
MONITORING AN ADA SOFTWARE DEVELOPMEN T

Victor R. Basili

	

John Bailey
Shih Chang

	

Elizabeth Krues i
John Gannon

	

Sylvia Sheppard
Elizabeth Katz
N. Monina Panlilio-Yap
Connie Loggia Ramse y
Marvin Zelkowit z

University of Maryland

	

General Electric Company *

Ada evolved from a desire within the Department of Defense to have a standard
language for the development of real-time and large scale systems. In addition to pro-
viding features needed by those types of systems, Ada supports structured program-
ming, data abstraction, modularity, and information hiding . Research with these tech-
niques indicates that their use should improve the quality of the software developmen t
process and its product . While, programmers who are most familiar with various assem-
bly languages and FORTRAN may use structured programming, generally they are no t
familiar with the other concepts. The problems with training programmers in Ada an d
its associated design and programming methods and then redeveloping current systems
in Ada is unknown.

In order to understand the effect of using Ada, the University of Maryland and th e
General Electric Company began a joint project . The purpose of the project is to moni-
tor the use of Ada in an industrial software development project. In particular, we
identify areas of success and difficulty in learning and using Ada as both a design and
coding language . Our results indicate where emphasis should be placed in Ada trainin g
and in the development of tools and techniques for use with Ada . We also identif y
metrics used to evaluate and predict the cost, quality, and maintainability of Ada pro-
grams.

Copies of the newsletters may be obtained from Dr. Victor R. Basili, Department of
Computer Science, University of Maryland, College Park, MD, 20742 . Feedback regard-
ing our approach, goals, and results is welcome.

+ John Bailey and Elizabeth Kruesi are now with Software Metrics, Inc . Sylvia Sheppard i s
with Booz, Allen, and Hamilton, Inc .

This research is supported by the Office of Naval Research (ONR) under ONR contract
#N00014-92-K-0024 to the University of Maryland with funding from ONR and the Ada Joint
Program Office. Ada is a trademark of the Department of Defense, Ada Joint Program Office .

This is the third newsletter concerning this project . April 1984 .

iv-1,32



Background
Case Study Organization

This case study is driven by a set of goals that were developed to answer question s
about the Ada language and its use. Setting out with a set of goals, a framework i s
developed for establishing why each data item is collected and how it is used to evaluate
the project being studied. This approach minimizes the chance that needed data will
not be collected and permits the interpretation of the data relative to the goals set . The
goals also provide an organization for the data collection process . The approach consists
of six steps :

1) the development and categorization of a set of goals ,
2) the development of a set of questions of interest or hypotheses based upon thos e

goals that attempt to quantify the abstractions of the goals ,
3) the development of metrics and data distributions that answer the questions ,
4) the development of forms and other mechanisms for collecting the data ,
5) the actual data collection process, an d
6) the validation and analysis of the data .

[Basili, Weiss 821 contains a detailed discussion of this approach to data collection .
The primary goal of this endeavor, to study an Ada project in order to mak e

recommendations, was broken down into more specific goals to guide the study . Thes e
goals were divided into four major categories : changes and effort goals, Ada and PDL
goals, data collection goals, and metric goals . Each goal within a category was associ-
ated with a series of questions whose answers might help meet that goal . These ques-
tions did not include every question one might ask, but they were meant to be represen-
tative of the questions of greatest interest . Each question had a list of data sources ,
such as forms, static analyzers, or human evaluations, to guide the data collection pro-
cess . The complete list of goals, without the questions, is given in the appendix .

The source of much of the effort and change data was a set of forms that were
developed to gather information about the software development process . Most of thes e
forms were adapted from the NASA Software Engineering Laboratory [SEL 821 . They
were completed by the programming team and validated by the monitoring team befor e
their entry into an automated database . The preliminary analysis of that data is given
in the subsection "Effort and Change ." In addition, several subjective evaluations wer e
made by various people at various stages of the development . That data has not yet
been analyzed . Finally, a parser, which checks syntax of both the design and code and
takes rudimentary measurements, has processed the final product . The analysis of tha t
data is in the subsection "Ada Use. " The goals and questions d irected how this analysis
was done .

Project Development

The project studied involved the redesign and reimplementation of a portion of a
satellite ground control system originally written in FORTRAN . Four programmers
were chosen for their diverse backgrounds : the lead programmer/manager knew th e
application, FORTRAN, and assembler ; the senior programmer also knew other
languages such as COBOL, PL/I, Lisp, ALGOL, and SNOBOL; the junior programmer

Iv-1,33



had just earned a B .S. in computer science and was was fluent in Pascal and othe r
block-structured languages; the librarian had only brief exposure to FORTRAN . They
were given a month of training in Ada and the programming practices they wer e
expected to use: design and code walkthroughs and structured programming . They
practiced using the NYU Ada/Ed interpreter on sample programs and began designing
the system. The design was written using an Ada-like PDL which specifies Ada pack-
ages and subprograms and their interfaces as well as abstract statements for progra m
functions . Although the PDL is designed to be processable, a processor was not avail -
able at design time . The design evolved into Ada code which was processed by th e
Ada/Ed interpreter; however, the entire project could not be interpreted as a unit due
to size constraints with the interpreter . The design and coding phases of the projec t
extended from March 1982 to January 1983 . Some testing of the system was done dur-
ing the summer of 1983 using the ROLM compiler ; however, the entire system has no t
been tested . In addition, since there was no test plan developed before or during th e
project, we cannot evaluate the testing process.

Data Analysis
Effort and Change

Preliminary analysis has been done on the effort, change and fault data . Given th e
overall expenditure on the project, relative to most projects, a large amount of time wa s
spent on training, about 20%. Also, the effort spent on each of requirements and desig n
was greater than the effort spent on coding . Little time was spent on testing. However ,
it must be stressed that the project's development cycle was not completed . As i t
became apparent that a full-fledged compiler would not be available for use on this pro-
ject, the programmers' enthusiasm waned . Some low-level procedures were not written,
and very little of the system was more than unit tested . Therefore, the percentage o f
time spent on various phases may be misleading .

While the programmers were given a more extensive training program than might
be considered normal, it should be noted that Ada training costs will most likely b e
higher than average and must be considered when planning early developments using
Ada. In addition, many of the concepts incorporated into Ada were not used by the
programmers. For example, even though data abstractions and their use were taugh t
during the training program, they were not used in the early work and were used in
later coding only after an understanding of the project design and the concepts of data
abstraction were reinforced . Training must be oriented toward the concepts behind Ad a
and how they are supported by the language rather than toward the language with
reference to the concepts. A related study concerning training in Ada is described in the
section "Training Study . "

After the training, the project programmers began to design and then code .
Changes were documented from the time that each piece of design was reviewed . The
change report forms show that most changes were design (32%) and code (61%) change s
and that there were few requirements changes (7%) . In addition, most of the changes
were fault corrections (57%) and improvements for clarity, maintainability, and reada-
bility (23%) . The need for change was determined in less than an hour for almost all o f

Iv-1,34



the changes, and the time to design and implement the change was one hour or less fo r
almost all of the changes . Since the code was not thoroughly tested, we do not kno w
whether an even higher percentage of fault correction type changes may be needed.

Analysis of the fault report forms indicates that 72% of the faults entered the sys-
tem during the coding stage and 24% during the design stage . However, since th e
design was not machine checked and the programmers did not go back to the design t o
determine whether a fault discovered in the code was present in the design, preliminar y
visual analysis indicates these percentages are probably closer to 50/50 . Most of th e
faults were incorrect code (79%) and incorrect design (16%) . The majority of the forms
indicated that the use of Ada contributed to the fault and most of these were syntacti c
faults. Programmers claimed that the Ada language reference manual or class note s
explained the features clearly in most cases and that they understood the features bu t
did not apply them correctly . To correct the fault, programmers usually remembere d
how the features should be applied or obtained information from another programmer .
Most faults took less than fifteen minutes to isolate and as little time to correct. Th e
activities used to detect and isolate faults were mainly compilation, design reading ,
design walkthrough, code reading, or some combination of these .

The above information seems to indicate that most of the faults discovered wer e
trivial. Without having done thorough testing, it is impossible to say how many mor e
serious and change-resistant faults may still exist in the code .

The faults were also classified as language, problem and clerical. Language fault s
were those which involved the syntax or semantics of a feature or those which involve d
the concept behind a feature. The problem category involved those faults due to a lac k
of understanding of the approach or solution domain but not related to the language .
Clerical faults included those due to carelessness, e .g. typographical faults . Eighty-six
percent of the faults were language faults, and furthermore, 69% of these were merel y
syntax faults . This explains why so many of the faults took so little time to correct .
Twenty-seven percent of the language faults were semantic faults . Most of the faults
involving requirements were problem faults, and most of the faults involving incorrect
design or code were language-related faults .

Several Ada language features were involved in faults . Most common among thes e
were low-level syntax (e .g. semicolon, parenthesis, assignment) and loops . There were
also a considerable number of faults involving tasks, separate compilation, generics, pro-
cedures and functions, parameters, and declarations . A smaller number of faults wer e
related to exceptions, types, packages and several other features . There were only a fe w
concept faults, and these involved tasking, exceptions and packages . Parameters, gener-
ics and compilation units together accounted for 53% of the semantic faults . These
results suggest that further training in the concepts of Ada, along with a language-base d
editor, might eliminate many of the type of faults found in this project .

Ada Use

All of the design and code has been processed . There are 11145 lines of Ada sourc e
(including comments) and 7406 lines of PDL source, some of which evolved into Ada
source. The Ada code consists of 2913 statements (1064 declarations and 184 9

IV-1,35



executable statements) . There are 50 program units (packages, tasks, or subprograms) ,
18 of which are packages .

Early design reviews showed that the design was functional rather than object -
oriented. This subjective opinion is supported by an analysis of the packages. Of th e
eighteen packages, two were common blocks of definitions, three were libraries of func-
tions, eleven were encapsulated data types with private types and operations, and the
remaining two had defined types but made the representation of the type visible . Nine
of the packages defining encapsulated types were device drivers, one encapsulate d
mathematical functions for different types of data, and the remaining package definition
had no body . Device drivers and math libraries are used in existing software systems .
No new fully encapsulated types were declared . Therefore, the programmers did no t
seem to find new abstract data types [Gannon, et al . 83] .

One reason for use of a functional design might be that the requirements ar e
detailed and functionally oriented. It was probably easier for the programmers to desig n
the system functionally based on those requirements than to abstract back from th e
requirements to a level where they could see other design alternatives [Duncan, et al .
84) . In addition, since the programmers had more experience with FORTRAN than an y
other language, they may have been constrained by their previous language experienc e
[Booch 81] . Training for alternative design approaches and other software engineerin g
concepts supported by Ada must come early in development . This training probably
should precede training in the Ada language, since it impacts the early design decision s
and perhaps the requirements analysis phase .

Two of the goals of the project (11 .2 and 11.5) relate to the use of the Ada language .
As a first step, we have examined each programmer 's use of executable statements . Of
the Ada executable statements (1849), 16% (301) were written by the lead
programmer/manager, 43% (795) by the senior programmer, 36% (671) by the junior
programmer, and 5% (82) by the librarian . Any comparison of language use will prob-
ably not include the librarian because he wrote relatively few executable statements . In
discussing each programmer's use of Ada, we indicate which percentage of eac h
programmer's executable statements is involved in order to normalize the data.

The librarian was the only team member to use a discernibly limited subset of Ada
executable statements . He used assignments (49%), ifs (20%), returns (16%), loop s
(13%), and raised exceptions (2%). This use seems to be appropriate for the subpro-
gram he wrote. The other programmers used almost every type of executable state-
ment. The code statement was probably not appropriate for this application, and they
avoided the goto statement as well. However, the lead and senior programmers used 10
and 20 (3.3% and 2 .5%) exit statements respectively . The exit can be considered a res-
tricted goto . Only the senior programmer used the abort statement, and the lead pro-
grammer used 14 (4.7%) pragmas while the junior programmer used 2 (0.3%).

Little distinction between programmers can be made using this data at this level o f
analysis . We are investigating more detailed measures of language and data use . We
also will try to develop further measures of the use of Ada concepts such as exceptio n
handling, tasking, and abstraction [Basili, Katz 83] . As our analyzer becomes mor e
sophisticated, we hope to further characterize the use of Ada on this and other projects .

Iv-1,36



Training Study
In a related empirical study, we compared two approaches to teaching the Ad a

language. The goal was to discover an effective way to teach students the use of Ada as
a vehicle for applying information hiding and data abstraction to software development .
The fifty-four participants in the study were enrolled in an advanced undergraduate
Ada class at the University of Maryland . Baseline data was gathered on every student ,
including programming aptitude scores . The class was then randomly divided into two
sections. One section was taught the language features first, approximately in the orde r
that they are presented in the language manual . They were then shown how packages
can be used to encapsulate objects, resources, and types when a system is first designed .
The other section was taught these principles of encapsulation first and used the Ad a
package to express designs before the lower-level language features were presented .
Eventually, the same set of lectures was presented to both sections .

We initially hypothesized that the section which learned design first would produc e
more modifiable programs . However, the lack of complete, executable examples durin g
the entire first half of the course appeared to hamper a complete understanding of th e
concepts . Ultimately, the high variability among the students masked any larg e
differences between the sections . However, some interesting differences in the correla-
tions between background data and the success of the students in each section wer e
revealed . This experience suggests that the optimal approach would probably involv e
tailoring a curriculum to each student's background and experience . However, a combi-
nation of the two approaches, where complete examples are presented with emphasis o n
design considerations, might be appropriate even when teaching professional program-
mers .

Conclusions
The Ada language is a medium for supporting certain design concepts . It is impor-

tant that those concepts be taught and motivated, possibly even before the language i s
taught. Training should be tailored to the past experience of the programmers. The
programmers on this project had trouble with data abstraction and information hidin g
and distinguishing between detail and precision particularly when designing . Only afte r
the project was complete did they understand the importance of methodology and how
it should be used. Their overall design was more like than unlike a FORTRAN syste m
design. However, the requirements were already functional .

In this project, the programmers used most of the language features but not neces-
sarily as they were intended by the language designers . There were a large number o f
language errors made, and these errors were syntactic, semantic, and conceptual . Mos t
of the errors involved the more Ada-specific features . Due to the learning curve, w e
were unable to judge the impact of Ada on costs, schedules, or milestones. However, i t
is clear that many support tools are needed. These tools include a structured editor ,
data dictionaries, call structure and compilation dependency tools, cross references, an d
other means of obtaining multiple views of the system. In addition, a PDL processo r
with interface checks, definition and use relation lists, and metrics would be helpful i n
the early stages of development .

Iv-1,37



Further Research
Some further analysis will be done with this data . The design and code will be stu-

died to determine whether previous experience influences a programmer's use of Ada .
Since the project was not finished and the product not tested fully, we expect few con-
crete results from this data . However, we plan to use this data to aid in the evaluation
of analysis tools we will develop. After building these tools, we plan to look at other
projects developed in Ada for further indications of the effect of Ada . Recommenda-
tions will then be made on which metrics are most useful, what aspects of training mus t
be stressed, and what influence the use of Ada might have on the software developmen t
process . We encourage comments on all aspects of this project and will continue t o
publish newsletters or papers concerning our results .

References
[Basili et at . 821

Victor R. Basili, John D. Gannon, Elizabeth E . Katz, Marvin V . Zelkowitz, Joh n
W . Bailey, Elizabeth E. Kruesi, and Sylvia B . Sheppard, "Monitoring an Ad a
Software Development Project," Ada Letters II, 1 (July 1982), 1 .58-1 .61 .

[Basili, Katz 83]
Victor R . Basili and Elizabeth E . Katz, "Metrics of Interest in an Ada Develop-
ment," IEEE Workshop on Software Engineering Technology Transfer, Miami, FL ,
April 1983, pp. 22-29 .

[Basili, Weiss 82 ]
Victor R. Basili and David M . Weiss, "A Methodology for Collecting Valid Softwar e
Engineering Data," Computer Science, Univ . of Maryland, 1982, UOM-1235 .

[Booch 81]
Grady Booch, "Describing Software Design in Ada," SIGPLAN Notices, Vol . 16,
No. 9, Sept . 1981, pp . 42-47 .

[Duncan, et at . 84]

A. G. Duncan, J . S . Hutchison, J. B. Bailey, T. M. Chapman, A. Fregly, E. E.
Kruesi, T. McDonald, S. B. Sheppard, "Communications System Design Usin g
Ada," Proc. 7th Intl . Conf. on Software Engineering, Orlando, FL, March 1984, pp .
398-407 .

[Gannon, et al . 83]

John D . Gannon, Elizabeth E . Katz, and Victor R . Basili, "Characterizing Ada Pro -
grams: Packages," The Measurement of Computer Software Performance, Los
Alamos National Laboratory, August 1983 .



(SEL 82 )
Software Engineering Laboratory, SEL-81-104, The Software Engineering Labora-
tory, NASA Goddard Space Flight Center, February 1982 .

Appendix

The purpose of these goals is to direct the study of this Ada project . Complet e
copies of the list of goals and questions may be obtained from the authors .

I . Changes and Resources
I.1: Characterize the effort in the project .
I.2: Characterize the changes .
I.3: Characterize the faults .

Characterize Ada faults .
I.5: Characterize the other faults .
I.6: Characterize the non-error changes .

11 . Ada and PDL/Ada
II.1: Evaluate the effect of using an Ada-like PDL with respect to the goals of a PDL .
11 .2: Determine which subsets of Ada features are used naturally .
11 .3: Determine the effect of using an Ada-like PDL when Ada is the language o f

implementation .
11 .4: Determine how Ada works for this application .
11 .5 : Characterize the programmers and associate their backgrounds with their use o f

Ada .
11 .6: Determine whether there are aspects of Ada that contribute positively to th e

design and programming environment .

M. Data Collectio n
III .1 : Evaluate the data collection and validation process .

1V. Metrics
W.1: Select a set of static metrics for the APSE .
IV.2 : Develop a set of size metrics for the APSE .
W.3: Develop a set of control metrics for the APSE.
IV.4: Develop a set of data metrics for the APSE .
W.5: Select a set of dynamic metrics for the APSE .
N.6: Develop a set of test coverage metrics for the APSE .
W.7: Develop a set of execution metrics for the APSE .
IV.8: Select a set of software development process metrics for the APSE .
IV.9: Determine the effectiveness of the predictive power of certain measures durin g

development .
W.10: Develop a subjective evaluation system for evaluation of program and desig n

characteristics that are not practically or easily measured in other ways .
IV.11 : Provide a data base for future Ada projects to be used to predict some proper -

ties of those projects .

1V-1,39


