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Software 
su rem en t 

Lionel C. Briand, Sandro Morasca, Member, /E€€ Computer Society, and Victor R. Basili, Fellow, /€€E 

Abstract-Little theory exists in the field of software system measurement. Concepts such as complexity, coupling, cohesion or 
even size are very often subject to interpretation and appear to have inconsistent definitions in the literature. As a consequence, 
there is little guidance provided to the analyst attempting to define proper measures for specific problems. Many controversies in the 
literature are simply misunderstandings and stem from the fact that some people talk about different measurement concepts under 
the same label (complexity is the most common case). 

There is a need to define unambiguously the most important measurement concepts used in the measurement of software 
products. One way of doing so is to define precisely what mathematical properties characterize these concepts, regardless of the 
specific software artifacts to which these concepts are applied. Such a mathematical framework could generate a consensus in the 
software engineering community and provide a means for better communication among researchers, better guidelines for analysts, 
and better evaluation methods for commercial static analyzers for practitioners. 

In this paper, we propose a mathematical framework which is generic, because it is not specific to any particular software 
artifact, and rigorous, because it is based on precise mathematical concepts. We use this framework to propose definitions of 
several important measurement concepts (size, length, complexity, cohesion, coupling). It does not intend to be complete or fully 
objective; other frameworks could have been proposed and different choices could have been made. However, we believe that the 
formalisms and properties we introduce are convenient and intuitive. This framework contributes constructively to a firmer 
theoretical ground of software measurement. 

Index Terms-Software measurement, measure properties, measurement theory, size, complexity, cohesion, coupling. 

+ 
1 I N T R ~ D ~ C ~ I Q N  

ANY concepts have been introduced through the 
years to define the internal attributes [I] of the arti- 

facts produced during the software process. For instance, 
one speaks of size and complexity of a software specifica- 
tion, design, and code, or cohesion and coupling of a soft- 
ware design or code. Several techniques have been intro- 
duced, with the goal of producing software which is better 
with respect to these concepts. As an example, Parnas’ [2] 
design principles attempt to decrease coupling between 
modules, and increase cohesion within modules. These 
concepts are used as a guide to choose among alternative 
techniques or artifacts. For instance, a technique may be 
preferred over another because it yields artifacts that are 
less complex; an artifact may be preferred over another be- 
cause it is less complex. In turn, lower complexity is be- 
lieved to provide advantages such as lower maintenance 
time and cost. In general, it is commonly believed that there 
is a relationship between internal attributes (e.g., size, 
complexity cohesion) and external attributes (e.g., main- 
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hainability understandability). This shows the importance 
of a clear and unambiguous understanding of what these 
concepts actually mean, to make choices on more objective 
bases. The definition of relevant concepts (i.e., classes of 
software characterization measures) is the first step towards 
quantitative assessment of software artifacts and tech- 
niques, which is needed to assess risk and find optimal 
trade-offs among soffware quality, schedule, and cost of 
development. 

To capture these concepts in a quantitative fashion, 
hundreds of software measures have been defined in the 
literature. However, the vast majority of these measures 
did not survive the proposal phase, and did not manage 
to get accepted in the academic or industrial worlds. One 
reason for this is the fact that they have not been built by 
using a clearly defined process for defining software 
measures. As we propose in [3] ,  such a process should be 
driven by clearly identified measurement goals and 
knowledge of the software process. One of its crucial ac- 
tivities is the precise definition of relevant concepts, nec- 
essary to lay down a rigorous framework for software 
engineering measures and to define meaningful and well- 
founded software measures. The theoretical soundness of 
a measure, i.e., the fact that it really measures the software 
characteristic it is supposed to measure, is an obvious pre- 
requisite for its acceptability and use. The exploratory 
process of looking for correlations is not an acceptable 
scientific validation process in itself if it is not accompa- 
nied by a solid theory to support it [4]. Unfortunately, new 
software measures are very often defined to capture elu- 
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sive concepts such as complexity, cohesion, coupling, con- 
nectivity, etc. (Only size can be thought to be reasonably 
well understood.) Thus, it is impossible to assess the theo- 
retical soundness of newly proposed measures, and the 
acceptance of a new measure is mostly a matter 
of belief. 

To this end, several proposals have appeared in the litera- 
ture [5], [6], [7] in recent years to provide desirable properties 
for software measures. These works (especially [7]) have been 
used to ”validate” existing and newly proposed software 
measures. Surprisingly, whenever a new measure which was 
proposed as a software complexity measure did not satisfy 
the set of properties against which it was checked, several 
authors failed to conclude that their measure was not a soft- 
ware complexity measure, e.g., [8], [9]. Instead, they con- 
cluded that their measure was a complexity measure that 
does not satisfy that set of properties for complexity meas- 
ures. What they actually did was provide an absolute defini- 
tion of a software complexity measure and check whether the 
properties were consistent with respect to the measure, i.e., 
check the properties against their own measure. 

This situation would be unacceptable in other engineer- 
ing or mathematical fields. For instance, suppose that one 
defines a new measure, claiming it is a di,, c’tance measure. 
Suppose also that that measure fails to satisfy the triangle 
inequality, which is the characterizing property of distance 
measures. The natural conclusion would be to realize that 
that is not a distance measure, rather than to say that it is a 
distance measure that does not satisfy the conditions for a 
distance measure. However, it is true that none of the sets 
of properties proposed so far has reached so wide an accep- 
tance to be considered “the“ right set of necessary proper- 
ties for complexity. It is our position that this odd situation 
is due to the fact that there are several different concepts 
which are still covered by the same word: complexity. 

Within the set of commonly mentioned software charac- 
teristics, size and complexity are the ones that have re- 
ceived the widest attention. However, several authors have 
been inclined to believe that a measure captures either size 
or complexity, as if, besides size, all other concepts related 
to software characteristics could be grouped under the 
unique name of complexity. Sometimes, even size has been 
considered as a particular kind of complexity measure. 

Actually, these concepts capture different software char- 
acteristics, and, until they are clearly separated and their 
similarities and differences clearly studied, it will be im- 
possible to reach any kind of consensus on the properties 
that characterize each concept relevant to the definition of 
software measures. The goal of this paper is to lay down the 
basis for a discussion on this subject, by providing proper- 
ties for a-partial-set of measurement concepts that are 
relevant for the definition of measures of internal software 
attributes. Many of the measure properties proposed in the 
literature are generic in the sense that they clo not character- 
ize specific measurement concepts but are relevant to all 
syntactically-based measures (see [lo], [6], [7]). In this pa- 
per, we want to focus on properties that dilferentiate meas- 
urement concepts such as size, complexity cohesion and 
coupling, which are the ones that are rnost commonly 
found in the scientific literature. Thus, we want to identify 

and clarify the essential properties behind these concepts 
that are commonplace in software engineering and form 
important classes of measures. Thus, researchers will be 
able to validate their new measures by checking properties 
specifically relevant to the class (or concept) they belong to 
(e.g., size should be additive). By no means should these prop- 
erties be regarded as the unique set of properties that can be pos- 
sibly defined for a given concept. Rather, we want to provide a 
theoretically sound and convenient solution for differentiat- 
ing a set of well known concepts and check their analogies 
and conflicts. In other words, we attempt to define these 
concepts through different sets of unambiguous and intui- 
tive properties. Possible applications of such a framework 
are to guide researchers in their search for new measures 
and help practitioners evaluate the adequacy of measures 
provided by commercial tools. 

All of the previously mentioned measurement concepts 
are related to internal software attributes. In particular, we 
will focus on one of the ”flavors” of complexity that has 
been used in the literature-related to the structure of a 
software system. Our definition of complexity does not en- 
compasses external attributes, i.e., we do not provide prop- 
erties for understandability, etc. Therefore, the part of our 
work related to complexity is in the same line of thought as 
[7]. Weyuker [7], one of the earliest works on the subject 
and by far the most referenced set of properties, has been 
criticized by several authors as being inconsistent [ l l ]  and 
incomplete [12] and is still intensively discussed. Other 
definitions, corresponding to different “flavors” of complex- 
ity, have been provided in the literature, e.g., [13]. 

We also believe that the investigation of measures should 
also address artifacts produced in the software process 
other than code. It is commonly believed that the early 
software process phases are the most important ones, since 
the rest of the development depends on the artifacts they 
produce. Oftentimes, the concepts (e.g., size, complexity, 
cohesion, coupling) which are believed relevant with re- 
spect to code are also relevant for other artifacts. To this 
end, the properties we propose will be general enough to be 
applicable to a wide set of artifacts. 

The paper is organized as follows. In Section 2, we in- 
troduce the basic definitions of our framework. Section 3 
provides a set of properties that characterize and formal- 
ize intuitively relevant measurement concepts: size, 
length, complexity, cohesion, coupling. We also discuss 
the relationships and differences between the different 
concepts and how they relate to the measurement theory 
framework [14]. Some of the best-known measures are 
used as examples to illustrate our points. Section 4 con- 
tains comparisons and discussions regarding the set of 
properties for complexity measures defined in the paper 
and in the literature. The conclusions and directions for 
future work come in Section 5. 

2 BASIC DEFINITIONS 
Before introducing the necessary properties for the set of 
concepts we intend to study we provide basic definitions 
related to the objects of study (to which these concepts can 
be applied), e.g., size and complexity of what? 
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2.1 Systems and Modules 

Two of the concepts we will investigate, namely, size 
(Section 3.1) and complexity (Section 3.3) are related to sys- 
tems in general, i.e., one can speak about the size of a sys- 
tem and the complexity of a system. We also introduce a 
new concept, length (Section 3.2), which is related to sys- 
tems. In our general framework-recall that we want these 
properties to be as independent as possible of any product 
abstraction-a system is characterized by its elements and 
the relationships between them. Thus, we do not reduce the 
number of possible system representations, as elements and 
relationships can be defined according to needs. 

DEFINITION 1 : Representation of Systems and Modules. A 
system S will be represented as a pair <E, R>, where E 
represents the set of elements of S ,  and R is a binary reZa- 
tion on E (R L E x E) representing the relationships be- 
tween S’s elements. 
Given a system S = <E, R>, a system m = <Em, Rm> is a 
module of S if and only if Em c_ E, R, E Em x E, and 
R, R. As an example, E can be defined as the set of code 
statements and R as the set of control flows from one s t a t m t  
to another. A module m may be a code s e g m t  or a subprogram. 
The elements of a module are connected to the elements of the 
rest of the system by incoming and outgoing relationships. 
The set InputR(m) of relationships from elements outside 
module m = <E,, R,> to those of module m is defned as 

InputR(m) = {<e,, e,> E R I e, E Em and e, E E -Em] 

The set OutputR(m) of relationships from the elements of a 
module m = <E,, Rm> to those of the rest of the system is 
defined as 

OutputR(m) = {<e,, e,> E R I e, E Em and el E E - Em} 
U 

We now introduce inclusion, union, intersection operations 
for modules and the definitions of empty and disjoint 
modules, which will be used often in the remainder of the 
paper. For notational convenience, they will be denoted by 
extending the usual set-theoretic notation. We will illustrate 
these operations by means of the system S = <E, R> repre- 
sented in Fig. 1, where E = {a, b, c, d, e, f, g, h, i, j, k, 1, m} 
and R = {<b, a>, ib ,  f>, <c, b>, <c, d>, <c, g>, <d, f>, <e, g>, 
<f, i>, <f, k>, <g, m>, <h, a>, <h, i>, <i, j>, <k, j>, <k, b}. We 
will consider the following modules 

m, = <Eml, R,,> = <{a, b, f, i, j, k}, {<b, a>, <b, f>, <f, i>, 

<f, k>, <i, j>, <k, j>} (area filled with 
m2 = = 4 f ,  j, k}, {<f, k>, a filled 
with 
m, = <Em3, R,> = <{c, d, e, f, g, j, k, 4, {<c, d>, a, g>, 

, g>, <f, k>, <g, m>, <k, j>}> (area filled with 

R,,> = <{d, e, g), {<e, g>}> (area filled with 

Inclusion. Module m, = <E,,, Rm1> is said to be included in 
module ml = <EmI, Rm1> (notation: m, c ml) if Em c E,, and 
R,, c R,,. In Fig. 1, m, c m,. 

Fig. I. Operations on modules. 

Union. The union of modules m, = <Em, %> and ml = 
&4 %> (notation: q U m,) is the module <Em U E,, R, U 

R,,.>. In Fig. 1, the union of modules m, and q is module q = 
<{a, b, c, d, e, f, g, i, j, k, m}, {<b, a>, <b, f>, <c, b>, <c, d>, <c, g>, 
<d, f>, <e, g>, <f, i>, <f, k>, <g, m>, <i, j>, <k, j>} (area filled 
with or or 
Intersection. The intersection of modules mL = <E,,, RmL> 
and m, = <Em, Rm> (notation: ml n ml) is the module <Eml n 
E,, Rm n R4>. In Fig. 1, m, = m, n m3. 

Empty module. Module <0, 0> (denoted by 0) is the 
empty module. 

Disjoint modufes. Modules ml and m, are said to be disjoint 
if m, n mi = 0. In Fig. 1, m, n m, = 0. 

Since in this framework modules are just subsystems, all 
systems can theoretically be decomposed into modules. The 
definition of a module for a particular measure in a specific 
context is just a matter of convenience and programming 
environment (e.g., language) constraints. 

2.2 Modular Systems 

The other two concepts we will investigate, cohesion 
(Section 3.4) and coupling (Section 3.5), are meaningful only 
with reference to systems that are provided with a modular 
decomposition, i.e., one can speak about cohesion and 
coupling of a whole system only if it is structured into 
modules. One can also speak about cohesion and coupling 
of a single module within a whole system. 

DEFINITION 2: Representation of Modular Systems. The 
3-tuple MS = <E, R, M> represents a modular system if S = 
<E, R> is a system according to Definition 1, and M is a col- 
lection of modules of S such that 

b’ e €  E@mEM(m=<E,,R,>andeE E,))and 

b’ m,, ?E M (m, = <Eml, Rm1> and ml = <Em1, R,,> and 

E,, n Eml = 0) 
i.e, the set of elements E of MS is partitioned into the sets of 
elements of the modules. 

We denote the union of all the Rms as IR. It is the set of in- 
tramodule relationships. Since the modules are disjoint, the 
union of all OutputR(m)s is equal to the union of all 
InputR(m)s, which is equal to R-IR. It is the set of inter- 
module relationships. U 
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As an example, E can be the set of all declarations of a 
given set of Ada modules, R the set of dependencies be- 
tween them, and M the set of Ada modules. 

Fig. 2 shows a modular system MS = <:E, R, M>, ob- 
tained by partitioning the set of elements of the system in 
Fig. 1 in a different way. In this modular system, E and R 
are the same as in system S in Fig. 1, and M = {ml, mz, mJ. 
Besides, IR = (<b, a>, <c, d>, <c, g>, <e, g>, <f, i>, <f, k>, 
<g, m>, <h, a>, 4, j>, <k, j>, <k, b ) .  

Fig. 2. A modular system. 

It should be noted that some measurement concepts do 
not take into account the modular structure of a system. As 
already mentioned, our concepts of size and complexity 
(defined in Sections 3.1 and 3.3) are such examples. 

We have defined concept properties using a graph- 
theoretic approach to allow us to be general and precise. It 
is general because our properties are defined so that no re- 
striction applies to the definition of vertices and arcs. Many 
well known product abstractions fit this framework, e.g., 
data dependency graphs, definition-use graphs, control 
flow graphs, USES graphs, Is-Component--of graphs. It is 
precise because, based on a well defined formalism, all the 
concepts used can be mathematically defined, e.g., system, 
module, modular system, and so can the properties pre- 
sented in the next section. 

3 MEASUREMENT CONCEPTS ANDTHEIW PROPERTIES 

It should be noted that the concepts defined below are to 
some extent subjective. However, we wish to assign them 
unambiguous, intuitive, and convenient properties. We 
consider these properties necessary but not sufficient be- 
cause they do not guarantee that the measures for which 
they hold are useful or even make sense. On the other hand, 
these properties will constrain the search for measures and 
therefore make the measure definition process more rigor- 
ous and less exploratory [3]. Several relevant concepts are 
studied: size, length, complexity, cohesion, and coupling. 
They do not represent an exhaustive list but a starting point 
for discussion that should eventually lead to a standard 
definition set in the software engineering community. 

In what follows, we do not provide any informal defini- 
tion for the concepts introduced (e.g., complexity) because 
we consider that the properties themselves uniquely char- 
acterize and therefore define the concepts in an unambigu- 

ous manner. However, intuitive justifications are provided 
to support the properties. 

3.1 Size 
3.1.1 Motivation 

Intuitively, size is recognized as being an important meas- 
urement concept. According to our framework, size cannot 
be negative (property Size.l), and we expect it to be null 
when a system does not contain any elements (property 
Size.2). When modules do not have elements in common, 
we expect size to be additive (property Size.3). 
DEFINITION 3: Size. The size of a system S is a function Size(S) 

that is characterized by the following properties Size.1-Size.3. 
0 

PROPERTY SIZE.1: Nonnegativity. The size of a system 
S = <E, R> is nonnegative 

Size(S) 2 0 (Size.1) 0 
PROPERTY SIZE.2: Null Value. The size of a system 

S = <E, R> is null if E is empty 
E = 0 + Size(S) = 0 (Size.11) 0 

PROPERTY sJZE.3: Module Additivity. The size of a system 
S = <E, R> is equal to the sum of the sizes of two of its 
modules m, = <E,,, R,,> and m, = <E,, R,> such that 
any element of S is an element of either m, or m2 

(m, c S and m;! c S and E = E,, U E, and E,, n E, = 0) 
3 Size(S) = Size(m,) + Size(m2) (Size.111) 0 

For instance, the size of the system in Fig. 2 is the sum of 
the sizes of its three modules m,, m2, m3. 
The following three unnumbered properties follow from the 
above properties Size.1-Size.3. 
Property Size.3 provides the means to compute the size of a 
system S = <E, R> from the knowledge of the size of 
its-disjoint-modules me = <(e}, Re> whose set of elements 
is composed of a different element e of E.’ 

Size(S> = C Size(me) (Size.IV) 

Therefore, adding elements to a system cannot decrease its 
size (size monotonicity property) 

eeE 

(S’ = <E’, R’> and S” = <E”, R”> and E’ E”) 
a Size(S’) 5 Size(S”) (Size.V) 

From the above properties, Size.1-Size.3, it follows that the 
size of a system S = <E, R> is not greater than the sum of 
the sizes of any pair of its modules m, = <Eml, Rml> and 
m2 = <E,, R,>, such that any element of S is an element of 
m,, or m?, or both, i.e., 

(m, c S and m2 c S and E =Em, U E,) 

The size of a system built by merging such modules cannot 
be greater than the sum of the sizes of the modules, due to 
the presence of common elements (e.g., lines of code, opera- 
tors, class methods). 

3 Size(S) I Size(m,) -t Size(-) (Size.VI) 

1. For each me, it is either Re = 0 or R, = [<e, e>). 
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Properties Size.1-Size.3 hold when applying the ad- 
missible transformation of the ratio scale (i.e., f(x) = a x) 
[14]. Therefore, there is no contradiction between our con- 
cept of size and the definition of size measures on a ratio 
scale. In other words, the properties do not block the way 
to the ratio scale. Further discussions on measurement 
theory and its relationship to our framework will be pro- 
vided in Section 3.6. 

3.1.2 Examples and Counterexamples of Size Measures 
Several measures introduced in the literature can be classi- 
fied as size measures, according to our properties Size.1- 
Size.3. With reference to code measures, we have: LOC, 
#Statements, #Modules, #Procedures, Halstead‘s Length 
[15], #Occurrences of Operators, #Occurrences of Operands, 
#Unique Operators, #Unique Operands. In each of the 
above cases, the representation of a program as a system is 
quite straightforward. Each counted entity is an element, 
and the relationship between elements is just the sequential 
relationship. 

Some other measures that have been introduced as size 
measures do not satisfy the above properties. Instances are 
the Estimator of length and Volume 1151, which are not ad- 
ditive when software modules are disjoint (property Size.3). 
Indeed, for both measures, the value obtained when two 
disjoint software modules are concatenated may be less 
than the sum of the values obtained for each module, since 
they may contain common operators or operands. Note 
that, in this context, the graph is just the sequence of oper- 
and and operator occurrences. Disjoint code segments are 
disjoint subgraphs. 

On the other hand, other measures, that are meant to 
capture other concepts, are indeed size measures. For 
instance, in the object-oriented suite of measures defined 
in [SI, Weighted Methods per Class (WMC) is defined as 
the sum of the complexities of methods in a class. First, 
it is straightforward to show that properties Size.l and 
Size.2 are true for WMC. In addition, when two classes 
without methods in common are merged, the resulting 
class’s WMC is equal to the sum of the two WMCs of the 
original classes (property Size.3 is satisfied). As a conse- 
quence, when two classes with methods in common are 
merged, then the WMC of the resulting class may be 
lower than the sum of the WMCs of the two original 
classes (formula Size.VI, which can be deduced from 
properties Size.1-3). Therefore, since all size properties 
hold, this is a class size measure. However, WMC does 
not satisfy our properties for complexity measures (see 
Section 3.3).  Likewise, NOC (Number Of Children of a 
class) and Response For a Class (RFC) [SI are other size 
measures, according to our properties. 

3.2 Length 
3.2. I Motivation 
Properties Size.1-Size.3 characterize the concept of size as is 
commonly intended in software engineering. Actually the 
concept of size may have different interpretations in every- 

2. In other words, these properties hold when Size(m,) is substituted 
with a Size(m,), where a is an arbitrary coefficient. 

day life, depending on the measurement goal. For instance, 
suppose we want to park a car in a parallel parking space. 
Then, the “size“ we are interested in is the maximum dis- 
tance between two points of the car linked by a segment 
parallel to the car’s motion direction. The above properties 
Size.1-Size3 do not aim at defining such a measure of size. 
With respect to physical objects, volume and weight satisfy 
the above properties. In the particular case that the objects 
are unidimensional (or that we are interested in carrying 
out measurements with respect to only one dimension), 
then these concepts coincide. 

In order to differentiate this measurement concept from 
size, we call it length. Length is nonnegative (property 
Length.l), and equal to 0 when there are no elements in the 
system (property Length.2). In extreme situations where 
system are composed of unrelated elements this property 
allows length to be nonnull. If a new relationship is intro- 
duced between two elements belonging to the same con- 
nected component3 of the graph representing a system, the 
length of the new system is not greater than the length of 
the original system (property Length.3). The idea is that, in 
this case, a new relationship may make the elements it con- 
nects “closer” than they were. This new relationship may 
reduce the greatest distance between elements in the con- 
nected component of the graph, but it may never increase 
it. On the other hand, if a new relationship is introduced 
between two elements belonging to two different connected 
components, the length of the new system is not smaller 
than the length of the original system. This stems from the 
fact that the new relationship creates a new connected 
Component, where the maximum distance between two 
elements cannot be less than the maximum distance be- 
tween any two elements of either original connected com- 
ponent (property Length.$). Length is not additive for dis- 
joint modules. The length of a system containing several 
disjoint modules is the maximum length among them 
(property Length.5). 
DEFMTION 4 Length. The length of a system S is a function 

Length(S) characterized by the following properties Length.1- 
Length.5. U 

PROPERTY LENGTH. 1: Nonnegativity. The length of a system 
S = <E, lb is nonnegative 

Length(S) 2 0 (Length.1) U 

PROPERTY LENGTH.2: Null Value. The length of a system 
S = <E, R> is null if E is empty 

(E = 0) + (Length(S) = 0) (Length.11) El 

PROPERTY LENGTH.3: Nonincreasing Monotonicity for 
Connected Components. Let S be a system and m be a 
module of S such that m is represented by a connected 
component of the graph representing S. Adding rela- 
tionships between elements of m does not increase the 
length of S. 

3. Here, two elements of a system S are said to belong to the same 
connected component if there is a path from one to the other in the 
nondirected graph obtained from the graph representing S by remov- 
ing directions in the arcs. 
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(S = <E, R> and m = < E ,  R,> and m c S 
and m "is a connected component of s" and 

S' = <E, R'> and R' = R U (<e,, e,>} and <e,, e,> E R 

0 

PROPERTY LENGTH.4: Nondecreasing Monotonicity for Non- 
connected Components. Let S be a system and m, and m, 
be two modules of S such that m, and m, are represented 
by two separate connected components of the graph rep- 
resenting S. Adding relationships from elements of m, to 
elements of m, does not decrease the length of S 

(S = <E, R z  and m, = <E,,, R,,> and m, = <E, ,  R,> 

and e, E E,, and e, E E,,) 
3 Length(S) 2 Length(S') (L,ength.III) 

and m, 
nents of s" and 

S and m, c S "are separate connected compo- 

R S' = <E, R'> and R' = R U (<e,, e,>} and <e,, e,> 
and e, E E,, and e2 E E,) 

3 Length(S') 2 Length(S) (Length.IV) 0 

PROPERTY LENGTH.5: Disjoint Modules. The length of a sys- 
tem S = <E, R> made of two disjoint modules m,, m, is 
equal to the maximum of the lengths of m, and m, 

(S = m, u m, and m, n m, = 0 and E =Em, U E,) 
a Length(S) = max(Length(m,), Length(m,)} 

(Length.V) 0 
Let us illustrate the last three properties with systems 
S, S', S", represented in Fig. 3. The length of system S, com- 
posed of the three connected components ml,, m,, and m,, is 
the maximum value among the lengths of m,, m ,  and q 
(property Length.V). System S' differs from system S only 
because of the added relationship <c, m> (represented by 
the thick dashed arrow), which connects two elements al- 
ready belonging to a connected componeitt of S, q. The 
length of system S' is not greater than the length of S 
(property Length.111). System S" differs from system S only 
because of the added relationship <b, f> (represented by the 
thick solid arrow), which connects two elements belonging 
to two different connected components of S, m,, and m2. 
The length of system S" is not less than the length of S 
(property Length.IV). 

Properties Length.1-Length.5 hold when applying the 
admissible transformation of the ratio scale. Therefore, 
there is no contradiction between our concept of length and 
the definition of length measures on a ratio scale. 

3.2.2 Examples of Length Measures 
Several measures can be defined at the system or module 
level based on the length concept. A typical example is the 
depth of a hierarchy or lattice/network. Therefore, the 
nesting depth in a program [14] and DIT (Depth of Inheri- 
tance Tree-which is actually a hierarchy, in the general 
case) defined in [8] are length measures. 

Fig. 3. Properties of length. 

3.3 Complexity 
3.3.7 Motivation 
Complexity is a measurement concept that is considered 
extremely relevant to system properties. It has been studied 
by several researchers (see Section 4 for a comparison be- 
tween our framework and the literature). It is important to 
note that the notion of complexity we are going to define 
through a set of specific properties is intentionally more 
restrictive than that of many researchers [16]. This will al- 
low us to provide a precise definition of artifact complexity 
through a well defined set of properties. Complexity is de- 
fined as an intrisic attribute of an object and not its per- 
ceived psychological complexity as perceived by an exter- 
nal observer. Our intention is clearly different from the one 
of Curtis et al. [16] who were referring to complexity when 
studying the impact of software on other systems, e.g., 
people. This issue is further discussed below. In our frame- 
work, we expect complexity to be nonnegative (property 
Complexity.1) and to be null (property Complexity.2) when 
there are no relationships between the elements of a system. 
However, it could be argued that the complexity of a sys- 
tem whose elements are not connected to each other does 
not need to be necessarily null, because each element of E 
may have some complexity of its own. In our view, com- 
plexity is a system property that depends on the relation- 
ships between elements, and is not an isolated element's 
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property. The complexity that an element taken in isolation 
may-intuitively-bring can only originate from the rela- 
tionships between its "subelements." For instance, in a 
modular system, each module can be viewed as a "high- 
level element" encapsulating "subelements." However, if 
we want to consider the system as composed of such "high- 
level elements" (E), we should not "unpack" them, but only 
consider them and their relationships, without considering 
their "subelements" (E'). Otherwise, if we want to consider 
the contribution of the relationships between "sub- 
elements" (R'), we actually have to represent the system as 
S = <E', R U R'>. 

Complexity should not be sensitive to representation 
conventions with respect to the direction of arcs represent- 
ing system relationships (property Complexity.3). A rela- 
tion can be represented in either an "active" (R) or 
"passive" (R-') form. The system and the relationships 
between its elements are not affected by these two 
equivalent representation conventions, so a complexity 
measure should be insensitive to this. 

Also, the complexity of a system S should be at least as 
much as the sum of the complexities of any collection of its 
modules, such that no two modules share relationships, but 
may only share elements (property Complexity.4). We be- 
lieve that this property is the one that most strongly diferentiates 
complexity from the other system concepts. Intuitively, this 
property may be explained by two phenomena. First, the 
transitive closure of R is a graph not smaller than the graph 
obtained as the union of the transitive closures of R' and R" 
(where R' and R" are contained in R). As a consequence, if 
any kind of indirect (i.e., transitive) reIationships between 
elements is considered in the computation of complexity, 
then the complexity of S may be larger than the sum of its 
modules' complexities, when the modules do not share any 
relationship. Otherwise, they are equal. Second, merging 
modules may implicitly generate relationships between the 
elements of each modules. (e.g., definition-use relationships 
may be created when blocks are merged into a common 
system). As a consequence of the above properties, system 
complexity should not decrease when the set of system re- 
lationships is increased (property Complexity.4). 

However, it has been argued that it is not always the 
case that the more relationships between the elements of a 
system, the more complex the system. For instance, it has 
been argued that adding a relationship between two ele- 
ments may make the understanding of the system easier, 
since it clarifies the relationship between the two. This is 
certainly true, but we want to point out that this assertion i s  
related to understandability (i.e., ease of understanding in 
terms of effort needed which is an external attribute), rather 
than complexity which is seen in this paper as an internal 
attribute 111. Complexity is only one of the factors that con- 
tribute to understandability and may help predict it. There 
are other factors that have a strong influence on under- 
standability, such as the amount of available context infor- 
mation and knowledge about a system. In the literature 
[17], it has been argued that the inner loop of the Shellsort 
algorithm, taken in isolation, is less understandable than 
the whole algorithm, since the role of the inner loop in the 
algorithm cannot be fully understood without the rest of 

the algorithm. This shows that Understandability improves 
because a larger amount of context information is available, 
rather than because the complexity of the Shellsort algo- 
rithm is less than that of its inner loop. As another example, 
a relationship between two elements of a system may be 
added to explicitly state a relationship between them that 
was implicit or uncertain. This adds to our knowledge of 
the system, while, at the same time, increases complexity 
(according to our properties). In some cases (see above ex- 
amples), the gain in context information/ knowledge may 
overcome the increase in complexity and, as a result, may 
improve understandability. This stems from the fact that 
several phenomena concurrently affect understandability 
and does not mean in any way that an increase in complex- 
ity increases understandability. 

Last, the complexity of a system made of disjoint mod- 
ules is the sum of the complexities of the single modules 
(property Complexity5). Consistent with property Com- 
plexity.4, this property is intuitively justified by the fact that 
the transitive closure of a graph composed of several dis- 
joint subgraphs is equal to the union of the transitive clo- 
sures of each subgraph taken in isolation. Furthermore, if 
two modules are put together in the same system, but th 
are not merged, i.e., they are still two disjoint module 
this system, then no additional relationships are generat 
from the elements of one to the elements of the other. 

The properties we define for complexity are, to a limited 
extent, a generalization of the properties several authors 
have already provided in the literature (see [5] ,  161, [7]) for 
software code complexity, usually for control flow graphs. 
We generalize them because we may want to use them on 
artifacts other than software code and on abstractions other 
than control Bow graphs. 
DEFINEION 5: Complexity. The complexity o fa  system S is a 

firnction Complexity(S) that is characterized by the following 
properties Complexity1 -Complexity.5. 0 

PROPERTY COMPLEXITY. 1 : Nonnegativity. The complexity of 
a system S = <E, R> is nonnegative 

Complexity(S) 2 0 (Complexity.1) 0 

PROPERTY cOMPLEXITY.2: Null Value. The complexity of a 
system S = <E, R> is null if R is empty 

R = 0 3 Complexity(S) = 0 (Complexity.11) U 

PROPERTY COMPLEXITY.3: Symmetry. The complexity of a 
system S = <E, R> does not depend on the convention 
chosen to represent the relationships between its 
elements 

(S = <E, R> and S-' = <E, R-'>) 
+ CompIexity(S) = Complexity(S-') 

(Complexity.111) 

PROPERTY COMPLEXITY.4: Module Monotonicity. The com- 
plexity of a system S = <E, R> is no less than the sum of 
the complexities of any two of its modules with no rela- 
tionships in common 
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(S = <E, R> and m, = <E,,, R,,> 
and m, = <E,, &> 
and m, u m, E S  and R,,,, n & = 0) 
* Complexity(S) 2 Complexity(mJ + Complexity(mJ 

(Complexity.IV) U 
For instance, the complexity of the system shown in Fig. 4 is 
not smaller than the sum of the complexities of m, and q. 

Fig. 4. Module monotonicity of complexity. 

PROPERTY COMPLEXFY.5: Disjoint Module Additivity. The 
complexity of a system S = <E, R> composed of two dis- 
joint modules m,, m, is equal to the sum of the complexi- 
ties of the two modules 

(S = <E, R> and S = m, U m, and m, n 111, = 0) 
+ Complexity(S) = Complexity(m,) + rComplexity(m,) 

(Comp1exity.V) 0 
As a consequence of the above properties Complex- 

ity.1-Complexity.5, it can be shown that adding relation- 
ships between elements of a system does not decrease its 
complexity 

(S’ = <E, R’> and S”= <E, R”> and I? c R”) 
a Complexity(S’) I Complexity(S”) 

Properties Complexity.1-Complexity.5 hold when applying 
the admissible transformation of the ratio scale. Therefore, 
there is no contradiction between our concept of complexity 
and the definition of complexity measures on a ratio scale. 

Comprehensive comparisons and discussions of previ- 
ous work in the area of complexity properties are provided 
in Section 4. 

(Complexity.VI) 

3.3.2 Examples and Counterexamples of Complexity 

In [18], Oviedo proposed a data flow complexity measure 
(DF). In this case, systems are programs, modules are pro- 
gram blocks, elements are variable definitions or uses, and 
relationships are defined between the defiinition of a given 
variable and its uses. The measure in [18] is simply defined 
as the number of definition-use pairs in a block or a pro- 
gram. Property Complexity.4 holds. Given two modules 
(i.e., program blocks) which may only have common ele- 

Measures 

ments (i.e., no definition-use relationship is contained in 
both), the whole system (i.e., program) has a number of 
relationships (i.e., definition-use relationships) which is at 
least equal to the sum of the numbers of definition-use re- 
lationships of each module. Property Complexity.5 holds as 
well. The number of definition-use relationships of a system 
composed of two disjoint modules (i.e., blocks between 
which no definition-use relationship exists), is equal to the 
sum of the numbers of definition-use relationships of each 
module. As a conclusion, DF is a complexity measure ac- 
cording to our definition. 

In [19], McCabe proposed a control flow complexity 
measure. Given a control flow graph G = <E, R> (which 
corresponds-unchanged-to a system for our framework), 
Cyclomatic Complexity is defined as 

v(G)= IRI - IEl +2p  
where p is the number of connected components of G. Let 
us now check whether v(G) is a complexity measure accord- 
ing to our definition. It is straightforward to show that, ex- 
cept Complexity.4, the other properties hold. In order to 
check property Complexity.4, let G = <E, R> be a control 
flow graph and GI = <E,, RI> and G, = <E,, q> two nondis- 
joint control flow subgraphs of G such that they have nodes 
in common but no relationships. We have to require that GI 
and G, be control flow subgraphs, because cyclomatic 
complexity is defined only for control flow graphs, i.e., 
graphs composed of connected components, each of which 
has a start node-a node with no incoming arcs-and an 
end node-a node with no outgoing arcs. Property Com- 
plexity.4 requires that the following inequality be true for 
all such GI and G, 

IRI - IEl + 2 p 2  IR,I - IE,I +2p,+ I q l  - IE,I +2p, 

i.e., 2(p, + p, - p) I I E, I + I E, I - I E I, where p, and p, are 
the number of connected components in GI and G,, re- 
spectively. This is not always true. For instance, consider 
Fig. 5. G has three elements and one connected compo- 
nent; GI and G, have two nodes and one connected com- 
ponent apiece. Therefore, the above inequality is not true 
in this case, and the cyclomatic number is not a complex- 
ity measure according to our definition. However, it can 
be shown that v(G)-p satisfies all the above complexity 
properties. From a practical perspective, especially in 
large systems, this correction does not have a significant 
impact on the value of the measure. 

G I 

Fig. 5. Control flow graph. 
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Henry and Kafura [ZO] proposed an information flow 
complexity measure. In this context, elements are subpro- 
gram variables or parameters, modules are subprograms, 
relationships are either fan-ins or fan-outs. For a subpro- 
gram SP, the complexity is expressed as length x run-in x 
fun-out)', where fan-in and fan-out are, respectively the lo- 
cal (as defined in [ZO]) information flows from other sub- 
programs to SP, and from SP to other subprograms. Such 
local information flows can be represented as relationships 
between parameters/variables of SP and parameters/ 
variables of the other subprograms. Subprograms' parame- 
ters/variables are the system elements and the subpro- 
grams' fan-in and fan-out links are the relationships. Any 
size measure can be used for length (in 1201 LOC was used). 
The justification for multiplying length and run-in x fun-out)' 
was that "The complexity of a procedure depends on two 
factors: The complexity of the procedure code and the 
complexity of the procedure's connections to its environ- 
ment." The complexity of the procedure code is taken into 
account by length; the complexity of the subprogram's con- 
nections to its environment is taken into account by 
fun-in xfun-out)2. The complexity of a system is defined as 
the sum of the complexities of the individual subprograms. 
For the measure defined above, properties Complexity.1- 
Complexity.4 hold. However, property Complexity.5 does 
not hold since, given two disjoint modules S, and S, with a 
measured information flow of, respectively, length, x 
run-in, x fun-out,)' and length, x van-in, x fan-out,)', the fol- 
lowing statement is true: 

length x (fan-in x fan-out)' 2 length, x (fan-inl x fan-out,)' 
+ length, x (fan-in, x fan-out,)' 

where length = length, + length,, fan-in = fan-inl + fan-@, 
and fan-out = fan-out, -I- fan-ou\. 

However, equality does not hold because of the expo- 
nent 2, which is not fully justified, and multiplication of 
fan-in and fan-out. Therefore, Henry and Kafura [2O] in- 
formation flow measure is not a complexity measure ac- 
cording to our definition. However, fan-in and fan-out 
taken as separate measures, without exponent 2, are com- 
plexity measures according to our definition since all the 
required properties hold. 

Similar measures have been used in [21] and referred to 
as structural complexity (SC) and defined as: 

fan- out2 (subroutine, ) 
sc = is[l ... n] 

n 
Once again, property Complexity.5 does not hold because 
fan-out is squared in the formula. 
A metric suite for object-oriented design is proposed in 

[8]. A system is an object oriented design, modules are 
classes, elements are either methods or instance variables 
(depending on the measure considered) and relationships 
are calls to methods or uses of instance variables by other 
methods. An attempt was made to validate these measures 
against Weyuker 's properties for complexity measures, 
thereby implicitely implying that they were complexity 
measures. However, none of the measures defined by [SI is 
a complexity measure according to our properties: 

Weighted Methods per Class (WMC) and Number Of 
Children of a class (NOC) are size measures (see Sec- 
tion 3.1); 
Depth of Inheritance Tree (DIT) is a length measure 
(see Section 3.2); 
Coupling Between Object classes (CBQ) is a coupling 
measure (see Section 3.4); 
Response For a Class (WC) is a size and coupling 
measure (see Sections 3.1 and 3.5); 
Lack of Cohesion in Methods (LCOM) cannot be 
classified in our framework. This is consistent with 
what was said in the introduction: Our framework 
does not cover all possible measurement concepts. 

This is not surprising. In [SI, it is shown that all of the above 
measures do not satisfy Weyuker's property 9, which is a 
weaker form of property Complexity4 (see Section 4). 

3.4 Cohesion 
3.4. I Motivation 
The concept of cohesion has been used with reference to 
modules or modular systems. It assesses the tightness with 
which "related" program features are "grouped together" 
in systems or modules. It is assumed that the better the 
programmer is able to encapsulate related program features 
together, the more reliable and maintainable the system 
[14]. This assumption seems to be supported by experimen- 
tal results 1221. Intuitively, we expect cohesion to be nonne- 
gative and, more importantly, to be normalized (property 
Cohesion.1) so that the measure is independent of the size 
of the modular system or module. Moreover, if there are no 
internal relationships in a module or in all the modules in a 
system, we expect cohesion to be null (property Cohesion.2) 
for that module or for the system, since, as far as we know, 
there is no relationship between the elements and there is 
no evidence they should be encapsulated together. Addi- 
tional intemal relationships in modules cannot decrease 
cohesion since they are supposed to be additional evidence 
to encapsulate system elements together (property 
Cohesion.3). When two (or more) modules showing no re- 
lationships between them are merged, cohesion cannot in- 
crease because seemingly unrelated elements are encapsu- 
lated together (property Cohesion.4). 

Since the cohesion (and, as we will see in Section 3.5, the 
coupling) of modules and entire modular systems have 
similar sets of properties, both will be described at the same 
time by using brackets and the alternation symbol ' I ' For 
instance, the notation [A I B], where A and B are phrases, 
will denote the fact that phrase A applies to module cohe- 
sion, and phrase B applies to entire system cohesion. 
DEFINITION 6: Cohesion of a [Module I Modular System]. 

The cohesion of U [module m = <E,, R,> of a modular sys- 
tem MS I modular system MS] is a function 
[Cohesion(m) I Cohesion(MS)] characterized by the follow- 

U 
PROPERTY COHESION. 1 : Nonnegativity and Normalization. 

The cohesion of a [module m = <E,, Rm> of a modular 
system MS = <E, R, M> I modular system MS = 
<E, R, M>] belongs to a specified interval 

ing properties Cohesion. 1 -Cohesion. 4. 
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[Cohesion(m) E [0, Max] I Cohesion(MS:l E [0, Max] ] 
(Cohesion.1) 0 

Normalization allows meaningful comparisons between the 
cohesions of different [modules I modular systems], since 
they all belong to the same interval. 
PROPERTY COHESION.2: Null Value. The cohesion of a 

[module m = <E,, Rm> of a modular system MS = 
<E, R, M> I modular system MS = <E, IR, M>] is null if 
[R, I IR] is empty 

[R, = 0 3 Cohesion(m) = 0 I IR = 0 * Cohesion(MS) = 01 

(Recall that IR is the set of intramodule relationships, de- 

If there is no intramodule relationship among the ele- 
ments of a (all) module(s), then the module (system) cohe- 
sion is null. 

PROPERTY COHESION.3: Monotonicity. Let Ms‘ = 

<E, R’, M’> and MS” = <E, R”, MI’> be two modular sys- 
tems (with the same set of elements E) such that there 
exist two modules m’ = <E,, R,.> and m” = <E,, R,,> 
(with the same set of elements E,) belonging to M’ and 
M”, respectively, such that R’ - R ,  = R” - R,,,,,, and 
R,, E. R,,, (which implies IR’ c IR”). Then, 

(Cohesion.11) 

fined in Definition 2.) 0 

[Cohesion(m’) I Cohesion(m”) I Cohesion(MS’) 
I Cohesion(MS”1 (Cohesion.111) 0 

Adding intramodule relationships doea not decrease 
[module I modular system] cohesion. For instance, suppose 
that systems S, S‘, and S” in Fig. 3 are viewed as modular 
systems MS = <E, R, M>, MS’ = <E’, R’, M’>, and MS” = 

<E”, R”, M”> (with M = (m,, m,, m,}, M = (mi,mi,mi,}, 

and M ’  = [mi’, my, mi’)). We have [Cohesion(mi) 2 

Cohesion(m,) I Cohesion(MS’) 2 Cohesion(MS)]. 

PROPERTY COHESION.4: Cohesive Modules. Let MS’ = 
<E, R, M’> and MS” = <E, R, M”> be two modular sys- 
tems (with the same underlying system <E, R>) such that 
M” = M‘- (mi, m; ] U (m”], mi E M’, m; E M’, 
m” E M’, and m ” = m U m 5 .  (The two modules mi 

and mi are replaced by the module m”, union of mi and 
m;.) If no relationships exist between the elements be- 
longing to mi and m;, i.e., InputR(m;) n OutputR(m;) = 
= 0 and InputR(m;) n OutputR(m;) = 0, then 

with 

[max(Cohesion(m;), Cohesion(m;) ] 2 Cohesion(m”) I 
Cohesion(MS’) 2 Cohesion(MS”)] (Cohesion.IV) 0 

The cohesion of a [modulelmodular system] obtained by 
putting together two unrelated modules is not greater than 
the [maximum cohesion of the two original modules I the 
cohesion of the original modular system]. 

Properties Cohesion.1-Cohesion.4 hold when applying 
the admissible transformation of the ratio scale. Therefore, 
there is no contradiction between our concept of cohesion 
and the definition of cohesion measures on a ratio scale. 

3.4.2 Examples of Cohesion Measures 
In [22], cohesion measures for high-level design are defined 
and validated, at both the abstract data type (module) and 
system (program) levels. For brevity’s sake, the term soft- 
ware part here denotes either a module or a program. A 
high-level design is seen as a collection of modules, each of 
which exports and imports constants, types, variables, and 
procedures/ functions. A widely accepted software engi- 
neering principle prescribes that each module be highly 
cohesive, i.e., its elements be tightly related to each other. 
[22] focuses on investigating whether high cohesion values 
are related to lower error-proneness, due to the fact that the 
changes required by a change in a module are confined in a 
well-encapsulated part of the overall program. To this end, 
the exported feature A is said to interact with feature B if 
the change of one of A’s definitions or uses may require a 
change in one of Bs definitions or uses. 

In the approach of the present paper, each feature ex- 
ported by a module is an element of the system, and the 
interactions between them are the relationships between 
elements. A module according to [22] is represented by a 
module according to the definition of the present paper. At 
high-level design time, not all interactions between the fea- 
tures of a module are known, since the features may inter- 
act in the body of a module, and not in its visible part. 
Given a software part sp, three cohesion measures 
NRCI(sp), PRCI(sp), and ORCI(sp) (respectively, Neutral, 
Pessimistic, and Optimistic Ratio of Cohesive Interactions) 
are defined for software as follows 

I SDD(sp) I + I K(sp) I 
NRC1(sp) = I SDD(sp) I + I M(sp) I + I SSR(sp) I - I U(sp) I 

I SDD(sp) I + I CI(sp) I 
pRcl(sp) = I SDD(sp) I + I M(sp) I + I SSR(sp) I 

I SDD(sp) I +- I K(sp) I +  I U(sp) I 
oRcl(sp) = I SDD(sp) I + I M(sp) I + I SSR(sp) I 

where 
M(sp) is the set of all possible intramodule interac- 
tions between the features exported by each module 
of the software part sp (intermodule interactions are 
not considered cohesive; they may contribute to 
coupling, instead). 
K(sp)  is the set of known interactions at high-level de- 
sign time between the features exported by each 
module of the software part sp. 
U(sp) is the set of unknown interactions at high-level 
design time between the features exported by each 
module of the software part sp. 
SDD(sp) will denote the set of modules of sp  that only 
contain a single data declaration and no subroutines 
(even though their sets of potential interactions are 
empty, these modules are highly cohesive, as far as 
our notion of cohesion-related to abstract data 
types-is concerned). 
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SSR(sp) will denote the set of subroutines belonging 
to modules that only contain subroutines (these 
modules are not cohesive, as far as our notion of co- 
hesion is concerned). 

Measures NRCI, PRCI, and ORCI satisfy the above proper- 
ties Cohesion.1-Cohesion.4. 

Other examples of cohesion measures can be found in 
[23], where new functional cohesion measures are intro- 
duced. Given a procedure, function, or main program, only 
data tokens (i.e., the occurrence of a definition or use of a 
variable or a constant) are taken into account. The data slice 
for a data token is the sequence of all those data tokens in 
the program that can influence the statement in which the 
data token appears, or can be influenced by that statement. 
Being a sequence, a data slice is ordered: It lists its data to- 
kens in order of appearance in the procedure, function or 
main program. If more than one data slice exists, some data 
tokens may belong to more than one data slice: these are 
called glue tokens. A subset of the glue tokens may belong to 
all data slices: These are called super-glue tokens. Functional 
cohesion measures are defined based on data tokens, glue 
tokens, and super-glue tokens. This approach can be repre- 
sented in our framework as follows. A data token is an ele- 
ment of the system, and a data slice is represented as a se- 
quence of nodes and arcs. The resulting graph is a Directed 
Acyclic Graph, which represents a module. ([23] introduces 
functional cohesion measures for single procedures, func- 
tions, or main programs.) Given a procedure, function, or 
main program p, the following measures SFC(p) (Strong 
Functional Cohesion), WFC(p) (Weak Functional Cohesion), 
and A(p) (adhesiveness) are introduced 

# SuperGlueTokens 
SF‘@) = # AllTokens 

# GlueTokens 
WFC(p) = # AllTokens 

# SlicesContainingGlueTokenGT 

# AllTokens. # Dataslices 
A ( ~ )  = GT‘GlueTokens 

It can be shown that these measures satisfy the above prop- 
erties Cohesion. 1-Cohesion.4. 

3.5 Coupling 
3.5.1 Motivation 
The concept of coupling has been used with reference to 
modules or modular systems. Intuitively, it captures the 
amount of relationship between the elements belonging to 
different modules of a system. Given a module m, two 
kinds of coupling can be defined: inbound coupling and 
outbound coupling. The former captures the amount of 
relationships from elements outside m to elements inside 
m; the latter the amount of relationships from elements in- 
side m to elements outside m. 

We expect coupling to be nonnegative (property Cou- 
pling.l), and null when there are no relationships among 
modules (property Coupling.2). When additional relation- 
ships are created across modules, we expect coupling not to 
decrease since these modules become more interdependent 

(property Coupling.3). Merging modules can only decrease 
coupling since there may exist relationships among them 
and therefore, intermodule relationships may have disap- 
peared (property Coupling.4, property Coupling.5). 

In what follows, when referring to module coupling, we 
will use the word coupling to denote either inbound or 
outbound coupling, and OuterR(m) to denote either 
InputR(m) or OutputR(m). 

DEFINITION 7: Coupling of a [Module I Modular Sys- 
tem]. The coupling of a [module m = <E,, Rm> of n 
modular sysfem MSImodular system MS] is a function 
[Coupling(m) I Coupling(MS)] characterized by the follow- 
ing properties Coupling. 1-Coupling.5. U 

PROPERTY COUPLING. 1: Nonnegativity. The coupling of a 
[module m = < E ,  R,> of a modular systemlmodular 
system MSI is nonnegative 

[Coupling(m) 2 0 I Coupling(MS) 2 01 (Coupling.1) 0 

PROPERTY COUPLING.2: Null Value. The coupling of a 
[module m = <E,, Rm> of a modular sys- 
temlmodular system MS = <E, R, M>] is null if 
IOuterRfm) 1 R - IR] is empty 

[OuterR(m) = 0 + Coupling(m) = 0 I R - IR = 0 
+ Coupling(MS) = 01 (Coupling.11) Cl 

PROPERTY cOUPLING.3: Monotonicity. Let MS’ = 
<E, R’, M’> and MS” = <E, R”, MI> be two modular sys- 
tems (with the same set of elements E) such that there 
exist two modules m’ E M’, m” E M” such that 
R’ - QuterRfm’) = R” - OuterR(m”), and OuterR(m’) c 
OuterR(m”). Then, 

[Coupling(m’) 5 Coupling(m”) I Coupling(MS’) 
5 Coupling(MS”)] (Coupling.1II) 0 

Adding intermodule relationships does not decrease cou- 
pling. For instance, if systems S, and S” in Fig. 3 are viewed 
as modular systems (see Section 3.4), we have 
[Coupling(m;) 2 Coupling(m,) I Cohesion(MS”) 2 
Cohesion(MS)]. 

PROPERTY COUPLING.4: Merging of Modules. Let MS’ = 
<E: R’, My> and MS“ = <E’, R”, M‘5 be two modular 
systems such that E‘ = E’: R’ = R”, and M” = M’ - 
{m:, mi} U {m’?, where m; = <E,,,,], Rmal>, m i  = 

<EmT2, R,,*>, and m” = <Em.,, R,,,,,>, with E M’, m i  E 

M’, m”P M’, and E,,,,,= E,,,,] U E,,,,n and R,,,= R,,, U RmT2. 
(The two modules m; and m: are replaced by the 
module m’’, whose elements and relationships are the 
union of those of m: and mi.) Then 

[Coupling(m’J + Coupling(m:) 2 Coupling(m”) I 
Coupling(MS3 2 Coupling(MS’1 

(Coupling.IV) U 

The coupling of a [module I modular system] obtained by 
merging two modules is not greater than the [sum of the 
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couplings of the two original moduleslcoupling of the 
original modular system], since the two modules may have 
common intermodule relationships. For instance, suppose 
that the modular system MS,, in Fig. 6 is obtained from the 
modular system MS in Fig. 2 by mergiing modules m1 
and m2 into module mI2’ Then, we have [Coupling(m,) 
+ Coupling(m,) 2 Coupling(m,,) I Coupling(MS) 2 
Coupling( MS,,)] . 

Fig. 6. The effect of merging modules on coupling. 

PROPERTY COUPLING.5: Disjoint Module Additivity. Let MS’ 
= <E, R, M’> and MS” = <E, R, M”> be two modular sys- 
tems (with the same underlying system .:E, R>) such that 
M” = M’- (mi, mi} U (m”}, m; E M’, m; E M’, 

m” M’, and m” = m; U mi. (The two modules mi 
and mi are replaced by the module m”, union of mi and 
mi) If no relationships exist between the elements be- 

longing to mi and m;, i.e., InputR(m;) n OutputR(m;) 

= 0 and InputR( mi) n OutputR( mi) = /3, then 

with 

[Coupling( mi) + Coupling(m’,) = Coupling(m”) I 
Coupling(MS’) = Coupling(MS”)] 

(Coup1ing.V) 0 
The coupling of a [module I modular system] obtained by 
merging two unrelated modules is equal to the [sum of the 
couplings of the two original moduleslcoupling of the 
original modular system]. 

Properties Coupling.1-Coupling.5 hold1 when applying 
the admissible transformations of the ratio scale. Therefore, 
there is no contradiction between our concept of coupling 
and the definition of coupling measures on a ratio scale. 

3.5.2 Examples and Counterexamples of Coupling 

Fenton has defined an ordinal coupling imeasure between 
pairs of subroutines [14] as follows: 

Measures 

n 
C(S, S) = i + - n+ 1 

where i is the number corresponding to the worst coupling 
type (according to Myers’ ordinal scale [14]) and n the 
number of interconnections between S and S’, i.e., global 
variables and formal parameters. In this case, systems are 

programs, modules are subroutines, elements are formal 
parameters and global variables. If coupling for the whole 
system is defined as the sum of coupling values between all 
subroutine pairs, properties Coupling.1-Coupling.5 hold for 
this measures, and we label it as a coupling measure. How- 
ever, Fenton proposes to calculate the median of all the pair 
values as a system coupling measure. In this case, property 
Coupling.3 does not hold since the median may decrease 
when intermodule relationships are added. Similarly for 
Coupling.4, when subroutines are merged and intermodule 
relationships are lost, the median may increase. Therefore, 
the system coupling measure proposed by Fenton is not a 
coupling measure according to our definitions. 

In [22], coupling measures for high-level design are 
defined and validated, at both the module (abstract data 
type) and system (program) levels. They are based on the 
notion of interaction introduced in the examples of 
Section 3.4. Import Coupling of a module m is defined as 
the extent to which m depends on imported external data 
declarations. Similarly, export coupling of m is defined as 
the extent to which m’s data declarations affect the other 
data declarations in the system. At the system level, 
coupling is the extent to which the modules are related to 
each other. Given a module m, Import Coupling of m 
(denoted by IC(m)) is the number of interactions between 
data declarations external to m and the data declarations 
within m. Given a module m, Export Coupling of m 
(denoted by EC(m)) is the number of interactions between 
the data declarations within m and the data declarations 
external to m. As shown in [22], our coupling properties 
hold for these measures. 

Coupling Between Object classes (CBO) of a class is de- 
fined in [8] as the number of other classes to which it is 
coupled. It is a coupling measure. Properties Coupling.1 
and Coupling.2 are obviously satisfied. Property Cou- 
pling.3 is satisfied, since CBO cannot decrease by adding 
one more relationship between features belonging to differ- 
ent classes (i.e., one class uses one more method or instance 
variable belonging to another class). Property Coupling.4 is 
satisfied: CBO can only remain constant or decrease when 
two classes are grouped into one. Property Coupling.5 is 
also satisfied. 

Response For a Class (RFC) [8] is a size and a coupling 
measure at the same time (see Section 3.1). Methods are 
elements, calls are relationships, classes are modules. 
Coupling.3 holds, since adding outside method calls to a 
class can only increase RFC and Coupling.4 holds because 
merging classes does not change RFCs value since RFC 
does not distinguish between inside and outside method 
calls. Similarly, when there are no calls between the classes’ 
methods, Coupling.5 holds. This result is to be expected 
since RFC is the result of the addition of two terms: the 
number of methods in the class, a size measure, and the 
number of methods called, a coupling measure. 

3.6 Concept Properties within the Context of Meas- 

The properties we defined in the previous subsections must 
be discussed in the context of measurement theory. For the 
reader’s convenience, we now report (in italic) the basic 

urement Theory 
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definitions and notation of measurement theory, as defined 
in [ll, pp. 40-511, based on [24]. 

A relational system A [24] is an ordered tuple (A, Rl ,  . .e ,  Rn, 
01, . a ., om) where A is a nonempty set of objects, the Ri, i = 1, ., 
n are ki-ay relations on A and the oj, j = 1, -.., m are closed bi- 
n a y  operations. For measurement we consider two relational 
systems: the empirical and formal relational systems. 

Empir ica l  R e l a t i o n a l  S y s t e m :  

A = (A, RI ,  ..., Rn, 01, om). 
A 

Ri 

is a nonempty set of empirical objects that are to be 
measured (in our case program texts, flowgraphs, etc.). 
are ki-ary empirical relations on A with i = I ,  - e - ,  n. 
€or example, the empirical relation "equal or more 
complex. ' I  

are bina y operations on the empirical objects A that are 
to be measured (for example a concatenation of control 
flowgraphs) with j = 1, .-., m. 

The empirical relational system describes the part of reality 
on which measurement is carried out (via the set of objects 
A) and our empirical knowledge on the objects' attributes 
we want to measure (via the collection of empirical rela- 
tions Ri's). Depending on the attributes we want to meas- 
ure, different relations are used. For instance, if we are in- 
terested in program length, we may want to use the relation 
"longer than" (e.g., "program P1 is longer than program 
P2"); if we are interested in program complexity, we may 
want to use the relation "more complex than" (e.g., 
"program P3 is more complex than program P4"). Binary 
operations may be seen as a special case of ternary relation 
between objects. For instance, suppose that 01 is the con- 
catenation operation between two programs. We may see it 
as a relation Concat(Program1, Prograd, Program3), 
where Program3 is obtained as the concatenation of Pro- 
gram1 and Program2, i.e., Program3 = Program1 01 Pro- 
gram2. It is important to notice that an empirical relational 
system does not contain any reference to measures or num- 
bers. Only "qualitative" statements are asserted, based on 
our understanding of the attribute. These statements are 
then translated into relations that belong to a formal rela- 
tional system, as explained below. 

Formal  R e l a t i o n a l  S y s t e m :  

oj 

B = (B, S1, Sn,. 1, ..., m). 
B is a nonempty set of formal objects, for example num- 

bers or vectors. 
S i  aye ki-ary relations on B such as "greater than" or 

"equal or greater." 
*j are closed binay operations B such as the addition or 

multiplication. 

The formal relational system describes (via the set B) the 
domains of the measures for the studied objects' attributes. 
For instance, these may be integer numbers, real numbers, 
vectors of integer, and/or real numbers, etc. A formal rela- 
tional system also describes (via the collection of relations 
Sis) the relations of interest between the measures. The link 
between the empirical relational system and the formal re- 
lational system is provided by measures, as follows. 

DEFIN~TION 4.1: Measure p. A measure p is a mapping p : A + 
B which yields for every empirical object a E A a formal object 
(measurement value) p(a) E B. 
Every object a of A is mapped into a value of B, i.e., it is 

measured according to measure p(a). Every empirical rela- 
tion Ri is mapped into a formal relation Si. For instance, the 
relation "more complex than" between two programs is 
mapped into the relation ">" between the complexity 
measures of two programs. The formal relations must pre- 
serve the meaning of the empirical statements. For instance, 
suppose that R1 is the empirical relation "more complex 
than," S1 is the formal relation ">," and p is a complexity 
measure. Then, we must have that program P1 is more 
complex than program P2 if and only if p(P1) > p(P2). 

Within the context defined above, concept properties 
may be seen as properties characterizing, for each meas- 
urement concept (i.e., family of measures), formal relational 
systems. These properties are preserved from the corre- 
sponding empirical relational systems when formal rela- 
tional systems are derived. However, our set of properties 
for a concept does not fully characterize a formal relational 
system since, for a particular measurement application, 
many properties will be specific to the working environ- 
ment and experience of the modeler (captured in the em- 
pirical relational system). 

For example, if we take Property Size.3 (Module ad- 
ditivity), 

(m, c S and q S and E =Em, v E, and E,, n E, = 0) 
3 Size(S) = Size(m,) + Size(m,) 

we can see that this property is expressed in terms of a 
measure Size and arithmetic operators such ins "+". Clearly, 
our properties are formal relational system properties. 
However, these properties are derived from a correspond- 
ing empirical relational system. For instance, the above 
property can be derived from the following property of the 
empirical relational system: 

(m, c Sand q cS and E = Em, v E, and E,, n E, = 0) 
=$ S = m, 0 m,) 

where "6" could be a concatenation operation between two 
modules and "=" an equivalence relation (i.e., "same size 
as") between two objects of the empirical relational system. 
In this context, any valid formal relational system is sup- 
posed io preserve properties such as the one above. 

The concept properties defined above may be seen as 
properties to consider (i.e., consciously accept or reject) and 
therefore as guidelines when building empirical and formal 
relational systems and deriving measures of product inter- 
nal attributes. The properties above were defined for the 
formal relational systems for two reasons: 

We characterize families of measures (i.e., 
"measurement concepts") and therefore we want 
those properties to be expressed in terms of those 
measures. 
Defining both the empirical and formal relational sys- 
tems' properties would be redundant for the purpose 
of this paper. 
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To conclude and as discussed above, these properties are 
intuitive and convenient and provide a self-consistent for- 
mal framework to build measurement modeb. 

3.7 Comparison of Concept Properties 
We want to summarize the important differences and simi- 
larities between the system concepts introduced in this pa- 
per. Table l uses only criteria that can be compared across 
the concepts of size, length, complexity, cohesion, and 
coupling. First, it is important to recall that coupling and 
cohesion are only defined in the context of modular sys- 
tems, whereas size, length and complexity ,are defined for 
all systems. 

Second, the concepts appear to have the null value 
(second column) and monotonicity (third column) prop- 
erties based on different sets. The behavior of a measure 
with respect to variations in such sets characterizes the 
nature of the measure itself, i.e., the concept(s) it captures. 
As RFC, defined in [8], shows (see Sections 3.1 and 3.5), 
the same measure may satisfy the sets of Properties asso- 
ciated with different concepts. As a matter of fact, similar 
sets of properties associated with different concepts are 
not contradictory. 

Third, when systems are made of disjoint modules, 
size, complexity and coupling are additive (properties 
Size.3, Complexity.5, and Coupling.5). Cohesion and 
length are not additive. 

TABLE 1 
COMPARISON OF CONCEPT PROPEFITIES 

This summary shows that these concepts are really dif- 
ferent with respect to basic properties. Therefore, it appears 
that desirable properties are likely to vary from one meas- 
urement concept to another. 

4 COMPARISON WITH RELATED WORK 
We mainly compare our approach with the other ap- 
proaches for defining sets of properties foir software com- 
plexity measures, because they have been studied more 
extensively and thoroughly than other kinds of measures. 
In addition, we compare our approach with the axioms in- 
troduced by Fenton and Melton [25] for software coupling 
measures. As already mentioned, our approach generalizes 
previous work on properties for defining complexity meas- 
ures. Unlike previous approaches, it is not constrained to 
deal with software code only, but, because of its generality, 
can be applied to other artifacts produced during the soft- 
ware lifecycle, namely, software specifications and designs. 
Moreover, it is not defined based on some control flow op- 
erations, like sequencing or nesting, but on a general repre- 
sentation, i.e., a graph. 

4.1 Weyuker' 
Weyuker's work [7] is one of the first attempts to formalize 
the fuzzy concept of program complexity. This work has 
been discussed by many authors [8], [14], [5], [6], [ll] and is 
still a point of reference and comparison for anyone investi- 
gating the topic of software complexity. 

To make Weyuker 's properties comparable with ours, we 
will assume that a program according to Weyuker is a sys- 
tem according to our definition; a program body is a mod- 
ule of a system. A whole program is built by combining 
program bodies, by means of sequential, conditional, and 
iterative constructs (plus the program and output state- 
ments, which can be seen as "special" program bodies), 
and, correspondingly, a system can be built from its con- 
stituent modules. Since some of Weyuker 's properties are 
based on the sequencing between pairs of program bodies P 
and Q, we provide more details about the representation of 
sequencing in our framework. Sequencing of program 
bodies P and Q is obtained via the composition operation 
(P; Q). Correspondingly, if S, = <E, Rp> and S, = <E,, RQ> 
are the modules representing the two program bodies 
P and Q5, then, we will denote the representation of 
P; Q as S,, = <EP;,, R,,,>. In what follows, we will assume 
that E,, = E,, U E, and R,;, c R, U h, i.e., the representa- 
tion of the composition of two program bodies contains 
the elements of the representation of each program body, 
and at least contains all the relationships belonging to 
each of the representations of program bodies. In other 
words, S, and S, are modules of Sp,w 

W1: A complexity measure must not be "too coarse" (I). 
3 S,, S, Complexity(S,) # Complexity(S,) 

W2: A complexity measure must not be "too coarse" (2). Given 
the nonnegative number c, there are only finitely many sys- 
tems of complexity c. 
W3: A complexity measure must not be "too fine." There are 
distinct systems S, and S, such that Complexity(S,) = 
Complexity (S,). 
W 4  Functionality. There is no one-to-one correspondence be- 
tween functionality and complexity 3 S,, S, P, and Q are func- 
tionally equivalent and Complexity(S,) # Complexity(S,). 

W5: Monotonicity with respect to composition. 

Complexity(S,) 5 Complexity(S,,) and Complexity(S,) 5 
Complexity(S,,J 
W6: The contribution of a module in terms of the overall system 
complexity may depend on the rest of the system. 

(a) 3 S,, S, S, Complexity(S,) = Complexity(S,) and 
Complexity(S,) f Complexity(S,,) 
(b) 3 S,, S,, S, Complexity(S,) = Complexity(S,) and 
Complexity(S,,) f Complexity(S,,) 

sp,sQ 

4. We will list properties/axioms by the initial of the proponents. So, 
Weyuker's properties will be referred to as W1, W2, ..., W9, Tian and 
Zelkowitz's as TZ1 to TZ5, and Lakshmanian et al.'s as L1 to L9. 

5. In what follows, we will use the notation '3, = <Ep, R,> to denote 
the representation of program body l? 
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W7: A complexity measure is sensitive to the permutation of 
statements. 

3 S,, S, Q is formed by permuting the order of statements of 
P and Complexity(S,) # Complexity(S,) 

W8: Renaming. If P is a renaming of Q, then Complexity(S,) 
= Complexity(S,). 

W9: Module monotonicity. 3 S,, S, Complexity(S,) + Com- 
plexity(SQ) I Complexity(S,,) 

4.4.1 Analysis of Weyuker’s properties 

W1, W2, W3, W4, W8: These are not implied by our prop 
erties, but they do not contradict any of them, so they can 
be added to our set, if desired. However, we think that 
these properties are general to all syntactically-based prod- 
uct measures and do not appear useful in our framework to 
differentiate concepts. 
W5: This is implied by our properties, as shown by inequal- 
ity (Complexity.VI), since S, and S, are modules of S,. 
W6, W7: These properties are not implied by the above 
properties Complexity.1-Complexity.5. However, they show 
a very important and delicate point in the context of com- 
plexity measure definition. 

By assuming properties W6(a) and W6@) to be false, one 
forces all complexity measures to be strongly related to con- 
trol flow, since this would exclude that the composition of 
two program bodies may yield additional relationships be- 
tween elements (e.g., data declarations) of the two program 
bodies. If properties W6(a) and W6@) are assumed true, 
one forces all complexity measures to be sensitive to at least 
one other kind of additional relationship. 

Similarly, W7 states that the order of the statements, 
and therefore the control flow, should have an impact on 
all complexity measures. By assuming property W7 to be 
false, one forces all complexity measures to be insensitive 
to the ordering of statements. If property W7 is assumed 
true, one forces all complexity measures to be somehow 
sensitive to the ordering of statements, which may not 
always be useful. 
W8: We analyze this property again, to better explain the 
relationship between complexity and understandability. 
According to this property, renaming does not affect com- 
plexity. However, it is a fact that renaming program vari- 
ables by absurd or misleading names greatly impairs un- 
derstandability. This shows that other factors, besides 
complexity, affect understandability and the other external 
qualities of software that are affected by complexity. 

As for properties Wl-W8, our approach is somewhat 
more liberal than Weyuker’s. For instance, the constant null 
function is an acceptable complexity measure according to 
our properties, while it is not acceptable according to 
Weyuker’s properties. It is evident that the usefulness of 
such a complexity measure is questionable. We think that 
properties should be used to check whether a measure ac- 
tually addresses a given concept (e.g., complexity). How- 
ever, given any set of properties, it is almost always possi- 
ble to build a measure that satisfies them, but is of no prac- 

tical interest (see [12]). At any rate, this is not a sensible rea- 
son to reject a set of properties associated with a concept. 
Rather, measures that satisfy a set of properties must be 
later assessed with regard to their usefulness. 
W9: This is probably the most controversial property. The 
above properties Complexity.1-Complexity.5 imply it. Ac- 
tually our properties imply the stronger form of W9, the 
unnumbered property following W9 in Weyuker’s paper [7] 
(see also [26]) 

tf S, S, Complexity(S,) + Complexity(S,) I Complexity(S,,) 
Weyuker rejects it on the basis that it might lead to con- 
tradictions: she argues that the effort needed to imple- 
ment or understand the composition of a program body P 
with itself, is probably not twice as much as the effort 
needed for P alone. Our point is that complexity is not the 
only factor to be taken into account when evaluating the 
effort needed to implement or understand a program, nor 
is it proven that this effort is in any way ”proportional” to 
product complexity. 

4.2 Fenton 
In addition to Weyuker’s work, Fenton [l] shows that, 
based on measurement-theoretic mathematical grounds, 
there is no chance that a general measure for software 
complexity will ever be found, nor even for control flow 
complexity, i.e., a more specific kind of complexity. We to- 
tally agree with that. By no means do we aim at defining a 
single complexity measure, which captures all kinds of 
Complexity in a software artifact. Instead, our set of proper- 
ties define constraints for any specific complexity measure, 
whatever facet of complexity it addresses. 

Fenton and Melton [25] introduced two axioms that they 
believe should hold for coupling measures. Both axioms 
assume that coupling is a measure of connectivity of a sys- 
tem represented by its module design chart (or 
chart). The first axiom is similar to our monotoni 
erty (Coupling.3). It states that if the only difference be- 
tween two module design charts D and D’ is an extra inter- 
connection in D,’ then the coupling of D’ is higher than the 
coupling of D. The second axiom basically states that sys- 
tem coupling should be independent from the number of 
modules in the system. If a module is added and shows the 
same level of pairwise coupling as the already existing 
modules, then the coupling of the system remains constant. 
According to our properties, coupling is seen as a measure 
which is to a certain extent dependent on the number of 
modules in the system and we therefore do not have any 
equivalent axiom. This shows that the sets of properties that 
can be defined above are, to some extent, subjective. 

4.3 Zuse 
In his article in the Encyclopaedia of Software Engineering 
[27, pp. 131-1651, Zuse applies a measurement-theoretic 
approach to complexity measures. The focus is on the con- 
ditions that should be satisfied by empirical relational sys- 
tems in order to provide them with additive ratio scale 
measures. This class of measures is a subset of ratio scale 
measures, characterized by the additivity property 
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(Theorems 2 and 3 of [27]). Given the set P of flowgraphs 
and a binary operation * between flowgraphs (e.g., con- 
catenation), additive ratio scale complexity measures are 
such that, for each pair of flowgraphs P1, P2, 

Complexity(P1 * P2) = Complexity(P1) + Comple~ity(P2) 
This property shows that a different concept of complexity 
is defined by Zuse, with respect to that defined by 
Weyuker’s (W9) and our properties (Complexity.4). It is 
our belief that, by requiring that complexity measures be 
additive, important aspects of complexity may not be 
fully captured, and complexity measures actually become 
quite similar to size measures. Considering complexity as 
additive means that, when two modules are put together 
to form a new system, no additional delpendencies be- 
tween the elements of the modules should be taken into 
account in the computation of the system complexity. We 
believe this is a very questionable assumption for product 
complexity [28]. 

4.4 Tian and Zelkowitz 
Tian and Zelkowitz [6]  have provided axioms (necessary 
properties) for complexity measures and a classification 
scheme based on additional program characteristics that 
identify important measure categories. In the approach, 
programs are represented by means of their abstract syntax 
trees (e.g., parse trees). To translate this representation into 
our framework, we will assume that the whole program, 
represented by the entire tree, is a system, and that any part 
of a program represented by a subtree is a module. 
TZ1: Systems with identical functionality ,Ire comparable, 
i.e., there is an order relation between theml with respect to 
complexity. 
TZ2: A system is comparable with its modulle(s). 
TZ3: Given a system SQ and any module S, whose root, in 
the abstract tree representation, is ”far enough from the 
root of S ,  then S, is not more complex than S,. In other 
words, ”small” modules of a system are no more complex 
than the system. 

TZ4: If an intuitive complexity order relation exists between 
two systems, it must be preserved by the complexity meas- 
ure (it is a weakened form of the representation condition of 
Measurement Theory [14]). 
TZ5: Measures must not be too coarse and must show suf- 
ficient variability. 
TZ1, TZ2, TZ5 do not differentiate software characteristics 
(concepts) and can be used for all syntactic product meas- 
ures. TZ3 can be derived from our set of properties. TZ4 
captures the basic purpose behind the definition of all 
measures: preserving an intuitive order on a set of software 
artifacts [17]. 

The additional set of properties which is presented in 
[61 is used to define a measure classification system. It 
determines whether or not a measure is based exclusively 
on the abstract syntax tree of the program, whether it is 
sensitive to renaming, whether it is sensitive to the con- 
text of definition or use of the measured program, 
whether it is determined entirely by the performed pro- 

gram operations regardless of their order and organiza- 
tion, and whether concatenation of programs always con- 
tribute positively toward the composite program com- 
plexity (i.e., system monotonicity). 

Some of these properties are related to the properties 
defined in this paper and we believe they are characteris- 
tic properties of distinct system concepts (e.g., system 
monotonicity). Others do not differentiate the various 
concepts associated with syntactically-based measures 
(e.g., renaming). 

4.5 Lakshmanian et al. 
Lakshmanian et al. [5] have attempted to define necessary 
properties for software complexity measures based on 
control flow graphs. In order to make these properties 
comparable to ours, we will use a notation similar to the 
one used to introduce Weyuker’s properties. A program 
according to Lakshmanian et al. (represented by a control 
flow graph) is a system according to our definition, and a 
program segment is a module. In addition to sequencing, 
these properties use the nesting program construct de- 
noted as @. “A program segment Z is said to be obtained 
by nesting [program segment] Y at the control location i in 
[program segment] X (denoted by YOXI) if the program 
segment X has at least one conditional branch, and if Y is 
embedded at location i in X in such a way that there exists 
at least one control flow path in the combined code Z that 
completely skips Y.” ”The notation Y@X refers to any 
nesting of Y in X if the specific location in X at which Y is 
embedded is immaterial.” 

In what follows, X, Y, Z will denote programs or pro- 
gram segments; s,, sy, S, will denote the corresponding sys- 
tems or modules according to our definition. Lakshmanian 
et al. [5] introduce nine properties. However, only five out 
of them can be considered basic, since the remaining four 
can be derived from them. Therefore, below we will only 
discuss the compatibility of the basic properties with re- 
spect to our properties. 
L1: Nonnegativity. 
Ll(a): Null value. 
If the program only contains sequential code (referred to as 
a basic block B) then 

Complexity(S,) = 0 

L1(b): Positivity. 
If the program X is not a basic block, then 

Complexity(S,) > 0 0 

Property L1 does not contradict any of our properties (in 
particular, Complexity 1 and Complexity 2). 
L5: Additivity under sequencing. 

Complexity(S,,,) = Complexity(S,) + Complexity(S,) 0 

This property does not contradict properties Complexity.4 
and Complexity.5, where the equality sign is allowed. By 
requiring that complexity be additive under sequencing, 
Lakshmanian et al. take a viewpoint which is very similar 
to that of Zuse. 
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L6: Functional independence under nesting. 
Adding a basic block B to a system X through nesting does 
not increase its complexity 

Complexity(S,,) = Complexity(S,) 0 

L7: Monotonicity under nesting. 
Complexity(S,,,) < Complexity(S,,,) 

if Complexity@,) < Complexity(S,) 0 
These properties are compatible with our properties. 
L9: Sensitivity to nesting. 
Complexity(S,, ,) < Complexity(S,,,) if Complexity(S,) > 0 

0 
This property does not contradict our properties. 

In conclusion, none of the above properties contra- 
dicts our properties. However, the scope of these prop- 
erties is limited to the sequencing and nesting of control 
flow graphs, and therefore to the study of control flow 
complexity. 

As for the other properties, we now show how they can 
be derived from L1, L5, L6, L7, and L9. 
L2: Functional independence under sequencing. 

Complexity(S,,) = Complexity(S,) 

This property follows from L5 (first equality below) and L1 
(second equality below): 

Complexity(Sx,B) = Complexity(S,) 
+ Complexity(S,) = Complexity(S,) 0 

L3: Symmetry under sequencing. 
Complexity(S,,,) = Complexity(S,,) 

This property follows from L5 (both equalities) 
Complexity(S,,) = Complexity(S,) 
+ Complexity(S,) = Complexity(S,,) 0 

L4: Monotonicity under sequencing. 
Complexity(S,,,) < Complexity(S,,,) 
if Complexity(S,) < Complexity(S,) 

Complexity(S,,,) = Complexity(S,,,) 
if Complexity(S,) = Complexity(S,) 

This property follows from L5: 
if Complexity(S,) < Complexity(S,), then 
Complexity(S,,) = Complexity(S,) + Complexity(S,) 

if Complexity(S,) = Complexity(S,), then 
Complexity(S,,,) = Complexity(S,) + Complexity(S,) 

L8: Monotonicity under nesting. 

< Complexity(S,) + Complexity(S,) = Complexity(S,,J 

= Complexity(S,) + Complexity(S,) = Complexity(S,,,) cl 

Complexity(S,) < Complexity(S,) 

This property follows from L1 (first inequality below, since 
Complexity(S,) > 0-X cannot be a basic block), L5 (equality 
below) and L9 (second inequality below) 
Complexity(S,) < Complexity(S,) + Complexity(S,) 

= Complexity(S,,,) < Complexity(S,,,) 0 

In conclusion, certain properties covered by some of the 

works mentioned above (Weyuker, and Tian and Zelkow- 
itz) are general and characterize all syntactically based 
measures. As such, they are not covered by our frame- 
work. On the other hand, Lakshmanian et al. provide a 
more specialized framework focusing on control flow 
complexity and some of their properties are not covered, 
because specific of their context of study, in our frame- 
work. Other properties are weaker (e.g., W9) than some of 
the properties we propose and this will ultimately be a 
matter of choice and a consensus in the software engineer- 
ing community will have to be reached. 

5 CONCLUSION AND DIRECTIONS FOR FUTURE WORK 

In order to provide some guidelines for the analyst in 
charge of defining product measures, we propose a frame- 
work for software measurement where various software 
measurement concepts are distinguished and their specific 
properties defined in a generic manner. Such a framework 
is, by its very nature, somewhat subjective and there are 
possible altematives to it. However, it is a practical frame- 
work since the properties we capture are, we believe, inter- 
esting and all the concepts can be distinguished by different 
sets of properties. 

For example, these properties can be used to guide the 
search for new product measures as shown in [3]. Moreover, 
we hope this framework will help avoid future confusion, 
often encountered in the literature, about what properties 
product measures should or should not have. Studying 
measure properties is important in order to provide disci- 
pline and rigor to the search for new product measures. 
However, the relevancy of a property to a given measure 
must be assessed in the context of a well defined measure- 
ment concept, e.g., one should not attempt to verify if a 
length measure is additive. 

This framework does not prevent useless measures from 
being defined. The usefulness of a measure can only be as- 
sessed in a given context (i.e., with respect to a given ex- 
perimental goal and environment) and after a thorough 
experimental validation [3]. This framework is not a global 
answer to the problems of software engineering measure- 
ment; it is just one of the necessary components of a meas- 
ure definition process as presented in [3] .  

Future research will include the definition of more spe- 
cific measurement frameworks for particular product ab- 
stractions, e.g., control flow graphs, data dependency 
graphs. Also, new concepts could be defined, such as in- 
formation content (in the information theory sense). 
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