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Abstract. Answering “macro-process” research issues – which require under-
standing how development processes fit or do not fit in different organizational 
systems and environments – requires families of related studies. While there are 
many sources of variation between development contexts, it is not clear a priori 
what specific variables influence the effectiveness of a process in a given con-
text. These variables can only be discovered opportunistically, by comparing 
process effects from different environments and analyzing points of difference. 

In this paper, we illustrate this approach and the conclusions that can be 
drawn by presenting a family of studies on the subject of software defects and 
their behaviors – a key phenomenon for understanding macro-process issues. 
Specifically, we identify common “folklore,” i.e. widely accepted heuristics 
concerning how defects behave, and then build up a body of knowledge from 
empirical studies to refine the heuristics with information concerning the condi-
tions under which they do and do not hold. 

1   Introduction 

Answering “macro-process” research issues – specifically, being able to make state-
ments about the effectiveness of processes in different contexts, and understanding 
how processes fit or do not fit in different organizational systems and with different 
organizational characteristics – requires families of related studies. This is true be-
cause of two difficulties inherent in software process research: 

• It is clear that there are many sources of variation between one development 
context and another; 

• It’s not clear a priori what specific variables influence the effectiveness of a 
process in a given context. 

That is, we expect it to be an almost impossible task to predict ahead of time what 
factors are likely to crucially affect the results of applying a process in one environ-
ment or another: for example, the motivation of the practitioners, their experi-
ence/skill level with various tasks, the various business goals of the organization. Yet 
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we know that these variables do exist and we are able to reason about their influence 
if we work bottom-up, that is, starting with the observation of process effectiveness in 
various environments and identifying the possible causes of discrepancies. 

For example, one study provided some indications that the application of a particu-
lar software inspection process was influenced by the experience of the developers 
applying it: novice inspectors seemed to gain some improvement from the new tech-
nique while experts seemed to fall back on their own, proven practices [1]. This effect 
was traced to a particular context variable in this study, the time limit given for the 
inspection: Since the participants felt pressured to get the inspection completed in 
time, experts fell back on their own techniques rather than try to deal with the learn-
ing curve. In a context where the time limit was open-ended or subjects were more 
motivated to learn the new process, it is impossible to say whether the same effect 
would still have been observed. Such unexpected inter-relationships between vari-
ables are always a possibility in software process research. 

For this reason, we have argued [2] that knowledge at the macro-process level must 
be built from families of studies, in which related studies are run within similar con-
texts as well as very different ones. At one level this ensures that conclusions are 
verified and false conclusions are not drawn due to problems or idiosyncrasies with 
any one study. For drawing macro-process conclusions, however, it also allows the 
space of context variables to be explored opportunistically; conclusions about influ-
encing factors are drawn bottom-up, by understanding the context similarities and 
differences that may have caused differences in process effectiveness.  

Multiple authors have discussed the idea of software replication, that is, how to de-
sign related studies so as to document as precisely as possible the values of likely 
context variables and be able to compare with those observed in new studies [e.g. 3, 4, 
5, 6]. While such a top-down approach is important, given the overwhelming number 
of potential context variables – including differences in developer experience and 
motivation, in development tools and approaches, in other processes used, in business 
goals (e.g. high quality products vs. fastest time to market) – we argue that a bottom-
up approach is also necessary, in which results from multiple individual studies can 
be fitted together after the fact as appropriate. Such a bottom-up approach is neces-
sary for enabling recommendations to be made about process effectiveness in context.  

To make such a bottom-up approach work, it is necessary to have an overall 
framework that allows the relationships among individual studies to be understood so 
that data can be accumulated and variations in effectiveness determined. Such a 
framework allows independent researchers to relate the results of their studies more 
easily to the growing body of knowledge so that macro-process conclusions can be 
drawn. 

In this paper, we illustrate this approach and the conclusions that can be drawn by 
presenting a family of studies on the subject of software defects and their behaviors – 
a key phenomenon for understanding macro-process issues. Specifically, we identify 
some common “folklore,” i.e. widely accepted heuristics concerning how defects 
behave, and then build up a body of knowledge to show whether empirical results can 
confirm whether such heuristics are accurate and under which conditions. 
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2   Software Defects 

The comparison of lessons learned about software defects between studies has been 
complicated by the fact that there are multiple taxonomies of defects that have been 
proposed over time (e.g. [7], [8], [9]). Thus building up a body of knowledge on de-
fects and their behaviors is made even more complicated: Not only do studies in dif-
ferent contexts have many different sources of context variation, which are impossible 
to identify ahead of time as discussed above, but they may have additionally used 
different vocabulary to describe similar types of defects. 

To make sense of the knowledge learned about defects across multiple contexts and 
taxonomies, we need to go to a higher level up abstraction, to what we call “folklore.” 
Folklore in this context refers to the informal, subjective lessons learned by developers 
based on experience. Due to the well-documented fact that human subjective experience 
is not always the best basis for drawing generalizable lessons, as well as the fact that 
experiences in one context may not always generalize to others, it is important to use 
such lore to formulate testable hypotheses that can then be subjected to more formal 
scrutiny. In this way, folklore is one source of information that should be used to focus 
new empirical studies in high-payoff areas. The hope is that the basic heuristics encoded 
in folklore reflect such basic knowledge about software phenomena that they are rela-
tively insensitive to the variations in the precise definition of defect. 

To facilitate the comparison across studies, in this paper we will use the IEEE 
definitions [10] for defects and related phenomena:  

• Error: a defect in the human thought process made while trying to understand 
given information, to solve problems, or to use methods and tools;  

• Fault: a concrete manifestation of errors within the software (note that one 
error may cause several faults and various errors may cause identical faults); 

• Failure: a departure of the operational software system behavior from users’ 
expected requirements (a particular failure may be caused by several faults 
and some faults may never cause a failure).  

As examples of folklore about software defect behaviors, we introduce the follow-
ing heuristics and rationales: 

• The vast majority of defects are interface defects. This heuristic describes the 
common belief that implementing individual modules with clearly defined 
functional requirements is rather straightforward. Instead, the majority of de-
fects is believed to come at the interfaces of such modules, that is, getting 
them to work together to achieve higher-level functionality. 

• Applying more sophisticated programming languages can eliminate a sig-
nificant number of defects, but not all. Another way of saying this is that 
most implementation defects are believed to come from coding mistakes that 
could be minimized by better programming languages, which would reduce 
the likelihood of developers making such mistakes. This is consistent with 
the belief that most code defects are introduced because of the complexity of 
solving the problem on the computer, not from problems in analyzing the so-
lution to be produced in the first place.  
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• Small modules (say, modules with fewer than fifty LOC) are the least defect 
prone. It is assumed that breaking functionality down into the smallest coher-
ent pieces, and implementing each in a separate module, minimizes the number 
of defects introduced. Said another way, larger modules are assumed to have 
on average more complexity, which leads them to be more error-prone. 

• If you are not sure what to do – do something and fix it later. As a general 
implementation strategy, it is assumed that the effort to modify code is not 
prohibitive, so it is viable to implement functionality by adding code, testing 
it, and perfecting the implementation over time. 

• There are patterns in the defect classes found in projects within a particular 
organization. This suggests that there are problems common to the organiza-
tion and application. Thus collecting data for a particular environment will 
allow the organization to identify opportunities for improvement within that 
organization.  

3   Drawing Conclusions Bottom-Up 

In this section, we give a brief overview of a collection of datasets that provide partial 
evidence addressing the folklore introduced in Section 2. As was emphasized in our 
discussion of building up bodies of knowledge from families of studies, each study in 
the family need not be a “strict” replication of one another, with the same overall 
design and data collection [2]. 

Also as proposed in [2], we use the Goal – Question – Metric paradigm (GQM) to 
provide the framework that relates studies within the family to one another. The GQM 
requires explicit identification of an object of study as well as a focus for the study 
(i.e. a model of how the object of study is being characterized or evaluated). Specify-
ing both the object and focus of study helps to make similarities and differences 
among studies explicit. All of the studies which produced data included in this collec-
tion, whatever their specific goals, all have GQMs which at a high level of abstraction 
have the same form: 

Analyze software defects in order to characterize them with respect 
to various classification schemes from the point of view of the 
knowledge builder in the development context in which they were 
generated. 

As a first pass for demonstration purposes, the datasets in our collection are ones 
the authors are very familiar with. They include defect data from: 

• Endres75: A new release of an operating system, where “defect” was defined 
as any code fault that caused a failure during system testing. (Faults gener-
ated from unit or integration testing were not included.) [11] 

• Weiss79: A simulator of various computer architectures, in which all defects 
were found due to failures reported during the first year of operations after 
system delivery. [12] 

• Basili/Weiss81: The development of an on-board flight control program for a 
new aircraft. Defects were defined as fixes necessary to the requirements 
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document, within a 15-month period after the requirements were baselined. 
(Since the defects were not tracked over the entire lifecycle of the project, 
this cannot be taken as a complete set of requirements defects.) The prob-
lems with the document were found during reviews as well as when it was 
used as a basis for design. [13]  

• Basili/Perricone84: A system designed for satellite planning studies at 
NASA. Defect data was collected starting with the baselining of the code 
through the three years of maintenance. [14]  

• Mashiko/Basili97: A set of four projects dealing with communication soft-
ware. [7]  

• Weiss/Basili85: A set of three projects dealing with ground support software 
for satellites. [15]  

• Selby/Basili91: A single release of a code library tool. [16]  

4   Drawing Conclusions Across Studies 

Results from abstracting up across our various data sets show that not all of the folk-
lore was an accurate reflection of software development realities: 
 
The majority of defects are not interface-related. Five of our datasets had collected 
enough information about the defects to categorize them somehow as interface or 
non-interface related. The Endres75 dataset defined interface-related issues as any 
issue that required a change to more than one module in order to fix. Defined this 
way, the clear majority of defects (85% of the entries in the dataset) were non-
interface, i.e. required changes to only one module.  

Using a similar definition, the other datasets were in agreement. In the Weiss79 
dataset, 94% of defects were non-interface; in Basili/Weiss81 dataset it was 85%. 
Concerning the Basili/Weiss85 dataset, although an absolute number is not given, the 
statement is made that “interface errors are not especially troublesome.”  

However, [14] offered a second definition of an interface defect: a defect is an in-
terface defect if one has to examine more than one module to understand how to fix 
the defect. Thus even if only one module has to be changed, it can still be an interface 
defect. Using this definition of interface defect, 39% of the defect could have been 
classified as interface defects, and these interface defects were the largest single cate-
gory of defects – 39% of faults involved interface. Using a similar definition of inter-
face defects, [7] report a similar number of interface defects – 40%. Therefore, it can 
be concluded that across all datasets, although the vast majority of changes made to 
fix a defect were made to only one module, the need to examine more than one mod-
ule in order to make a fix was a common problem, even if it did not involve the ma-
jority of defects. 

Where the datasets showed some disagreement was on the subject of how expen-
sive it was to correct the interface-related defects. Two datasets collected information 
sufficient to address this issue: In Weiss79, interface design defects were relatively 
inexpensive. However, in Basili/Weiss81 interface defects took more effort to fix. 
Since the Basili/Weiss81 defects were collected in the requirements phase, while 
Weiss79 were defects found in operation, interface defects may simply be more diffi-
cult to repair at the requirements level compared to other types. 
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Defects that could be addressed by better programming languages account for a 
significant portion of defects, but less than half. Our datasets also contained informa-
tion about defect categories that can shed some light on what type of misunderstanding 
on the part of developers caused the defect to enter the system in the first place. 

In the Endres75 set, approximately half of the defects (46%) originated due to mis-
understanding the problem to be solved or potential solutions. A further 16% were 
related to textual/clerical mistakes or to not following standards. Thus only 38% of 
defects could have been avoided had improved programming techniques been used. 

In Weiss79, only 31% of the defects were related to the implementation. The re-
mainder were related to requirements, design, or clerical issues.  

In Basili/Weiss81, the requirements document contained more defects related to 
the correctness or completeness of the solution (80%) than with the way it was repre-
sented in the given notation (18%). Thus, although in a different lifecycle phase, these 
results can be taken to agree with the earlier datasets in the sense that the primary 
cause of defects was misunderstanding of the problem to be solved. 

Small modules are no less error-prone than large modules. Two datasets (En-
dres75 and Basili/Perricone84) traced the defects recorded back to the modules in 
which they were found, and the size of those modules. In the Endres75 dataset the 
defect rate (i.e. the number of defects per module divided by the size in LOC of the 
module) is no different for large modules than for small ones. The Basili/Perricone84 
data showed the counter-intuitive result that larger modules, within limits, may even 
be less fault prone. 

 “Do something and fix it later” is not always a safe strategy. In Selby/Basili91, it 
was noted that during design and code review, the total time to correct a fault (iden-
tify and fix) of omission was less than the time to correct faults of commission. This 
result was surprising, given the folklore. Mashiko/Basili97 supports this conclusion 
when one considers all faults. However, when one limits the faults to those reported 
by the customer, the results are not consistent, i.e., faults of omission, after delivery of 
the system, are more expensive to fix than faults of commission when considering 
customer reported faults. It seems that the context here makes the difference and ex-
amining that context offers the opportunity for some insight. During development 
faults of omission tend to be smaller parts of the system, thus it is better to mark the 
spot where there is a concern, minimizing the time to identify the fault, and define the 
correct solution later. However, once a system is delivered, the faults of omission may 
take on a different flavor, i.e. an omission fault might represent a complex functional 
capability that the customer assumed was part of the system. 

Both the Weiss79 and the Basili/Weiss81 datasets contained information about the 
time-to-fix needed for defects in an environment where the customers’ needs were well 
understood. For the faults found after delivery in Basili/Weiss81, the effort required to 
make changes was in most cases relatively small; 68% of defects were repaired in less 
than one hour. In fixes required to the requirements document described in Weiss79, 
84% of defects were fixed in less than a few hours each. However, it should be noted 
that in both cases a small minority took an exceptionally long time to repair; in Weiss79, 
for example, 1% of the defects took more than a few days to repair. 

It should also be noted that the Basili/Perricone84 study concluded that it’s more ex-
pensive to repair reused modules than ones developed from scratch. So, in some cases, it 
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may be more cost-effective to try out a solution and then throw away the early proto-
type, rather than try to continue to modify the early version of solutions until they work 
correctly. 

Patterns exist in defect classes found in projects within a particular organization. 
The Basili/Weiss85 dataset was used to identify patterns in the change and defect 
history of projects developed in NASA’s Software Engineering Laboratory. For ex-
ample, most defects in the development of ground support systems were due to prob-
lems in the design and development of single components. This was due in part to the 
fact that systems were being developed by experienced developers and the single 
components were coded by novice programmers. It should be noted that the 
Basili/Perricone85 data showed that for a different application, in the same environ-
ment, a majority of the defects were due to requirements and functional specification. 
The Mashiko/Basili97 data also exhibited a pattern in the defect classes, though this 
pattern was quite different. Thus, there are patterns that can be detected within a given 
context, although these patterns will not hold from one environment to another. 

5   Summary 

Having looked at a collection of datasets and abstracted up a set of conclusions on 
specific topics, we should also examine what kinds of general lessons learned we 
have found about cross-study conclusions. We feel that the work described in this 
paper demonstrates that: 

• There is value in multiple studies for both supporting and not supporting hy-
potheses. There are several instances above where the conclusions from mul-
tiple datasets all point in the same direction, thus making the overall conclu-
sion much stronger than if it came from any single study in isolation. And, in 
several important instances, the results from additional studies identify im-
portant caveats by examining processes in new environments. 

• Care must be taken to make sure that the objects of the comparison are actu-
ally like things that can support the conclusions being drawn. For example, 
although all of the datasets described in this paper contain defect data, it was 
necessary to know in each study the definitions of the various categories of 
defect taxonomies (e.g. interface vs. non-interface), the definition of defect 
(especially with respect to injection time, detection time, environment, sub-
jects, phase of data collection), etc. 

• A researcher needs to vary the classification to check the effects along the 
various values. For example, in this instance we saw that to investigate the 
overall impact of interface-related defects, not only is it necessary to investi-
gate the relative number of interface defects in the dataset, but the relative 
time required to fix those defects. 

• There are insights to be gained from the collection and analysis of defects 
according to different classification schemes, independent of the scheme. 
Our results show that interesting abstractions can be drawn by comparing de-
fect information opportunistically, based on points of similarity where they 
occur.  
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Based upon our experiences to date, we are evolving our methodology for building 
an effective set of folklore using empirical evidence from multiple studies. The meth-
odology considers information found in papers published about the focus of the study. 
There is a specific approach to reading and extracting information from the paper. 
The information is extracted, summarized to create new knowledge that identifies 
possible context variables and expands the domain of study that is reported in an 
experiment in any one paper. This approach identifies three levels of abstraction: (1) 
the hypotheses from a particular study as presented in a paper and the information that 
can be extracted from that paper by identifying hypotheses, definitions, context 
variables, etc., (2) a broadened hypothesis from a family of focused related studies, 
built bottom-up by identifying the relevance of context variables to create integrated 
knowledge from two or more papers, and (3) vetted guidance or advice based upon 
empirical evidence abstracted so that it is useful to the software engineering 
community. Such abstractions are necessary for presenting information relevant for 
decision support to software developers and managers, for example through the Best 
Practices Clearinghouse project funded by the US Department of Defense [17] which 
aims at providing software developers and acquisition managers with robust knowl-
edge based on empirical data. 
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