivation for Empirical Software Engineering

Understanding a discipline involves 
– Observation, Gaining knowledge
– Model building, Encapsulating knowledge
– Experimentation, Checking knowledge is correct
– and Evolution. Changing knowledge as we learn more

This is the empirical paradigm that has been used in many fields, 
e.g., physics, medicine, manufacturing

Empirical software engineering involves the scientific use of quantitative 
and qualitative data to understand and improve the software product, 
software development process and software management

In software engineering, this paradigm requires “real world laboratories.”
Research and Development have a synergistic relationship that
requires a working relationship between industry and academe
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Motivation for Empirical Software Engineering

For example, a software organization needs to ask:
What is the right combination of technical and managerial 

solutions for my problem and my environment?
What are the right set of processes for that business?
How should they be tailored?
How do we learn from our successes and failures?
How do we demonstrate sustained, measurable improvement?

More specifically in their particular environment:
When are peer reviews more effective than functional testing? 
When is an agile approach appropriate?
When do I buy rather than make my software product elements?
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Examples of Useful Empirical Results

“Under specified conditions, …”
Technique Selection Guidance 
• Peer reviews are more effective than functional testing for faults of 

omission and incorrect specification
• Functional testing is more effective than reviews for faults related to 

numerical approximations and control flow

Technique Definition Guidance
• For a reviewer with an average experience level, a procedural 

approach to defect detection is more effective than a less procedural 
one. 

• Procedural inspections, based upon specific goals, will find defects 
related to those goals, so inspections can be customized. 

• Readers of a software artifact are more effective in uncovering 
defects when each uses a different and specific focus. 
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Basic Concepts
for Empirical Software Engineering

Project Organization Experience Factory

1. Characterize
2. Set Goals
3. Choose Process

Execution
plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons 
learned,
models

6. Package

Generalize

Tailor

Formalize

Disseminate

Experience
Base

environment
characteristics

tailorable
knowledge,
consulting

project
analysis,
process

modification

data,
lessons
learned

The Experience Factory implements learning cycles in software organizations
by building software competencies and supplying them to projects.
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The Experience Factory Organization 
A Different Paradigm

Project Organization Experience Factory
Problem Solving Experience Packaging

Decomposition of a problem Unification of different solutions
into simpler ones and re-definition of the problem

Instantiation Generalization, Formalization

Design/Implementation process Analysis/Synthesis process

Validation and Verification Experimentation

Product Delivery within Experience / Recommendations
Schedule and Cost Delivery to Project
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An Example Experience Factory Structure

NASA Software Engineering Laboratory (SEL)

Used baselines to show improvement of ground support software 
for satellites

Three baselines: 1987 vs. 1991 vs. 1995

Continuous Improvement in the SEL:
Decreased Development Defect rates by 

75% (87 - 91) 37% (91 - 95)
Reduced Cost by 

55% (87 - 91) 42% (91 - 95)
Improved Reuse by 

300% (87 - 91) 8% (91 - 95)
Increased Functionality five-fold (76 - 92)
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High Productivity Computing Systems (HPCS)

Problem: How do you build sufficient knowledge about the high end 
computing (HEC) so you can improve the time and cost of 
developing these codes?

Project Goal: Improve the buyer’s ability to select the high end 
computer for the problems to be solved based upon productivity, 
where productivity means 

Time to Solution = Development Time + Execution Time

Research Goal: Develop theories, hypotheses, and guidelines that 
allow us to characterize, evaluate, predict and improve how an HPC 
environment (hardware, software, human) affects the development of 
high end computing codes. 

Partners: MIT Lincoln Labs,  MIT, MSU, UCSD, UCSB, UCSD, UH, 
UMD, UNL, USC, FC-MD, ISU



12

HPCS Example Questions

• How does a HEC environment (hardware, software, human) 
affect the development of an HEC program?

– What is the cost and benefit of applying a particular HPC 
technology (MPI, Open MP, UPC, Co-Array Fortran, XMTC, 
StarP,…)?

– What are the relationships among the technologies, the work 
flows, development cost, the defects, and the performance?

– What context variables affect the development cost and 
effectiveness of the technology in achieving its product goals?

– Can we build predictive models of the above relationships?

– What tradeoffs are possible?

– …
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HPCS Experience Packaging

Empirical Data
Development Time 

Experiments –
Novices and Experts

Predictive Models

(Quantitative 
Guidance)

General Heuristics

(Qualitative 
Guidance)

E.g. Tradeoff between effort and performance:

MPI will increase the development effort by y% 
and increase the performance z% over OpenMP

E.g. Experience:

Novices can achieve speed-up in cases 
X, Y, and Z, but not in cases A, B, C.



14

Areas of Study

Users/DevelopersUsers/Developers

DefectsDefectsProcess flowProcess flowEffortEffort

ToolsToolsPerformancePerformanceProgramming 
models

Programming 
models

Environment/HardwareEnvironment/Hardware

Cost & benefit, relationships, context variables, predictive models, tradeoffs
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Areas of Study

• Effort 
– How do you measure effort? What variables affect effort? Can 

we build and evolve hypotheses about the relationship 
between effort and other variables? Can we identify effective 
productivity variables, e.g., values and costs?

• Process flow
– What is the normal process followed? What is the breakdown 

between work and rework? Can we use automated data 
collection to automatically measure process steps?

• Defects 
– What are the domain specific defect classes? Can we identify 

patterns, symptoms, causes, and potential cures and 
preventions? Can we measure effort to isolate and fix 
problems?
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Types of Studies
Controlled experiments

Study programming in the 
small under controlled 
conditions to:
Identify key variables, 
check out methods for data 
collection, get professors 
interested in empiricism

E.g., compare effort 
required to develop code in 
MPI vs. OpenMP

Observational studies 
Characterize in detail a 
realistic programming 
problem in realistic 
conditions to:
validate data collection 
tools and processes

E.g., build an accurate 
effort data model

Case studies and field 
studies

Study programming in the 
large under typical 
conditions

E.g., understand multi-
programmer development 
workflow

Surveys, interviews & 
focus groups

Collect “folklore” from 
practitioners in 
government, industry and 
academia

e.g., generate hypotheses 
to test in experiments and 
case studies
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Types of Testbeds

Experimenting with a series of testbeds ranging in size and perspective

Full scientific applications

Compact applications

Classroom assignments
Nuclear simulation, climate 
modeling, protein folding, …
Developed at ASCI Centers at 5 
universities
Run at the San Diego 
Supercomputer Center

Bioinformatics, graph theory, 
sensor & I/O: combination of 
kernels, e.g., Embarrassingly 
Parallel, Coherence, Broadcast, 
Nearest Neighbor, Reduction
Developed by experts testing 
key benchmarks

Array Compaction, the Game of 
Life, Parallel Sorting, LU 
Decomposition, 
Developed in graduate courses
at a variety of universities
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Approach: Learning over time
Selecting studies and testbeds

• Pilot controlled experiments on classroom assignments (single 
programmer, graduate students)
– Identify variables, data collection problems, workflows, 

experimental designs
• Lead to observational studies of classroom assignments (single 

programmers, graduate students)
– Develop variables and data we can collect with confidence based 

upon our understanding of the problems
• Lead to controlled experiments of classroom assignments (single 

programmers)
– Generate more confidence in the variables, data collection, 

models, provide hypotheses about novices
• Lead to case studies of classroom assignments (teams)

– Study scale-up, multi-developer workflows, 
• Lead to case studies of compact apps (professional developers)

– Study scale-up, multi-developer workflows,
• Interviews with developers and users in a variety of environments…

Crawl before you walk before you run
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Approach: Learning over time
Analysis and Synthesis

• Identify relevant variables, context variables, programmer 
workflows, mechanisms for identifying variables and relationships 
– Developers: Novice, experts
– Problem spaces: various kernels; computationally- based vs. 

communication based; …
– Work-flows: single programmer research model, …
– Mechanisms: controlled experiments, folklore elicitation, case 

studies

• Identify measures and proxies for those variables that can be 
collected accurately or what proxies can be substituted for those 
variables, understand the data collection problems,  

• Identify the relationships among those variables, and the 
contexts in which those relationships are true

• Build models of time to development, productivity, relative 
effectiveness of different programming models, 
– E.g., OpenMP offers more speedup for novices in a shorter 

amount of time when the problem is more computationally-
based than communication based. 
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Approach: Learning over time
Formalizing results

• Identify folklore*: elicit expert opinion to identify the relevant 
variables and terminology, some simple relationships among 
variables, looking for consensus or disagreement

• Evolve the folklore: evolve the relationships and identify the 
context variables that affect their validity, using surveys and 
other mechanisms

• Turn the folklore into hypotheses using variables that can be 
specified and measured 

• Verify hypotheses or generate more confidence in their 
usefulness in various studies about  development, productivity, 
relative effectiveness of different programming models, 
– E.g., Usually, the first parallel implementation of a code is 

slower than its serial counterpart.

*Folklore: An unsupported notion, story, or saying widely circulated
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Building Experience Bases

Experimental designs
Hypotheses

Folklore/ 
Results

scale

Classroom 
assignments

Compact 
applications

Full-scale 
scientific 

applications

EXPERIENCE BASES
-Quantitative insights
-Models in context

Insights, Models, Results

Folklore/ 
Results

Folklore/ 
Results
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Building Experience Bases
Hypotheses, Evidence, Implications

Build a chain of evidence
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Instrumentation

Experimental Packages 

Programming problemsChecklists, Templates

Industrial studiesClassroom studies

Advice to vendorsAdvice to mission partners

- Language features utilization- Workflow models

- Productivity models
- Workflow models

Advice to university professors

- Effective programming 
methods

- Student workflows
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Approach: Multiple collaborations to 
generate necessary data

UCSB
3 studies

USC
4 studies

UCSD
1 study

MIT
3 studies

UMD
10 studies

Mississippi State
2 studies

U Utah
ASC-Alliance

Iowa State
1 study

CalTech
ASC-Alliance

UIUC
ASC-Alliance

U Chicago
ASC-Alliance

Stanford U
ASC-Alliance

U Hawaii
1 study

SDSC
Multiple 
studies
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Example of our Approach: 
Bringing it all together

• Building knowledge about defects
– Goal: Provide better guidance about the types of defects likely to 

occur during HEC software development
– Hypothesis: Knowledge about historic defects common in the 

domain can help developers avoid them in the future.

Domain experts
Project developers

Literature
Folklore

---
---

---
--- ............

---
---

Code analysis

Create experience 
base of defect 

knowledgeFormulate 
heuristics

Make knowledge available 
to developers 

&
test whether it leads to 

improvement

Update knowledge based 
on experience
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Results: 
Infrastructure Tools & Packages

Experimenters’ checklist
A checklist for professors and experts running studies. Includes templates, forms, and reusable 
project artifacts.

Value: Decreases effort for experimenters & increases validity of data comparisons across studies 
http://care.cs.umd.edu:8080/hpcs/faculty/

HPCS Web Portal @ UMD
http://care.cs.umd.edu:8080/hpcs/

Downloadable instrumentation package 
for individual study & classroom study

Value: Once installed, allows 
minimally intrusive data collection and 
common definitions of the measures 
collected 
http://care.cs.umd.edu:8080/hpcs/soft
ware/umdinst/

Experiment Manager
Web-based data repository

Value: Web-based front-end makes 
data collection require less effort 
Subjects can send data directly to 
analysis team, doesn’t require 
instructor/TA to be involved
Easy view of whether all students are 
contributing data
http://care.cs.umd.edu:8080/umdexpt/
cgi-bin/index.cgi
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Results: Accumulating Data Sets 
(Controlled experiments, classroom assigns.)

Problem serial MPI OpenMP Matlab*P XMT-C
Co-Array 
Fortran

UPC
Hybrid MPI-

OpenMP
Game of life 4 5 2 1 2 2
SWIM 1
Buffon-Laplace 2 3 2 3

Laplace's equation 1 1 1 1

Sharks & fishes 1 2 2 1
Grid of resistors 1 1 1 1
Matrix power via 
prefix

3 1 1 1

Sparse conjugate-
gradient

2 1 1

Dense matrix-vector 
multiply

1 1 1

Sparse matrix-vector
multiply

1 1 2

Sorting 2 3 1 2

Quantum dynamics 2

Molecular dynamics 1

Randomized 
selection

1

Breadth-first search 1

LU decomposition 1
Shortest path 1
Search for intelligent 
puzzles

1
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MPI vs. OpenMP
Mean difference in programming effort

95% confidence intervals
Can compare across models,
But no control for ordering

Over iterations

Tried to control for ordering,
but method too complicated

Proper control for ordering

Ability to run valid studies improves over iterations

MPI - OpenMP
Hours

Results: Comparing MPI & OpenMP
(Controlled experiments, classroom assigns.)
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Results: Characterizing novices
(Synthesizing classroom assignments)

• OpenMP saves 35-75% of effort vs. MPI on most problems 
• UPC/CAF saves ~40% of effort vs. MPI
• XMT-C saves ~50% of effort vs. MPI
• Experience with problem reduces effort, but effect of 

programming model is greater than effect of experience
• When performance is the goal:

– Experts and students spend the same amount of time
– Experts get significantly better performance

• Performance variation is considerable, especially for MPI
• Many do not achieve good performance
• No correlation between effort and performance
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Results: Understanding workflow
(Observational study)
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Failed compile-run cycle

Successful edit-compile

Successful compile-run cycle

Failed edit-compile

A series of failed and successful
Compile cycles with no runs

New code is being added and 
CompileTime defects being fixed

A series of failed and 
successful Compile-
Run cycles 

RunTime defects 
being fixed

Observation:

Conclusion:

A series of successful Compile 
and failed Run cycles 

Developer is not able to fix the 
defects
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Results: Characterizing Processes
(Full-scale apps: SDSC, ASC)

• Users fall into different categories
– Marquee users (run at very large scale, often using full system)

• Often have a consultant to help them improve performance
– Normal users (typically use 128-512 processors)

• Less likely to need to tune
– Small users (often novices just learning parallel programming)

• Determining inputs can take weeks, are themselves research projects
– Modeling complex objects (e.g. space shuttle)
– Determining initial conditions (e.g. supernova)

• Debugging is very challenging
– Modules may work in isolation, but fail when connected together
– Program may work on 32 processors, break on 64 processors
– Hard to debug failures on hundreds of processors (print statements 

don’t scale up!) 
• Visualization is regularly used for validation
• Many projects have no one with a computer science background
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Results: Characterizing Processes
(Full-scale apps: SDSC, ASC)

• Performance is treated as a constraint, not a goal to be maximized
– Performance is important until it is “good enough” for their machine 

allocation
• Portability is a must 

– Can’t commit to technologies unless they know they will be there on 
future platforms

– Some projects have broken compilers and libraries on every platform! 
• Many users prefer not to use performance tools

– Problems scaling to large processors
– Difficult-to-use interfaces
– Steep learning curve
– Too much detail provided by tool

• Codes are multi-language and run on remote machines
– Many software tools won’t work in this environment 

• There is extensive reuse of libraries, but no reuse of frameworks 
– Everyone has to write MPI code
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Results: Defect Knowledge
(Classification scheme abstracted from data)

Type Sub-type Description
Algorithm ---

File I/O
Random function

---

---

Deadlock
Race

Load balancing
Scheduling

Logical error

Side-effect of 
parallelization

Serial constructs causing correctness and 
performance defects when accessed in parallel 
contexts

Erroneous use of language 
features

Erroneous use of parallel language features

Space decomposition Incorrect mapping between the problem space 
and the program memory space

Synchronization Incorrect/unnecessary synchronization

Performance Scalability problem because processors are not 
working in parallel
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Results: Defect Knowledge
(Example defect type description)

Pattern: Erroneous use of language features
• Simple mistakes in understanding that are common for novices

• E.g., inconsistent parameter types between send and recv, 
• E.g., forgotten mandatory function calls
• E.g., inappropriate choice of functions

Symptoms:
• Compile-type error (easy to fix)
• Some defects may surface only under specific conditions 

• (number of processors, value of input, hardware/software 
environment…)

Causes:
• Lack of experience with the syntax and semantics of new language

features
Cures & preventions:
• Check unfamiliar language features carefully
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An Operational Experience Base
(Defect Patterns, Symptoms, Causes, Cures)

Source code history

Bug tracking systems
Mailing lists

Surveys/interviews

Feedback

Packaged knowledge

Assist 
analysis

HPCBugBase (experience base)
http://care.cs.umd.edu:8080/hpcs/bugbase/

Training materials

Testbed for tools

Recommendations
to technology

providers

Analysis method

Data analysis

Applications

Insights from experts

The bases we are building have no worth without a community of users.
We invite you to visit!

Document recurring correctness/performance problems at various levels of 
abstraction (source code, defect descriptions, advice, classification schemes)



39

What we believe 

Experimentation is fundamental to any engineering science

Organizations/Domains have different characteristics, goals, 
cultures; stakeholders have different needs

We need to learn from our experiences, build software core 
competencies, build domain knowledge with respect to software

Interaction among industrial, government and academic 
organizations is important to understand and solve the problems

To expand the potential competencies, we must partner

Software Engineering is “big science”; 
not small independent technology developments

Software Engineering
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Thanks to...

Study team: 
UMD: Vic Basili, Marv Zelkowitz, Jeff Hollingsworth, 
Taiga Nakamura, Sima Asgari, Forrest Shull, 
Nico Zazworka, Rola Alameh, Daniela Suares Cruzes
UNL: Lorin Hochstein
MSU: Jeff Carver
UH: Philip Johnson
SDSC: Nicole Wolter, Michael McCracken

Professors teaching classes:
Alan Edelman [MIT], John Gilbert [UCSB], Mary Hall, 
Aiichiro Nakano, Jackie  Chame [USC] Allan Snavely 
[UCSD], Alan Sussman, Uzi Vishkin, [UMD], Ed Luke 
[MSU], Henri Casanova [UH], Glenn Luecke [ISU]
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