
Using Empirical Study to Learn about
the Development of High-End Codes

Development Time Working Group of
High Productivity Computing Systems (HPCS) Project

Victor R. Basili
University of Maryland

and
Fraunhofer Center - Maryland

2

Outline

• Empirical software engineering

• Empirical software engineering in the HPCS domain

• Our research approach

• Example results

• Final thoughts

3

Setting the Context

• Software engineering is an engineering discipline

• We need to understand products, processes, and the relationship
between them (we assume there is one)

• We need to experiment (human-based studies), analyze, and
synthesize that knowledge

• We need to package (model) that knowledge for use and evolution

Recognizing these needs changes how we think, what we do,
what is important, and the nature of the discipline

4

Motivation for Empirical Software Engineering

Understanding a discipline involves
– Observation, Gaining knowledge
– Model building, Encapsulating knowledge
– Experimentation, Checking knowledge is correct
– and Evolution. Changing knowledge as we learn more

This is the empirical paradigm that has been used in many fields,
e.g., physics, medicine, manufacturing

Empirical software engineering involves the scientific use of quantitative
and qualitative data to understand and improve the software product,
software development process and software management

In software engineering, this paradigm requires “real world laboratories.”
Research and Development have a synergistic relationship that
requires a working relationship between industry and academe

5

Motivation for Empirical Software Engineering

For example, a software organization needs to ask:
What is the right combination of technical and managerial

solutions for my problem and my environment?
What are the right set of processes for that business?
How should they be tailored?
How do we learn from our successes and failures?
How do we demonstrate sustained, measurable improvement?

More specifically in their particular environment:
When are peer reviews more effective than functional testing?
When is an agile approach appropriate?
When do I buy rather than make my software product elements?

6

Examples of Useful Empirical Results

“Under specified conditions, …”
Technique Selection Guidance
• Peer reviews are more effective than functional testing for faults of

omission and incorrect specification
• Functional testing is more effective than reviews for faults related to

numerical approximations and control flow

Technique Definition Guidance
• For a reviewer with an average experience level, a procedural

approach to defect detection is more effective than a less procedural
one.

• Procedural inspections, based upon specific goals, will find defects
related to those goals, so inspections can be customized.

• Readers of a software artifact are more effective in uncovering
defects when each uses a different and specific focus.

7

Basic Concepts
for Empirical Software Engineering

Project Organization Experience Factory

1. Characterize
2. Set Goals
3. Choose Process

Execution
plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons
learned,
models

6. Package

Generalize

Tailor

Formalize

Disseminate

Experience
Base

environment
characteristics

tailorable
knowledge,
consulting

project
analysis,
process

modification

data,
lessons
learned

The Experience Factory implements learning cycles in software organizations
by building software competencies and supplying them to projects.

8

The Experience Factory Organization
A Different Paradigm

Project Organization Experience Factory
Problem Solving Experience Packaging

Decomposition of a problem Unification of different solutions
into simpler ones and re-definition of the problem

Instantiation Generalization, Formalization

Design/Implementation process Analysis/Synthesis process

Validation and Verification Experimentation

Product Delivery within Experience / Recommendations
Schedule and Cost Delivery to Project

9

An Example Experience Factory Structure

NASA Software Engineering Laboratory (SEL)

Used baselines to show improvement of ground support software
for satellites

Three baselines: 1987 vs. 1991 vs. 1995

Continuous Improvement in the SEL:
Decreased Development Defect rates by

75% (87 - 91) 37% (91 - 95)
Reduced Cost by

55% (87 - 91) 42% (91 - 95)
Improved Reuse by

300% (87 - 91) 8% (91 - 95)
Increased Functionality five-fold (76 - 92)

10

Outline

• Empirical software engineering

• Empirical software engineering in the HPCS domain

• Our research approach

• Example results

• Final thoughts

11

High Productivity Computing Systems (HPCS)

Problem: How do you build sufficient knowledge about the high end
computing (HEC) so you can improve the time and cost of
developing these codes?

Project Goal: Improve the buyer’s ability to select the high end
computer for the problems to be solved based upon productivity,
where productivity means

Time to Solution = Development Time + Execution Time

Research Goal: Develop theories, hypotheses, and guidelines that
allow us to characterize, evaluate, predict and improve how an HPC
environment (hardware, software, human) affects the development of
high end computing codes.

Partners: MIT Lincoln Labs, MIT, MSU, UCSD, UCSB, UCSD, UH,
UMD, UNL, USC, FC-MD, ISU

12

HPCS Example Questions

• How does a HEC environment (hardware, software, human)
affect the development of an HEC program?

– What is the cost and benefit of applying a particular HPC
technology (MPI, Open MP, UPC, Co-Array Fortran, XMTC,
StarP,…)?

– What are the relationships among the technologies, the work
flows, development cost, the defects, and the performance?

– What context variables affect the development cost and
effectiveness of the technology in achieving its product goals?

– Can we build predictive models of the above relationships?

– What tradeoffs are possible?

– …

13

HPCS Experience Packaging

Empirical Data
Development Time

Experiments –
Novices and Experts

Predictive Models

(Quantitative
Guidance)

General Heuristics

(Qualitative
Guidance)

E.g. Tradeoff between effort and performance:

MPI will increase the development effort by y%
and increase the performance z% over OpenMP

E.g. Experience:

Novices can achieve speed-up in cases
X, Y, and Z, but not in cases A, B, C.

14

Areas of Study

Users/DevelopersUsers/Developers

DefectsDefectsProcess flowProcess flowEffortEffort

ToolsToolsPerformancePerformanceProgramming
models

Programming
models

Environment/HardwareEnvironment/Hardware

Cost & benefit, relationships, context variables, predictive models, tradeoffs

15

Areas of Study

• Effort
– How do you measure effort? What variables affect effort? Can

we build and evolve hypotheses about the relationship
between effort and other variables? Can we identify effective
productivity variables, e.g., values and costs?

• Process flow
– What is the normal process followed? What is the breakdown

between work and rework? Can we use automated data
collection to automatically measure process steps?

• Defects
– What are the domain specific defect classes? Can we identify

patterns, symptoms, causes, and potential cures and
preventions? Can we measure effort to isolate and fix
problems?

16

Outline

• Empirical software engineering

• Empirical software engineering in the HPCS domain

• Our research approach

• Example results

• Final thoughts

17

Types of Studies
Controlled experiments

Study programming in the
small under controlled
conditions to:
Identify key variables,
check out methods for data
collection, get professors
interested in empiricism

E.g., compare effort
required to develop code in
MPI vs. OpenMP

Observational studies
Characterize in detail a
realistic programming
problem in realistic
conditions to:
validate data collection
tools and processes

E.g., build an accurate
effort data model

Case studies and field
studies

Study programming in the
large under typical
conditions

E.g., understand multi-
programmer development
workflow

Surveys, interviews &
focus groups

Collect “folklore” from
practitioners in
government, industry and
academia

e.g., generate hypotheses
to test in experiments and
case studies

18

Types of Testbeds

Experimenting with a series of testbeds ranging in size and perspective

Full scientific applications

Compact applications

Classroom assignments
Nuclear simulation, climate
modeling, protein folding, …
Developed at ASCI Centers at 5
universities
Run at the San Diego
Supercomputer Center

Bioinformatics, graph theory,
sensor & I/O: combination of
kernels, e.g., Embarrassingly
Parallel, Coherence, Broadcast,
Nearest Neighbor, Reduction
Developed by experts testing
key benchmarks

Array Compaction, the Game of
Life, Parallel Sorting, LU
Decomposition,
Developed in graduate courses
at a variety of universities

19

Approach: Learning over time
Selecting studies and testbeds

• Pilot controlled experiments on classroom assignments (single
programmer, graduate students)
– Identify variables, data collection problems, workflows,

experimental designs
• Lead to observational studies of classroom assignments (single

programmers, graduate students)
– Develop variables and data we can collect with confidence based

upon our understanding of the problems
• Lead to controlled experiments of classroom assignments (single

programmers)
– Generate more confidence in the variables, data collection,

models, provide hypotheses about novices
• Lead to case studies of classroom assignments (teams)

– Study scale-up, multi-developer workflows,
• Lead to case studies of compact apps (professional developers)

– Study scale-up, multi-developer workflows,
• Interviews with developers and users in a variety of environments…

Crawl before you walk before you run

20

Approach: Learning over time
Analysis and Synthesis

• Identify relevant variables, context variables, programmer
workflows, mechanisms for identifying variables and relationships
– Developers: Novice, experts
– Problem spaces: various kernels; computationally- based vs.

communication based; …
– Work-flows: single programmer research model, …
– Mechanisms: controlled experiments, folklore elicitation, case

studies

• Identify measures and proxies for those variables that can be
collected accurately or what proxies can be substituted for those
variables, understand the data collection problems,

• Identify the relationships among those variables, and the
contexts in which those relationships are true

• Build models of time to development, productivity, relative
effectiveness of different programming models,
– E.g., OpenMP offers more speedup for novices in a shorter

amount of time when the problem is more computationally-
based than communication based.

21

Approach: Learning over time
Formalizing results

• Identify folklore*: elicit expert opinion to identify the relevant
variables and terminology, some simple relationships among
variables, looking for consensus or disagreement

• Evolve the folklore: evolve the relationships and identify the
context variables that affect their validity, using surveys and
other mechanisms

• Turn the folklore into hypotheses using variables that can be
specified and measured

• Verify hypotheses or generate more confidence in their
usefulness in various studies about development, productivity,
relative effectiveness of different programming models,
– E.g., Usually, the first parallel implementation of a code is

slower than its serial counterpart.

*Folklore: An unsupported notion, story, or saying widely circulated

22

Building Experience Bases

Experimental designs
Hypotheses

Folklore/
Results

scale

Classroom
assignments

Compact
applications

Full-scale
scientific

applications

EXPERIENCE BASES
-Quantitative insights
-Models in context

Insights, Models, Results

Folklore/
Results

Folklore/
Results

23

Building Experience Bases
Hypotheses, Evidence, Implications

Build a chain of evidence

24

Instrumentation

Experimental Packages

Programming problemsChecklists, Templates

Industrial studiesClassroom studies

Advice to vendorsAdvice to mission partners

- Language features utilization- Workflow models

- Productivity models
- Workflow models

Advice to university professors

- Effective programming
methods

- Student workflows

25

Approach: Multiple collaborations to
generate necessary data

UCSB
3 studies

USC
4 studies

UCSD
1 study

MIT
3 studies

UMD
10 studies

Mississippi State
2 studies

U Utah
ASC-Alliance

Iowa State
1 study

CalTech
ASC-Alliance

UIUC
ASC-Alliance

U Chicago
ASC-Alliance

Stanford U
ASC-Alliance

U Hawaii
1 study

SDSC
Multiple
studies

26

Example of our Approach:
Bringing it all together

• Building knowledge about defects
– Goal: Provide better guidance about the types of defects likely to

occur during HEC software development
– Hypothesis: Knowledge about historic defects common in the

domain can help developers avoid them in the future.

Domain experts
Project developers

Literature
Folklore

---

Code analysis

Create experience
base of defect

knowledgeFormulate
heuristics

Make knowledge available
to developers

&
test whether it leads to

improvement

Update knowledge based
on experience

27

Outline

• Empirical software engineering

• Empirical software engineering in the HPCS domain

• Our research approach

• Example results

• Final thoughts

28

Results:
Infrastructure Tools & Packages

Experimenters’ checklist
A checklist for professors and experts running studies. Includes templates, forms, and reusable
project artifacts.

Value: Decreases effort for experimenters & increases validity of data comparisons across studies
http://care.cs.umd.edu:8080/hpcs/faculty/

HPCS Web Portal @ UMD
http://care.cs.umd.edu:8080/hpcs/

Downloadable instrumentation package
for individual study & classroom study

Value: Once installed, allows
minimally intrusive data collection and
common definitions of the measures
collected
http://care.cs.umd.edu:8080/hpcs/soft
ware/umdinst/

Experiment Manager
Web-based data repository

Value: Web-based front-end makes
data collection require less effort
Subjects can send data directly to
analysis team, doesn’t require
instructor/TA to be involved
Easy view of whether all students are
contributing data
http://care.cs.umd.edu:8080/umdexpt/
cgi-bin/index.cgi

29

Results: Accumulating Data Sets
(Controlled experiments, classroom assigns.)

Problem serial MPI OpenMP Matlab*P XMT-C
Co-Array
Fortran

UPC
Hybrid MPI-

OpenMP
Game of life 4 5 2 1 2 2
SWIM 1
Buffon-Laplace 2 3 2 3

Laplace's equation 1 1 1 1

Sharks & fishes 1 2 2 1
Grid of resistors 1 1 1 1
Matrix power via
prefix

3 1 1 1

Sparse conjugate-
gradient

2 1 1

Dense matrix-vector
multiply

1 1 1

Sparse matrix-vector
multiply

1 1 2

Sorting 2 3 1 2

Quantum dynamics 2

Molecular dynamics 1

Randomized
selection

1

Breadth-first search 1

LU decomposition 1
Shortest path 1
Search for intelligent
puzzles

1

30

MPI vs. OpenMP
Mean difference in programming effort

95% confidence intervals
Can compare across models,
But no control for ordering

Over iterations

Tried to control for ordering,
but method too complicated

Proper control for ordering

Ability to run valid studies improves over iterations

MPI - OpenMP
Hours

Results: Comparing MPI & OpenMP
(Controlled experiments, classroom assigns.)

31

Results: Characterizing novices
(Synthesizing classroom assignments)

• OpenMP saves 35-75% of effort vs. MPI on most problems
• UPC/CAF saves ~40% of effort vs. MPI
• XMT-C saves ~50% of effort vs. MPI
• Experience with problem reduces effort, but effect of

programming model is greater than effect of experience
• When performance is the goal:

– Experts and students spend the same amount of time
– Experts get significantly better performance

• Performance variation is considerable, especially for MPI
• Many do not achieve good performance
• No correlation between effort and performance

32

Results: Understanding workflow
(Observational study)

0

1

2

3

4

5

0:
00

0:
11

0:
24

1:
34

1:
49

2:
24

2:
44

3:
14

3:
20

3:
42

4:
00

4:
14

4:
57

5:
11

5:
19

5:
30

5:
48

5:
52

6:
07

6:
15

6:
24

6:
31

6:
36

6:
46

7:
20

7:
26

7:
44

7:
50

8:
04

8:
10

8:
16

8:
25

8:
30

8:
35

Elapsed Time

Failed compile-run cycle

Successful edit-compile

Successful compile-run cycle

Failed edit-compile

A series of failed and successful
Compile cycles with no runs

New code is being added and
CompileTime defects being fixed

A series of failed and
successful Compile-
Run cycles

RunTime defects
being fixed

Observation:

Conclusion:

A series of successful Compile
and failed Run cycles

Developer is not able to fix the
defects

33

Results: Characterizing Processes
(Full-scale apps: SDSC, ASC)

• Users fall into different categories
– Marquee users (run at very large scale, often using full system)

• Often have a consultant to help them improve performance
– Normal users (typically use 128-512 processors)

• Less likely to need to tune
– Small users (often novices just learning parallel programming)

• Determining inputs can take weeks, are themselves research projects
– Modeling complex objects (e.g. space shuttle)
– Determining initial conditions (e.g. supernova)

• Debugging is very challenging
– Modules may work in isolation, but fail when connected together
– Program may work on 32 processors, break on 64 processors
– Hard to debug failures on hundreds of processors (print statements

don’t scale up!)
• Visualization is regularly used for validation
• Many projects have no one with a computer science background

34

Results: Characterizing Processes
(Full-scale apps: SDSC, ASC)

• Performance is treated as a constraint, not a goal to be maximized
– Performance is important until it is “good enough” for their machine

allocation
• Portability is a must

– Can’t commit to technologies unless they know they will be there on
future platforms

– Some projects have broken compilers and libraries on every platform!
• Many users prefer not to use performance tools

– Problems scaling to large processors
– Difficult-to-use interfaces
– Steep learning curve
– Too much detail provided by tool

• Codes are multi-language and run on remote machines
– Many software tools won’t work in this environment

• There is extensive reuse of libraries, but no reuse of frameworks
– Everyone has to write MPI code

35

Results: Defect Knowledge
(Classification scheme abstracted from data)

Type Sub-type Description
Algorithm ---

File I/O
Random function

Deadlock
Race

Load balancing
Scheduling

Logical error

Side-effect of
parallelization

Serial constructs causing correctness and
performance defects when accessed in parallel
contexts

Erroneous use of language
features

Erroneous use of parallel language features

Space decomposition Incorrect mapping between the problem space
and the program memory space

Synchronization Incorrect/unnecessary synchronization

Performance Scalability problem because processors are not
working in parallel

36

Results: Defect Knowledge
(Example defect type description)

Pattern: Erroneous use of language features
• Simple mistakes in understanding that are common for novices

• E.g., inconsistent parameter types between send and recv,
• E.g., forgotten mandatory function calls
• E.g., inappropriate choice of functions

Symptoms:
• Compile-type error (easy to fix)
• Some defects may surface only under specific conditions

• (number of processors, value of input, hardware/software
environment…)

Causes:
• Lack of experience with the syntax and semantics of new language

features
Cures & preventions:
• Check unfamiliar language features carefully

37

Outline

• Empirical software engineering

• Empirical software engineering in the HPCS domain

• Our research approach

• Example results

• Final thoughts

38

An Operational Experience Base
(Defect Patterns, Symptoms, Causes, Cures)

Source code history

Bug tracking systems
Mailing lists

Surveys/interviews

Feedback

Packaged knowledge

Assist
analysis

HPCBugBase (experience base)
http://care.cs.umd.edu:8080/hpcs/bugbase/

Training materials

Testbed for tools

Recommendations
to technology

providers

Analysis method

Data analysis

Applications

Insights from experts

The bases we are building have no worth without a community of users.
We invite you to visit!

Document recurring correctness/performance problems at various levels of
abstraction (source code, defect descriptions, advice, classification schemes)

39

What we believe

Experimentation is fundamental to any engineering science

Organizations/Domains have different characteristics, goals,
cultures; stakeholders have different needs

We need to learn from our experiences, build software core
competencies, build domain knowledge with respect to software

Interaction among industrial, government and academic
organizations is important to understand and solve the problems

To expand the potential competencies, we must partner

Software Engineering is “big science”;
not small independent technology developments

Software Engineering

40

Thanks to...

Study team:
UMD: Vic Basili, Marv Zelkowitz, Jeff Hollingsworth,
Taiga Nakamura, Sima Asgari, Forrest Shull,
Nico Zazworka, Rola Alameh, Daniela Suares Cruzes
UNL: Lorin Hochstein
MSU: Jeff Carver
UH: Philip Johnson
SDSC: Nicole Wolter, Michael McCracken

Professors teaching classes:
Alan Edelman [MIT], John Gilbert [UCSB], Mary Hall,
Aiichiro Nakano, Jackie Chame [USC] Allan Snavely
[UCSD], Alan Sussman, Uzi Vishkin, [UMD], Ed Luke
[MSU], Henri Casanova [UH], Glenn Luecke [ISU]

	Using Empirical Study to Learn about the Development of High-End Codes
	Outline
	Setting the Context
	Motivation for Empirical Software Engineering
	Motivation for Empirical Software Engineering
	Examples of Useful Empirical Results
	The Experience Factory Organization A Different Paradigm
	Outline
	High Productivity Computing Systems (HPCS)
	HPCS Example Questions
	HPCS Experience Packaging
	Areas of Study
	Areas of Study
	Outline
	Types of Studies
	Types of Testbeds
	Approach: Learning over timeSelecting studies and testbeds
	Approach: Learning over timeAnalysis and Synthesis
	Approach: Learning over timeFormalizing results
	Building Experience BasesHypotheses, Evidence, Implications
	Approach: Multiple collaborations to generate necessary data
	Example of our Approach: Bringing it all together
	Outline
	Results: Infrastructure Tools & Packages
	Results: Accumulating Data Sets (Controlled experiments, classroom assigns.)
	Results: Comparing MPI & OpenMP(Controlled experiments, classroom assigns.)
	Results: Characterizing novices(Synthesizing classroom assignments)
	Results: Understanding workflow(Observational study)
	Results: Characterizing Processes (Full-scale apps: SDSC, ASC)
	Results: Characterizing Processes (Full-scale apps: SDSC, ASC)
	Results: Defect Knowledge (Classification scheme abstracted from data)
	Results: Defect Knowledge (Example defect type description)
	Outline
	An Operational Experience Base(Defect Patterns, Symptoms, Causes, Cures)
	What we believe
	Thanks to...

