
M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 1 – 9, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving Defect “Folklore”:
A Cross-Study Analysis of Software Defect Behavior

Victor Basili1 and Forrest Shull2

1 Dept. of Computer Science, University of Maryland,
College Park, MD, 20742, USA

basili@cs.umd.edu
2 Fraunhofer Center - Maryland, 4321 Hartwick Road,

Suite 500, College Park, MD, 20740, USA
fshull@fc-md.umd.edu

Abstract. Answering “macro-process” research issues – which require under-
standing how development processes fit or do not fit in different organizational
systems and environments – requires families of related studies. While there are
many sources of variation between development contexts, it is not clear a priori
what specific variables influence the effectiveness of a process in a given con-
text. These variables can only be discovered opportunistically, by comparing
process effects from different environments and analyzing points of difference.

In this paper, we illustrate this approach and the conclusions that can be
drawn by presenting a family of studies on the subject of software defects and
their behaviors – a key phenomenon for understanding macro-process issues.
Specifically, we identify common “folklore,” i.e. widely accepted heuristics
concerning how defects behave, and then build up a body of knowledge from
empirical studies to refine the heuristics with information concerning the condi-
tions under which they do and do not hold.

1 Introduction

Answering “macro-process” research issues – specifically, being able to make state-
ments about the effectiveness of processes in different contexts, and understanding
how processes fit or do not fit in different organizational systems and with different
organizational characteristics – requires families of related studies. This is true be-
cause of two difficulties inherent in software process research:

• It is clear that there are many sources of variation between one development
context and another;

• It’s not clear a priori what specific variables influence the effectiveness of a
process in a given context.

That is, we expect it to be an almost impossible task to predict ahead of time what
factors are likely to crucially affect the results of applying a process in one environ-
ment or another: for example, the motivation of the practitioners, their experi-
ence/skill level with various tasks, the various business goals of the organization. Yet

2 V. Basili and F. Shull

we know that these variables do exist and we are able to reason about their influence
if we work bottom-up, that is, starting with the observation of process effectiveness in
various environments and identifying the possible causes of discrepancies.

For example, one study provided some indications that the application of a particu-
lar software inspection process was influenced by the experience of the developers
applying it: novice inspectors seemed to gain some improvement from the new tech-
nique while experts seemed to fall back on their own, proven practices [1]. This effect
was traced to a particular context variable in this study, the time limit given for the
inspection: Since the participants felt pressured to get the inspection completed in
time, experts fell back on their own techniques rather than try to deal with the learn-
ing curve. In a context where the time limit was open-ended or subjects were more
motivated to learn the new process, it is impossible to say whether the same effect
would still have been observed. Such unexpected inter-relationships between vari-
ables are always a possibility in software process research.

For this reason, we have argued [2] that knowledge at the macro-process level must
be built from families of studies, in which related studies are run within similar con-
texts as well as very different ones. At one level this ensures that conclusions are
verified and false conclusions are not drawn due to problems or idiosyncrasies with
any one study. For drawing macro-process conclusions, however, it also allows the
space of context variables to be explored opportunistically; conclusions about influ-
encing factors are drawn bottom-up, by understanding the context similarities and
differences that may have caused differences in process effectiveness.

Multiple authors have discussed the idea of software replication, that is, how to de-
sign related studies so as to document as precisely as possible the values of likely
context variables and be able to compare with those observed in new studies [e.g. 3, 4,
5, 6]. While such a top-down approach is important, given the overwhelming number
of potential context variables – including differences in developer experience and
motivation, in development tools and approaches, in other processes used, in business
goals (e.g. high quality products vs. fastest time to market) – we argue that a bottom-
up approach is also necessary, in which results from multiple individual studies can
be fitted together after the fact as appropriate. Such a bottom-up approach is neces-
sary for enabling recommendations to be made about process effectiveness in context.

To make such a bottom-up approach work, it is necessary to have an overall
framework that allows the relationships among individual studies to be understood so
that data can be accumulated and variations in effectiveness determined. Such a
framework allows independent researchers to relate the results of their studies more
easily to the growing body of knowledge so that macro-process conclusions can be
drawn.

In this paper, we illustrate this approach and the conclusions that can be drawn by
presenting a family of studies on the subject of software defects and their behaviors –
a key phenomenon for understanding macro-process issues. Specifically, we identify
some common “folklore,” i.e. widely accepted heuristics concerning how defects
behave, and then build up a body of knowledge to show whether empirical results can
confirm whether such heuristics are accurate and under which conditions.

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 3

2 Software Defects

The comparison of lessons learned about software defects between studies has been
complicated by the fact that there are multiple taxonomies of defects that have been
proposed over time (e.g. [7], [8], [9]). Thus building up a body of knowledge on de-
fects and their behaviors is made even more complicated: Not only do studies in dif-
ferent contexts have many different sources of context variation, which are impossible
to identify ahead of time as discussed above, but they may have additionally used
different vocabulary to describe similar types of defects.

To make sense of the knowledge learned about defects across multiple contexts and
taxonomies, we need to go to a higher level up abstraction, to what we call “folklore.”
Folklore in this context refers to the informal, subjective lessons learned by developers
based on experience. Due to the well-documented fact that human subjective experience
is not always the best basis for drawing generalizable lessons, as well as the fact that
experiences in one context may not always generalize to others, it is important to use
such lore to formulate testable hypotheses that can then be subjected to more formal
scrutiny. In this way, folklore is one source of information that should be used to focus
new empirical studies in high-payoff areas. The hope is that the basic heuristics encoded
in folklore reflect such basic knowledge about software phenomena that they are rela-
tively insensitive to the variations in the precise definition of defect.

To facilitate the comparison across studies, in this paper we will use the IEEE
definitions [10] for defects and related phenomena:

• Error: a defect in the human thought process made while trying to understand
given information, to solve problems, or to use methods and tools;

• Fault: a concrete manifestation of errors within the software (note that one
error may cause several faults and various errors may cause identical faults);

• Failure: a departure of the operational software system behavior from users’
expected requirements (a particular failure may be caused by several faults
and some faults may never cause a failure).

As examples of folklore about software defect behaviors, we introduce the follow-
ing heuristics and rationales:

• The vast majority of defects are interface defects. This heuristic describes the
common belief that implementing individual modules with clearly defined
functional requirements is rather straightforward. Instead, the majority of de-
fects is believed to come at the interfaces of such modules, that is, getting
them to work together to achieve higher-level functionality.

• Applying more sophisticated programming languages can eliminate a sig-
nificant number of defects, but not all. Another way of saying this is that
most implementation defects are believed to come from coding mistakes that
could be minimized by better programming languages, which would reduce
the likelihood of developers making such mistakes. This is consistent with
the belief that most code defects are introduced because of the complexity of
solving the problem on the computer, not from problems in analyzing the so-
lution to be produced in the first place.

4 V. Basili and F. Shull

• Small modules (say, modules with fewer than fifty LOC) are the least defect
prone. It is assumed that breaking functionality down into the smallest coher-
ent pieces, and implementing each in a separate module, minimizes the number
of defects introduced. Said another way, larger modules are assumed to have
on average more complexity, which leads them to be more error-prone.

• If you are not sure what to do – do something and fix it later. As a general
implementation strategy, it is assumed that the effort to modify code is not
prohibitive, so it is viable to implement functionality by adding code, testing
it, and perfecting the implementation over time.

• There are patterns in the defect classes found in projects within a particular
organization. This suggests that there are problems common to the organiza-
tion and application. Thus collecting data for a particular environment will
allow the organization to identify opportunities for improvement within that
organization.

3 Drawing Conclusions Bottom-Up

In this section, we give a brief overview of a collection of datasets that provide partial
evidence addressing the folklore introduced in Section 2. As was emphasized in our
discussion of building up bodies of knowledge from families of studies, each study in
the family need not be a “strict” replication of one another, with the same overall
design and data collection [2].

Also as proposed in [2], we use the Goal – Question – Metric paradigm (GQM) to
provide the framework that relates studies within the family to one another. The GQM
requires explicit identification of an object of study as well as a focus for the study
(i.e. a model of how the object of study is being characterized or evaluated). Specify-
ing both the object and focus of study helps to make similarities and differences
among studies explicit. All of the studies which produced data included in this collec-
tion, whatever their specific goals, all have GQMs which at a high level of abstraction
have the same form:

Analyze software defects in order to characterize them with respect
to various classification schemes from the point of view of the
knowledge builder in the development context in which they were
generated.

As a first pass for demonstration purposes, the datasets in our collection are ones
the authors are very familiar with. They include defect data from:

• Endres75: A new release of an operating system, where “defect” was defined
as any code fault that caused a failure during system testing. (Faults gener-
ated from unit or integration testing were not included.) [11]

• Weiss79: A simulator of various computer architectures, in which all defects
were found due to failures reported during the first year of operations after
system delivery. [12]

• Basili/Weiss81: The development of an on-board flight control program for a
new aircraft. Defects were defined as fixes necessary to the requirements

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 5

document, within a 15-month period after the requirements were baselined.
(Since the defects were not tracked over the entire lifecycle of the project,
this cannot be taken as a complete set of requirements defects.) The prob-
lems with the document were found during reviews as well as when it was
used as a basis for design. [13]

• Basili/Perricone84: A system designed for satellite planning studies at
NASA. Defect data was collected starting with the baselining of the code
through the three years of maintenance. [14]

• Mashiko/Basili97: A set of four projects dealing with communication soft-
ware. [7]

• Weiss/Basili85: A set of three projects dealing with ground support software
for satellites. [15]

• Selby/Basili91: A single release of a code library tool. [16]

4 Drawing Conclusions Across Studies

Results from abstracting up across our various data sets show that not all of the folk-
lore was an accurate reflection of software development realities:

The majority of defects are not interface-related. Five of our datasets had collected
enough information about the defects to categorize them somehow as interface or
non-interface related. The Endres75 dataset defined interface-related issues as any
issue that required a change to more than one module in order to fix. Defined this
way, the clear majority of defects (85% of the entries in the dataset) were non-
interface, i.e. required changes to only one module.

Using a similar definition, the other datasets were in agreement. In the Weiss79
dataset, 94% of defects were non-interface; in Basili/Weiss81 dataset it was 85%.
Concerning the Basili/Weiss85 dataset, although an absolute number is not given, the
statement is made that “interface errors are not especially troublesome.”

However, [14] offered a second definition of an interface defect: a defect is an in-
terface defect if one has to examine more than one module to understand how to fix
the defect. Thus even if only one module has to be changed, it can still be an interface
defect. Using this definition of interface defect, 39% of the defect could have been
classified as interface defects, and these interface defects were the largest single cate-
gory of defects – 39% of faults involved interface. Using a similar definition of inter-
face defects, [7] report a similar number of interface defects – 40%. Therefore, it can
be concluded that across all datasets, although the vast majority of changes made to
fix a defect were made to only one module, the need to examine more than one mod-
ule in order to make a fix was a common problem, even if it did not involve the ma-
jority of defects.

Where the datasets showed some disagreement was on the subject of how expen-
sive it was to correct the interface-related defects. Two datasets collected information
sufficient to address this issue: In Weiss79, interface design defects were relatively
inexpensive. However, in Basili/Weiss81 interface defects took more effort to fix.
Since the Basili/Weiss81 defects were collected in the requirements phase, while
Weiss79 were defects found in operation, interface defects may simply be more diffi-
cult to repair at the requirements level compared to other types.

6 V. Basili and F. Shull

Defects that could be addressed by better programming languages account for a
significant portion of defects, but less than half. Our datasets also contained informa-
tion about defect categories that can shed some light on what type of misunderstanding
on the part of developers caused the defect to enter the system in the first place.

In the Endres75 set, approximately half of the defects (46%) originated due to mis-
understanding the problem to be solved or potential solutions. A further 16% were
related to textual/clerical mistakes or to not following standards. Thus only 38% of
defects could have been avoided had improved programming techniques been used.

In Weiss79, only 31% of the defects were related to the implementation. The re-
mainder were related to requirements, design, or clerical issues.

In Basili/Weiss81, the requirements document contained more defects related to
the correctness or completeness of the solution (80%) than with the way it was repre-
sented in the given notation (18%). Thus, although in a different lifecycle phase, these
results can be taken to agree with the earlier datasets in the sense that the primary
cause of defects was misunderstanding of the problem to be solved.

Small modules are no less error-prone than large modules. Two datasets (En-
dres75 and Basili/Perricone84) traced the defects recorded back to the modules in
which they were found, and the size of those modules. In the Endres75 dataset the
defect rate (i.e. the number of defects per module divided by the size in LOC of the
module) is no different for large modules than for small ones. The Basili/Perricone84
data showed the counter-intuitive result that larger modules, within limits, may even
be less fault prone.

 “Do something and fix it later” is not always a safe strategy. In Selby/Basili91, it
was noted that during design and code review, the total time to correct a fault (iden-
tify and fix) of omission was less than the time to correct faults of commission. This
result was surprising, given the folklore. Mashiko/Basili97 supports this conclusion
when one considers all faults. However, when one limits the faults to those reported
by the customer, the results are not consistent, i.e., faults of omission, after delivery of
the system, are more expensive to fix than faults of commission when considering
customer reported faults. It seems that the context here makes the difference and ex-
amining that context offers the opportunity for some insight. During development
faults of omission tend to be smaller parts of the system, thus it is better to mark the
spot where there is a concern, minimizing the time to identify the fault, and define the
correct solution later. However, once a system is delivered, the faults of omission may
take on a different flavor, i.e. an omission fault might represent a complex functional
capability that the customer assumed was part of the system.

Both the Weiss79 and the Basili/Weiss81 datasets contained information about the
time-to-fix needed for defects in an environment where the customers’ needs were well
understood. For the faults found after delivery in Basili/Weiss81, the effort required to
make changes was in most cases relatively small; 68% of defects were repaired in less
than one hour. In fixes required to the requirements document described in Weiss79,
84% of defects were fixed in less than a few hours each. However, it should be noted
that in both cases a small minority took an exceptionally long time to repair; in Weiss79,
for example, 1% of the defects took more than a few days to repair.

It should also be noted that the Basili/Perricone84 study concluded that it’s more ex-
pensive to repair reused modules than ones developed from scratch. So, in some cases, it

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 7

may be more cost-effective to try out a solution and then throw away the early proto-
type, rather than try to continue to modify the early version of solutions until they work
correctly.

Patterns exist in defect classes found in projects within a particular organization.
The Basili/Weiss85 dataset was used to identify patterns in the change and defect
history of projects developed in NASA’s Software Engineering Laboratory. For ex-
ample, most defects in the development of ground support systems were due to prob-
lems in the design and development of single components. This was due in part to the
fact that systems were being developed by experienced developers and the single
components were coded by novice programmers. It should be noted that the
Basili/Perricone85 data showed that for a different application, in the same environ-
ment, a majority of the defects were due to requirements and functional specification.
The Mashiko/Basili97 data also exhibited a pattern in the defect classes, though this
pattern was quite different. Thus, there are patterns that can be detected within a given
context, although these patterns will not hold from one environment to another.

5 Summary

Having looked at a collection of datasets and abstracted up a set of conclusions on
specific topics, we should also examine what kinds of general lessons learned we
have found about cross-study conclusions. We feel that the work described in this
paper demonstrates that:

• There is value in multiple studies for both supporting and not supporting hy-
potheses. There are several instances above where the conclusions from mul-
tiple datasets all point in the same direction, thus making the overall conclu-
sion much stronger than if it came from any single study in isolation. And, in
several important instances, the results from additional studies identify im-
portant caveats by examining processes in new environments.

• Care must be taken to make sure that the objects of the comparison are actu-
ally like things that can support the conclusions being drawn. For example,
although all of the datasets described in this paper contain defect data, it was
necessary to know in each study the definitions of the various categories of
defect taxonomies (e.g. interface vs. non-interface), the definition of defect
(especially with respect to injection time, detection time, environment, sub-
jects, phase of data collection), etc.

• A researcher needs to vary the classification to check the effects along the
various values. For example, in this instance we saw that to investigate the
overall impact of interface-related defects, not only is it necessary to investi-
gate the relative number of interface defects in the dataset, but the relative
time required to fix those defects.

• There are insights to be gained from the collection and analysis of defects
according to different classification schemes, independent of the scheme.
Our results show that interesting abstractions can be drawn by comparing de-
fect information opportunistically, based on points of similarity where they
occur.

8 V. Basili and F. Shull

Based upon our experiences to date, we are evolving our methodology for building
an effective set of folklore using empirical evidence from multiple studies. The meth-
odology considers information found in papers published about the focus of the study.
There is a specific approach to reading and extracting information from the paper.
The information is extracted, summarized to create new knowledge that identifies
possible context variables and expands the domain of study that is reported in an
experiment in any one paper. This approach identifies three levels of abstraction: (1)
the hypotheses from a particular study as presented in a paper and the information that
can be extracted from that paper by identifying hypotheses, definitions, context
variables, etc., (2) a broadened hypothesis from a family of focused related studies,
built bottom-up by identifying the relevance of context variables to create integrated
knowledge from two or more papers, and (3) vetted guidance or advice based upon
empirical evidence abstracted so that it is useful to the software engineering
community. Such abstractions are necessary for presenting information relevant for
decision support to software developers and managers, for example through the Best
Practices Clearinghouse project funded by the US Department of Defense [17] which
aims at providing software developers and acquisition managers with robust knowl-
edge based on empirical data.

References

1. Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorumgaard, S.L.,
Zelkowitz, M.V.: The Empirical Investigation of Perspective-based Reading. Empirical
Software Engineering, An International Journal, Volume 1, Number 2, pp 133-164, Klu-
wer Academic Publishers, October 1996.

2. Basili, V. R., Shull, F., Lanubile, F.: Building Knowledge through Families of Experi-
ments, IEEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 456-473, July
1999.

3. Brooks, A., Daly, J., Miller, J., Roper, M., Wood, M. (1996). Replication of experimental
results in software engineering. Technical Report ISERN-96-10, Department of Computer
Science, University of Strathclyde, Glasgow.

4. Lott, C. M., Rombach, H. D.: Repeatable software engineering experiments for comparing
defect-detection techniques, Journal of Empirical Software Engineering, 1(3), 1996.

5. Wohlin, C., Runeson, P, Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering: An Introduction. Kluwer Academic Publishers: Boston.
2000.

6. Juristo N., Moreno, A. M. (eds.): Lecture Notes on Empirical Software Engineering.
World Scientific: New Jersey. 2003.

7. Mashiko, Y., Basili, V.R.: Using the GQM Paradigm to Investigate Influential Factors for
Software Process Improvement, The Journal of Systems and Software, Volume 36, Num-
ber 1, pp 17-32, January 1997.

8. Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., Wong, M.:
Orthogonal Defect Classification: A Concept for In-process Measurements, IEEE Transac-
tions on Software Engineering, November 1992.

9. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineering
Data, IEEE Transactions on Software Engineering, pp 728-738, November 1984.

10. IEEE. Software Engineering Standards. IEEE Computer Society Press, 1987.
11. [Endres75]

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 9

12. Weiss, D.: Evaluating Software Development By Error Analysis: The Data from the Ar-
chitecture Research Facility, J. Systems and Software, V 1, 1979, 57-70.

13. Basili, V.R., Weiss, D.M.: Evaluation of the A-7 Requirements Document by Analysis of
Change Date, Proceedings of the Fifth International Conference on Software Engineering,
pp 314-323, March 1981.

14. Basili, V.R., Perricone, B.: Software Errors and Complexity: An Empirical Investigation,
Communication of the ACM, vol. 27, no. 1, pp 42-52, January 1984.

15. Weiss, D.M., Basili, V.R.: Evaluating Software Development by Analysis of Changes:
The Data from the Software Engineering Laboratory, IEEE Transactions on Software En-
gineering, pp 157-168. February 1985.

16. Selby, R.W., Basili, V.R.: Analyzing Error Prone System Structure, IEEE Transactions on
Software Engineering, pp. 141-152, February 1991.

17. Dangle, K., Hickok, J., Turner, R., Dwinnell, L.: Introducing the Department of
Defense Acquisition Best Practices Clearinghouse. CrossTalk, pp. 4-5, May
2005.

	Introduction
	Software Defects
	Drawing Conclusions Bottom-Up
	Drawing Conclusions Across Studies
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

