
suming and expensive, and if done exter-
nally does not cover local knowledge.
Learning by doing can be risky because peo-
ple continue to make mistakes until they get
it right. KM does not replace organized
training, but supports it. Documented
knowledge can provide the basis for internal
training courses based on knowledge pack-
aged as training material. However, KM
mainly supports learning by doing. It pro-
vides knowledge or pointers to people who
have the knowledge, when and where it is
needed.

KM does not come for free; it requires ef-
fort and resources. In KM systems that or-
ganizations have implemented so far (see
the Experience Factory sidebar and this is-
sue’s feature articles), people other than de-
velopers often perform KM activities (such
as a chief knowledge officer and his staff, an
Experience Factory group, or a software

process improvement group). This supports
developers in their daily work instead of
loading them with extra effort.

Software engineering’s core task is devel-
oping software. Documents (such as con-
tracts, project plans, and requirements and
design specifications) are also produced dur-
ing software development. These documents
capture knowledge that emerged from solv-
ing the project’s problems. Team members
can then reuse this knowledge for subsequent
projects, for example, by analyzing accepted
solutions to different problems. If individuals
own knowledge that is not explicitly cap-
tured, the organization can leverage that
knowledge only if it can identify and access
these individuals.

Organizations wishing to improve a
team’s software engineering capabilities can
conduct the task of ensuring that knowledge
gained during the project is not lost. They

3 0 I E E E S O F T W A R E M a y / J u n e 2 0 0 2

Victor R. Basili
Carolyn Seaman

The basis for the Experience Factory
Organization1 concept is that software
development projects can improve their
performance (in terms of cost, quality,
and schedule) by leveraging experience
from previous projects. The
concept also takes into account
the reality that managing this
experience is not trivial and
cannot be left to individual
projects. With deadlines, high
expectations for quality and
productivity, and challenging
technical issues, most develop-
ment projects cannot devote
the necessary resources to
making their experience avail-
able for reuse.

The EFO solves this prob-
lem by separating these re-
sponsibilities into two distinct
organizations. We call these
organizations the Project Or-
ganization, which uses pack-
aged experience to deliver
software products, and the

Experience Factory, which supports soft-
ware development by providing tailored
experience. Figure A depicts the EFO,
which assumes separate logical or phys-
ical organizations with different priori-
ties, work processes, and expertise
requirements.

The Experience Factory analyzes and

synthesizes all experience types, includ-
ing lessons learned, project data, and
technology reports, and provides reposi-
tory services for this experience. The Ex-
perience Factory employs several meth-
ods to package the experience, including
designing measures of various software
process and product characteristics and

then building models of these
characteristics that describe
their behavior in different con-
texts. These models’ data come
from development projects via
people, documents, and auto-
mated support.

When using EFO, not only
must the organization add an-
other suborganization for
learning, packaging, and stor-
ing experience, but it also must
change the way it does its
work. An organization adopt-
ing the EFO approach must
believe that exploiting prior
experience is the best way to
solve problems and ensure that
the development process incor-
porates seeking and using this
experience. The EFO also as-

The Experience Factory Organization

Plan

Do

Project
support

Project
organization

Project
plan

Experience Factory Organization
Experience factory

Needs

Packaged
experience,
consulting

Package
(synthesize)Experience

base

Raw experience

Packaged
experience

Feedback
Analyze

Figure A. Flow of information through the
Experience Factory Organization.

can conduct this task during the project and
shortly after they complete it. It addresses
both acquiring knowledge that was not
documented as part of the core activities
and analyzing documents to create new
knowledge. Included in this task are all
forms of lessons learned and postmortem
analyses that identify what went right or
wrong regarding both the software product
and process.

These activities also include project
data analyses, such as comparisons of esti-
mated and actual costs and effort, planned
and actual calendar time, or analysis of
change history to reflect project events.
These tasks collect and create knowledge
about a particular project; any organiza-
tion can perform them. Although these
activities’ results are useful by themselves,
they can also be the basis for further knowl-
edge creation and learning. They can be

stored in repositories and experience bases.
At a higher level, organizations and indus-

tries must analyze multiple past projects to
improve their software developing abilities.
This requires extensive knowledge based on
many different software development experi-
ences, as well as insights into analysis and
synthesis of new knowledge. Patterns, heuris-
tics, best practices, estimation models, and
industry-wide standards and recommenda-
tions are examples of outcomes from these
knowledge-processing activities.

We group KM activities that support soft-
ware development into three categories: by the
purpose of their outputs (supporting core SE
activities, project improvement, or organiza-
tional improvement), the scope of their inputs
(documents or data from one or multiple proj-
ects), and the effort level required to process
inputs to serve SE needs. We use this classifi-
cation to describe how both existing and new

M a y / J u n e 2 0 0 2 I E E E S O F T W A R E 3 1

sumes that the activities of the Experi-
ence Factory and those of the Project
Organization are integrated. That is, the
activities by which the Experience Fac-
tory extracts experience and then pro-
vides it to projects are well integrated
into the activities by which the Project
Organization performs its function. Fig-
ure A represents this interaction and ex-
change of experience.

Making experience available and us-
able is crucial but is not the essence of
an EFO. “Experience” in an Experience
Factory is not only the raw information
reported directly from projects. It also
includes the valuable results of the
analysis and synthesis of that local ex-
perience, such as “new” knowledge
generated from experience. But the new
knowledge is based on applying previ-
ous experience on real projects, not on
analysis in a vacuum.

Thus, an EFO must

� Package experience by analyzing,
synthesizing, and evaluating raw
experience and build models that
represent abstractions of that expe-
rience

� Maintain an experience base or
repository of data, experience,
models, and other forms of knowl-
edge and experience

� Support projects in identifying and
using the appropriate experiences
for the situation

Victor Basili first presented the EFO
concept in a keynote address at COMP-
SAC in 1989.2 This was before the term
“knowledge management” became pop-
ular, but the EFO addresses many of the
same concerns. This learning-organiza-
tion concept evolved from our experi-
ences in the NASA Software Engineering
Laboratory, a joint effort of the University
of Maryland, Computer Sciences Corpo-
ration, and the NASA Goddard Space
Flight Center. The SEL’s high-level goal
was to improve Goddard’s software
processes and products.

The application of EFO ideas resulted
in a continuous improvement in software
quality and cost reduction during the SEL’s
quarter-century lifespan.3 Measured over
three baseline periods in 1987, 1991,
and 1995 (each baseline was calculated
based on about three years’ worth of

data), demonstrated improvements in-
cluded decreases in development defect
rates of 75 percent between the 1987
and 1991 baselines and 37 percent be-
tween the 1991 and 1995 baselines. We
also observed reduced development costs
between subsequent baselines of 55 per-
cent and 42 percent, respectively.

References
1. V.R. Basili and G. Caldiera, “Improve Soft-

ware Quality by Reusing Knowledge and Ex-
perience,” Sloan Management Rev., vol. 37,
no. 1, Fall 1995, pp. 55–64.

2. V.R. Basili, “Software Development: A Para-
digm for the Future,” Proc. 13th Int’l Com-
puter Software and Applications Conf.
(COMPSAC 89) IEEE CS Press, Los Alamitos,
Calif., 1989, pp. 471–485.

3. V.R. Basili et al., “Special Report: SEL’s Soft-
ware Process-Improvement Program,” IEEE
Software, vol. 12, no. 6, Nov./Dec. 1995,
pp. 83–87.

Victor R. Basili’s biography appears on page 49.

Carolyn Seaman is an assistant professor of Information
Systems at the University of Maryland, Baltimore County and a
research scientist at the Fraunhofer Center for Experimental
Software Engineering, Maryland. Contact her at cseaman@
umbc.edu.

