
Process Improvements
for Software Quality and Reliability

Victor R. Basili

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland
and

Fraunhofer Center - Maryland

OUTLINE

The Software Business

Measurement:
The Goal Question Metric Paradigm

Process Improvement:
The Quality Improvement Paradigm

Evolutionary Learning:
The Experience Factory

An Example Experience Factory

THE SOFTWARE BUSINESS
Business Requirements

Any successful business requires:

- combination of technical and managerial solutions

- well-defined set of product needs
- well-defined set of processes
- closed loop processes that support project control,

 learning and improvement

Key technologies for supporting these needs include:
modeling, measurement, reuse
of processes, products, and other knowledge relevant to the business

THE SOFTWARE BUSINESS
 Implications for the Software Business

Understand the process and product

Define process and product qualities

Evaluate successes and failures

Feedback information for project control

Learn from our experiences

Package successful experiences and core competencies

Use those experiences and core competencies

THE SOFTWARE BUSINESS
The Nature of Software

Learning in the software discipline is evolutionary and experimental

Software is development (design) not production

Software technologies are human based

There is a lack of models for reasoning about the process and product

All software is not the same; processes, goals are variable

Packaged, reusable, experiences require a additional resources in the form
of organization, processes, people, etc.

Software is difficult

THE SOFTWARE BUSINESS
Software Quality Needs

Quality Definition: Define qualities and quality goals operationally relative to
the project and the organization

Process Selection: Find criteria for selecting the appropriate methods and tools
and tailoring them to the needs of the project and the organization

Quality Evaluation: Evaluate the quality of the process and product relative to
the specific project and organizational goals

Quality Organization: Organize quality assurance from planning through
execution through evaluation, feedback and improvement

THE SOFTWARE BUSINESS
The Pyramid of Quality

Quality as
business

opportunity

Quality as a
controllable

problem
FUNDAMENTAL (ISO 9000)

EXCELLENCE

Quality as a
management

tool

MANAGEMENT

Towards Software Quality Improvement

The following concepts have been developed and evolved based
upon experience in a number of organizations

A paradigm for establishing project and corporate goals and a mechanism
for measuring against those goals

Goal/Question/Metric Paradigm

An evolutionary improvement paradigm tailored for the software business

Quality Improvement Paradigm

An organizational approach for building software competencies and
supplying them to projects

Experience Factory

SOFTWARE MEASUREMENT

What can we do with measurement?

Create a corporate memory - baselines/models of current practices
e.g., how much will a new project cost?

Determine strengths and weaknesses of the current process and product
e.g., are certain types of errors commonplace?

Develop a rationale for adopting/refining techniques
e.g., what techniques will minimize the problems, change the baselines?

Assess the impact of techniques
e.g., does functional testing minimize certain error classes?

Evaluate the quality of the process/product
e.g., are we applying inspections appropriately?

what is the reliability of the product after delivery?

SOFTWARE MEASUREMENT

Measurement is not just the collection of data/metrics

 calendar time number of open problems

number of defects found in inspections

cyclomatic complexity machine time lines of code/module

 total lines of code

severity of failures total effort

 total number of defects lines of code/staff month

number of failures during system test

SOFTWARE MEASUREMENT

We need a measurement framework to

Characterize
Describe and differentiate software processes and products
Build descriptive models and baselines

Understand
Explain associations/dependencies between processes and products
Discover causal relationships
Analyze models

Evaluate
Assess the achievement of quality goals
Assess the impact of technology on products
Compare models

Predict
Estimate expected product quality and process resource consumption
Build predictive models

Motivate
Describe what we need to do to control and manage software
Build prescriptive models

MEASUREMENT FRAMEWORKS

Goal/Question/Metric Paradigm

A mechanism for defining and interpreting operational, measurable goals

It uses four parameters:

a model of an object of study,
e.g., a process, product, or any other experience model

a model of one or more focuses,
e.g., models that view the object of study for particular characteristics

a point of view,
e.g., the perspective of the person needing the information

a purpose,
e.g., how the results will be used

to generate a GQM model

relative to a particular environment

GOAL/QUESTION/METRIC PARADIGM
Goal and Model Based Measurement

A Goal links two models: a model of the object of interest and a model of the
focus and develops an integrated GQM model

Goal: Analyze the final product to characterize it with respect to the
various defect classes from the point of view of the organization

Question: What is the error distribution by phase of entry

Metric: Number of Requirements Errors, Number of Design Errors, ...

Goal Goal Goal

QuestionQuestion Question

Metric Metric Metric

GOAL/QUESTION/METRIC PARADIGM
Overview of the GQM Approach

Develop a set of corporate, division and project goals for productivity and
quality, e.g., customer satisfaction, on time delivery, improved quality,
developing reusable objects, reusing experiences

Generate questions (based upon models) that define those goals as
completely as possible in a quantifiable way.

Specify the measures needed to be collected to answer those questions
and track process and product conformance to the goals.

Develop mechanisms for data collection.

Collect, validate and analyze the data in real time to provide feedback to
projects for corrective action.

Analyze the data in a postmortem fashion to assess conformance to the
goals and make recommendations for future improvements.

GOAL/QUESTION/METRIC PARADIGM
Characterizing Goals

Analyze the software products

in order to characterize them with respect to

development error rates

cost in staff months

% of code reused

from the point of view of the organization relative to the SEL environment

Analyze the software processes

in order to characterize them with respect to

effort distributions

classes of errors

source code growth

from the point of view of the organization relative to the SEL environment

THE EXPERIENCE FACTORY ORGANIZATION

NASA/SEL PRODUCT BASELINE EXAMPLE

Error Rates (Development)
 (1985-1989)

0
2
4
6
8

10

G
R

O
S

I

 M
G

R
O

D
 Y

G
R

O
A

G
S

S

C
O

B
S

I M

C
O

B
E

A
G

S
S

G
O

E
S

A
G

S
S

G
O

E
S

I

M
G

O
FO

R

G
O

A
D

 A

U
A

R
S

A
G

S
S

U
A

R
S

T
E

L
 S

E
rr

o
rs

/K
L

O
C

 (d
ev

el
o

p
ed

)

Cost (staff months)

0

200

400

600

800

GRO COBE GOES UARS

To
ta

l s
ta

ff
 m

on
th

s

Reuse (1985-1989)

12

23

0

10

20

30

40

50

Early FORTRAN (4
similar systems)

Early Ada (4 similar
systems)

%
 R

eu
se

Average =

Average =Average =

GOAL/QUESTION/METRIC PARADIGM

*Data from 11 Flight Dynamics projects (mid 1980s)

COMPUTA-
TIONAL

15%

DATA
27%

INTERFACE
22%

LOGIC/
CONTROL

20%

INITIALIZA-
TION
16%

TEST
30%

DESIGN
23%

CODE
21%

OTHER
26%

85% code writing

15% code reading

NASA/SEL PROCESS BASELINE EXAMPLE

Effort Distribution* Classes of Errors*

Source Code Growth Rate*

93M11U1.007

Percent source code growth (LOC)

PROJECT PHASE

0

20

40

60

80

100

DESIGN CODE SYSTEM
TEST

ACCEPTANCE
TEST

GOAL/QUESTION/METRIC PARADIGM
Process Goal: Question Guidelines

Process Conformance:
Characterize the process quantitatively and assess how well the process is

performed.

Domain Understanding:
Characterize the object of the process and evaluate the knowledge of the

object and its domain by the process performers.

Focus:
Analyze the output of the process according to some quality model and

some viewpoint.

Feedback:
What has been learned about the process, its application, the product

domain, or any other process or product?

GOAL/QUESTION/METRIC PARADIGM
Process Goal: Example

Analyze the system test process for the purpose of evaluation with respect
to defect slippage from the point of view of the corporation.

System Test Process Model:
Goal: Generate a set of tests consistent with the complexity and

importance of each requirement.

Procedure: (1) Enumerate the requirements, (2) Rate importance by
marketing, (3) Rate complexity by system tester, (4) ...

Defect Slippage Model:
Let Fc = the ratio of faults found in system test to the faults found after

system test on this project.

Let Fs = the ratio of faults found in system test to the faults found after
system test in the set of projects used as a basis for comparison.

Let QF = Fc/Fs = the relationship of system test on this project to faults as
compared to the average the appropriate basis set.

GOAL/QUESTION/METRIC PARADIGM
Simple Interpretation of Defect Slippage Model

if QF > 1 then
 method better than history
 check process conformance
 if process conformance poor

improve process or process conformance
 check domain understanding
 if domain conformance poor

improve object or domain training
if QF = 1 then

 method equivalent to history
 if cost lower than normal then method cost effective

 check process conformance
if QF < 1 then

 check process conformance
 if process conformance good

check domain conformance
if domain conformance good

method poor for this class of project

GOAL/QUESTION/METRIC PARADIGM
Product Goal: Question Guidelines

Product Model/Definition:
Characterize the product qualitatively independent of the perspective of
interest. Aspects of interest include:

 Logical/Physical Attributes:
Characterize the logical and physical attributes of the product e.g.,
logical attributes: application domain, function

 physical attributes: size, complexity, interfaces
dynamic attributes: coverage, reliability

 Cost:
Characterize the resources expended, e.g., effort, computer time

 Changes:
Characterize the modifications associated with the product, e.g.,
enhancements, errors, faults, failure

 Context:
Characterize the customer community and their operational profiles

GOAL/QUESTION/METRIC PARADIGM
Product Goal: Question Guidelines

Perspective/Focus:
Analyze the product models from each perspective of interest, e.g.,
reliability, user friendliness, specifying the following:

 Major model(s) used
Specify some perspective model/definition and viewpoint

 Validity of the model for the project
Evaluate the appropriateness of the model for the project
environment

 Validity of the data collected
Evaluate the quality of the data

 {Substantiation of the model
Given any alternate perspectives that provide support for the
quality of the results}

Feedback:

What has been learned about the product, the processes that produced it,
or any other product that will improve this project and future projects?

GOAL/QUESTION/METRIC PARADIGM
Product Goal Example

Analyze the design document for the purpose of evaluation with respect to
the design inspection defects uncovered from the point of view of the
project manager.

Design Inspection Process Model:

Goal: Analyze the design document for the purpose of characterization
with respect to its correct and complete implementation of the
requirements from the point of views of the user, developer and tester.

Procedure: (1) Disseminate the appropriate part of the
requirements and design documents,

 (2) Read the document by the appropriate set of
readers from the appropriate points of view,

 (3) Report defects by various classification
schemes, including omission and commission
defects,

 (4) ...

GOAL/QUESTION/METRIC PARADIGM
Product Goal Example

Design Document Product Model/Definition:

 Logical/Physical Attributes:
logical attributes: application domain, function

 physical attributes: size: lines of design language, complexity, interfaces

 Cost:
total effort, effort by activity (effort in design inspection)

 Changes:
of enhancements
faults found during design inspection

 Context:
 Customer community: designers, coders, users, ...

GOAL/QUESTION/METRIC PARADIGM
Simple Document/Defect Evaluation Model

KLOD = number of thousand lines of design language

Fc = number of faults/KLOD found in design inspections on this project
Fs = number of faults/KLOD found in design inspections in the set of

 projects used as a basis for comparison (same size, application, …)
QF = Fc/Fs = the relationship of faults found on this project as compared to

 the average the appropriate basis set

if QF > 1 then QF = H (worse than history)
if QF <= 1 then QF = L (better than history)

PC = the process conformance rating on this project
= C if inspections are performed to the definition, N otherwise

DU = the domain understanding rating on this project
= S if domain understanding is satisfactory, U otherwise

GOAL/QUESTION/METRIC PARADIGM
Simple Document/Defect Evaluation Model

QF = H if more faults found when compared with history
QF = L if less faults found when compared with history

PC = C if inspections are performed to the definition
 N otherwise

DU = S if domain understanding is satisfactory
 U otherwise

PC DU QF Design-in Design-out Design Process Inspection Process
C S L good good effective effective
C S H poor fixed-up not-effective effective
N X X ? ? ? ?
X U X ? ? ? ?

EXAMPLE G/Q/M GOALS

Defining the System Test Process Goal:

Analyze the software product requirements for the purpose of characterizing them
with respect to a set of tests consistent with the complexity and importance of each
requirement from the point of view of the tester and marketer respectively.

Evaluating the System Test Process:

Analyze the system test process for the purpose of evaluation with respect to
defect slippage from the point of view of the corporation.

Defining the Design Inspection Process Goal:

Analyze the design document for the purpose of characterization with respect to its
correct and complete implementation of the requirements from the point of views of
the user, developer, and tester.

Evaluating the Design Document:

Analyze the design document for the purpose of evaluation with respect to the
design inspection defects uncovered from the point of view of the project manager.

Organizational Frameworks

Quality Improvement Paradigm

Characterize the current project and its environment with respect to models
and metrics.

Set quantifiable goals for successful project performance and improvement.

Choose the appropriate process model and supporting methods and tools for
this project.

Execute the processes, construct the products, collect,validate, and analyze
the data to provide real-time feedback for corrective action.

Analyze the data to evaluate the current practices, determine problems,
record findings, and make recommendations for future project improvements.

Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it
in an experience base to be reused on future projects.

Approaches To Quality

Quality Improvement Paradigm

 Choose

 processes,

 methods,

 techniques,

 and tools

Set goals

Characterize

& understand

 Package

 & store

experience

Analyze
Results

Process
Execution

Analyze
Results

Provide
Process
with
Feedback

Corporate learning

Project

learning

Quality Improvement Paradigm
Step 1: Characterizing the Project and Environment

Build models to
help us understand what we are doing
provide a basis for defining goals
provide a basis for measurement

Build models of
people, processes, products
and study their interactions

Use models to
classify the current project
distinguish the relevant project environment
find the class of projects with similar characteristics and goals

Models provides a context for
Goal Definition
Reusable Experience/Objects
Process Selection
Evaluation/Comparison
Prediction

Characterization
Project Characteristics and Environmental Factors

People Factors: number of people, level of expertise, group organization,
problem experience, process experience,...

Problem Factors: application domain, newness to state of the art,
susceptibility to change, problem constraints, ...

Process Factors: life cycle model, methods, techniques, tools,
programming language, other notations, ...

Product Factors: deliverables, system size, required qualities, e.g.,
reliability, portability, ...

Resource Factors: target and development machines, calendar time,
budget, existing software, ...

Quality Improvement Paradigm
 Step 2: Goal Setting and Measurement

Need to establish goals for the processes and products

Goals should be measurable, driven by the models

Goals should be defined from a variety of perspectives:

Customer: predictable schedule, correct functionality
Project: quality controllable process, adherence to schedule
Corporation: reusable experiences, improved quality/productivity

over time

There are a variety of mechanisms for defining measurable goals:
Goal/Question/Metric Paradigm (GQM)
Software Quality Metrics Approach (SQM)
Quality Function Deployment Approach (QFD)

Quality Improvement Paradigm
Step 3: Choosing the Processes

We need to choose and tailor an appropriate generic process model,
integrated set of methods, and integrated set of techniques

We need to define their goals and give its definitions (models)

Choosing and tailoring are always done in the context of the
environment, project characteristics, and goals established for the
products and other processes

Examples:

If problem and solution well understood
choose waterfall process model

If high number of faults of omission expected
emphasize traceability reading approach embedded in design
inspections

When embedding traceability reading in design inspections, make sure
traceability matrix exists

Choose The Process
Choosing the Technique: Reading

Input object: Requirements, specification, design, code, test plan,...

Output object: set of anomalies

Approach: Sequential, path analysis, stepwise abstraction, ...

Formality: Reading, correctness demonstrations, ...

Emphasis: Fault detection, traceability, performance, ...

Method: Walk-throughs, inspections, reviews, ...

Consumers: User, designer, tester, maintainer, ...

Product qualities: Correctness, reliability, efficiency, portability,..

Process qualities: Adherence to method, integration into process,...

Quality view: Assurance, control, ...

Input object: System, subsystem, feature, module,..

Output object: Test results

Approach: structural, functional, error-based, statistical testing,..

Formality: Full adherence, partial adherence, ...

Emphasis: Fault detection, new features, reliability, performance,..

Method: As specified in the test plan

Consumers: Various classes of customer/hardware configurations,

Product qualities: Reliability, efficiency, ...

Process qualities: Adherence to method, integration into process,...

Quality view: Assurance, control

Choose The Process
Choosing the Technique: Testing

Quality Improvement Paradigm
Step 4: Executing the Processes

The development process must support the access and reuse of packaged
experience

Data items must be defined by the models and driven the by the goals

Data collection must be integrated into the processes, not an add on, e.g.,
defect classification forms part of configuration control mechanism

Data validation important and necessary. e.g., defect data is error prone

Education and training in data collection are necessary, everyone must
understand the models

Some analysis must be done in close to real time for feedback for corrective
action

The suppliers of the data need to gain from the data too

Automated support is necessary to:
support mechanical tasks
deal with large amounts of data and information needed for analysis

 however, the collection of the most interesting data cannot be automated

Executing The Processes
Kinds of Data Collected

Resource Data:
Effort by activity, phase, type of personnel
Computer time
Calendar time

Change/Defect Data:
Changes and defects by various classification schemes

Process Data:
Process definition
Process conformance
Domain understanding

Product Data:
Product characteristics

logical, e.g., application domain, function
physical, e.g. size, structure
dynamic, e.g., reliability, coverage

Use and context information, e.g., design method used

Quality Improvement Paradigm
Step 5: Analyzing the Data

Based upon the goals, we interpret the data that has been collected.
We can use this data to:
characterize and understand, e.g.,

what project characteristics effect the choice of processes, methods and
techniques?

which phase is typically the greatest source of errors?

evaluate and analyze, e.g.
what is the statement coverage of the acceptance test plan?
does the Cleanroom Process reduce the rework effort?

predict and control, e.g.,
given a set of project characteristics, what is the expected cost and

reliability, based upon our history?

motivate and improve, e.g.,
for what classes of errors is a particular technique most effective

Quality Improvement Paradigm
Step 6: Packaging the Experience

Resource Models and Baselines,
e.g., local cost models, resource allocation models

Change and Defect Baselines and Models,
e.g., defect prediction models, types of defects expected for application

Product Models and Baselines,
e.g., actual vs. expected product size and library access over time

Process Definitions and Models,
e.g., process models for Cleanroom, Ada

Method and Technique Evaluations,
e.g., best method for finding interface faults

Products, e.g., Ada generics for simulation of satellite orbits
Quality Models,

e.g., reliability models, defect slippage models, ease of change models
Lessons Learned, e.g., risks associated with an Ada development

Packaging Experience
Forms of Packaged Experience

Equations defining the relationship between variables,
e.g. Effort = 1.48*KSLOC.98, Number of Runs = 108 + 150*KSLOC

Histograms or pie charts of raw or analyzed data,
e.g., Classes of Faults: 30% data, 24% interface, 16% control,

 15% initialization, 15% computation
 Effort Distribution: 23% design, 21% code, 30%test, 26% other

Graphs defining ranges of “normal”
e.g., Fault Slippage Rate: halve faults after each test phase (4,2,1,.5)

Specific lessons learned, e.g.,
an Ada design should use library units rather than a deeply nested structure
minimize the use of tasking as its payoff is minimal in this environment

size varies inversely with defect rate up to about 1KLOC per module

Processes descriptions (adapted to SEL), e.g.,
Recommended Approach, Manager’s Handbook,
Cleanroom Process Handbook,
Ada Developer’s Guide, Ada Efficiency Guide

Quality Improvement Paradigm

Reuse Inhibitors
Need to reuse more than just code, need to reuse all kinds of experience

Experience requires the appropriate context definition for to be reusable

Experience needs to be identified and analyzed for its reuse potential

Experience cannot always be reused as is, it needs to be tailored

Experience needs to be packaged to make it easy to reuse

Reuse of experience has been too informal, not supported by the
organization

Reuse has to be fully incorporated into the development or maintenance
process models

Project focus is delivery, not reuse,
i.e., reuse cannot be a byproduct of software development

Need a separate organization to support the reuse of local experience

Quality Improvement Paradigm

Activity Support for Improvement

Improving the software process and product requires

Learning

- the continual accumulation of evaluated experiences

Experience models

- in a form that can be effectively understood and modified

Experience base

- stored in a repository of integrated experience models

Reuse

- accessible and modifiable to meet the needs of the projects being

developed by the organization

Quality Improvement Paradigm

Activity Support For Improvement

Systematic learning requires support for
 recording, off-line generalizing, tailoring, synthesizing and formalizing

experience

Packaging and modeling useful experience requires
 a variety of models and formal notations that are tailorable, extendible,

understandable, flexible and accessible

An effective experience base must contain
 accessible and integrated set of models that capture the local

experiences

Systematic reuse requires support for
 using existing experience
 on-line generalizing or tailoring of candidate experience

Quality Improvement Paradigm

Organizational Support for Improvement

This combination of ingredients requires an organizational structure that

supports:

A software evolution model that supports reuse

Processes for learning, packaging, and storing experience

The integration of these two functions

It requires separate logical or physical organizations:

with different focuses/priorities,

process models,

expertise requirements

Quality Improvement Paradigm

Organizational Support for Experience Reuse

Project Organization
focus/priority is delivery
supported by packaged experiences

Experience Factory
focus is project development support
analyzes and synthesizes all kinds of experience
acts as a repository for such experience
supplies that experience to various projects on demand

The Experience Factory packages experience by building
informal, formal or schematized, and productized models and measures
of various software processes, products, and other forms of knowledge
via people, documents, and automated support

Experience Factory Organization
Role of the Project Organization

Execute Process

 Characterize

 Set Goals

Choose Process

project/environment characteristics

tailorable goals, processes, tools
products, resource models, defect
models, ... from similar projects

data, lessons learned, ...

project analysis, process modification, ...

Execution Plans

PROJECT ORGANIZATION
EXPERIENCE
 FACTORY

Experience Factory Organization
Role of the Experience Factory

Analyze
(Analysis)

products, data,
lessons learned,
models, ...

direct project feedback

Package

Experience
 Base products, lessons learned, models, ...

models, baselines,
tools, consulting, ...

Formalize

Tailor

Generalize

EXPERIENCE FACTORY
 PROJECT
ORGANIZATION

Project
Support

project characteristics

(Synthesis)

Experience Factory Organization

environment

characteristics

tailorable
knowledge,
consulting

Project Organization Experience Factory

1. Characterize
2. Set Goals
3. Choose Process

Execution
 plans

4. Execute Process

Project
Support

5. Analyze

products,
lessons
learned,
models

project
analysis,
process

modification

data,

 lessons learned

6. Package

Generalize

Tailor

Formalize

Disseminate

Experience
Base

Experience Factory Organization

A Different Paradigm

Project Organization Experience Factory
 Problem Solving Experience Packaging

Decomposition of a problem Unification of different solutions
into simpler ones and re-definition of the problem

Instantiation Generalization, Formalization

Design/Implementation process Analysis/Synthesis process

Validation and Verification Experimentation

Product Delivery within Experience / Recommendations
Schedule and Cost Delivery to Project

Multi-Project Analysis Study
Improving via the Experience Factory

Process Evolution/Evaluation

Experience

Factory

Project

Organization

Researcher

Analyst

Experimenter

Team

Model

Packager
Projects

2, 3, ...

Project

1

public domain
process

tailored process

current local
process

problems

goals
measurement &
feedback

SEL tailored
process

lessons learned &
recommended
changes

An Example Experience Factory
The Software Engineering Laboratory (SEL)

Consortium of
NASA/GSFC
Computer Sciences Corporation
University of Maryland

Established in 1976

Goals have been to
- better understand software development
- improve the process and product quality
at Goddard, formerly in the Flight Dynamics Division , now at the
Information Systems Center

using observation, experimentation, learning, and model building

An Example Experience Factory

SEL STRUCTURE

DEVELOPERS
(SOURCE OF EXPERIENCE) (PACKAGE EXPERIENCE FOR REUSE)

DATA BASE SUPPORT
(MAINTAIN/QA EXPERIENCE INFORMATION)

Development
measures for each

project

Refinements to
development

process

STAFF 275-300 developers

TYPICAL PROJECT
SIZE 100-300 KSLOC

ACTIVE PROJECTS 6-10 (at any given time)

PROJECT STAFF SIZE 5-25 people

TOTAL PROJECTS
(1976-1994) 120

STAFF 10-15 Analysts

FUNCTION • Set goals/questions/metrics
 - Design studies/experiments

 • Analysis/Research

 • Refine software process

 - Produce reports/findings

PRODUCTS
(1976-1994) 300 reports/documents

SEL DATA BASE

FORMS LIBRARY

REPORTS LIBRARY

160 MB

220,000

• SEL reports
• Project documents
• Reference papers

STAFF 3-6 support staff

FUNCTION • Process forms/data

• QA all data

• Record/archive data

• Maintain SEL data base

• Operate SEL library

NASA + CSC + U of MDNASA + CSC

NASA + CSC

PO PROCESS ANALYSTS
EF

The Software Engineering Laboratory
Baselines 1987 and 1991

Error Rates (development)

0

2

4

6

8

10

Early Baseline
8 similar systems

Current
7 similar systems

E
rr

o
rs

/K
L

O
C

 (
d

ev
el

o
p

ed
)

Average ~4.5

Average ~1
Low 1.7

Low 0.2

High 2.4

High 8.9

0

200

400

600

800
Cost (staff months)

Early Baseline
8 similar systems

supporting 4 projects

Current
7 similar systems

supporting 4 projects

S
ta

ff
 m

o
n

th
s

Average ~490

Average ~210

Low 357

High 755

Low 98

High 277

Reuse

Early Baseline
8 similar systems

Current
8 similar systems

%
 R

eu
se

FORTRAN
(3 systems)

Ada
(5 systems)

0

20

40

60

80

100

Average
~79%

61

90

IE
E

E
39

Average
~20%

Early Baseline = 1985-1989
Current = 1990-1993

Decreased 75% Reduced 55%

Increased 300%

The Software Engineering Laboratory
An Experience Factory Example

The Software Engineering Laboratory
is the winner of the first

IEEE Computer Society Award
for

Software Process Achievement

The award is
an international award established in 1994
sponsored by the U.S. Software Engineering Institute
for demonstrable, sustained, measured, significant software
improvement

The Software Engineering Laboratory
Baselines 1987, 1991, 1995

 Continuous Improvement in the SEL

Decreased Development Defect rates by
75% (87 - 91) 37%(91 - 95)

Reduced Cost by
55% (87 - 91) 42% (91 - 95)

Improved Reuse by
300% (87 - 91) 8% (91 - 95)

Increased Functionality five-fold (76 - 92)

CSC
officially assessed as CMM level 5 and ISO certified (1998),
starting with SEL organizational elements and activities

Fraunhofer Center
for Experimental Software Engineering
was created in Maryland in 1998

THE EXPERIENCE FACTORY ORGANIZATION

Benefits

Separation of concerns and focus for development and packaging

Support for learning and reuse

Formalization and integration of management and development
technologies

Generation of a tangible corporate asset:
an experience base of competencies

Offers a Lean Software Development Concept
compatible with TQM
A level 5 organizational structure

Practical link between focused research and development

The ability to start small and expand, e.g., you can focus on
a homogeneous set of projects,
a particular set of packages

THE EXPERIENCE FACTORY
Specific Steps

We need to:

Make the commitment
Decide to make the change
Involve top level management
Think differently about software

Define a set of improvement goals
Based on intuition/available data
Look at high payoff areas, problem areas
Need to debug the process

Choose a project
Something mainstream
Medium size
Committed people

Organize to support the change
Recognize the new processes
Assign roles and resources

THE EXPERIENCE FACTORY
Specific Steps

Experiment with technology
Don’t introduce too many changes
Refine the technology to be measurable

Measure against the goals
Collect data
Validate
Feedback

Learn
Create database
Do post-mortem analysis
Write lessons learned documents

Modify the process
Based upon learning
Package what you have learned

Choose more projects and areas for improvement
Number depends upon success of first

THE EXPERIENCE FACTORY ORGANIZATION
Conclusions

Integration of the Improvement Paradigm
Goal/Question/Metric Paradigm
Experience Factory Organization

Provides a consolidation of activities, e.g., packaging experience,
consulting, quality assurance, education and training, process and tool
support, measurement

Based upon our experience, it helps us
understand how software is built and where the problems are
define and formalize effective models of process and product
evaluate the process and the product in the right context
predict and control process and product qualities
package and reuse successful experiences
feed back experience to current and future projects

Can be applied today and evolve with technology

THE EXPERIENCE FACTORY ORGANIZATION

The approach provides:

a framework for defining quality operationally relative to the project and the
organization

justification for selecting and tailoring the appropriate methods and tools
for the project and the organization

a mechanism for evaluating the quality of the process and the product
relative to the specific project goals

a mechanism for improving the organization’s ability to develop quality
systems productively

The approach is being adopted by several organizations, but
it is not a simple solution
it requires long-term commitment by top level management

