
A Metric Space for Productivity Measurement in Software
Development

Robert W. Numrich
Minnesota Supercomputing

Institute
University of Minnesota

Minneapolis, MN

Lorin Hochstein
Department of Computer

Science
University of Maryland

College Park, MD

Victor R. Basili
Department of Computer

Science
University of Maryland

College Park, MD

ABSTRACT
We define a metric space to measure the contributions of
individual programmers to a software development project.
It allows us to measure the distance between the contribu-
tions of two different programmers as well as the absolute
contribution of each individual programmer. Our metric is
based on an action function that provides a picture of how
one programmer’s approach differs from another at each in-
stance of time during the project. We apply our metric to
data we collected from students taking a course in parallel
programming. We display the pictures for two students who
showed approximately equal contributions but who followed
very different paths through the course.

1. INTRODUCTION
We define a metric space that measures the contribu-

tions of individual programmers to a software development
project. This space satisfies all the mathematical require-
ments for a metric space and allows us to measure the dis-
tance between programmers and the absolute size of each
programmer’s contribution. We assign a power function,
the rate of work production, for each activity performed by
a programmer. The integral of the power function over time
yields the work done by each programmer, and the integral
of the work function yields a quantity called action in the
physical sciences. After scaling and shifting each program-
mer’s action function to the same time interval, we define a
metric space with a distance function equal to the integral
of the absolute difference between two action functions.

We apply our metric to data we collected observing stu-
dents taking a course in parallel programming. By monitor-
ing them during the course, we determined a set of activities
performed at different times by each student and assigned a
value to each activity in terms of how well it advanced the
student toward a solution of the problem. In the following
sections we describe how we used that data to calculate a
numerical value to each student’s contribution over the life-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SE-HPCS’05, May 15, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-59593-117-1/05/0005 ...$5.00.

time of the course and to calculate the difference between
each pair of students.

2. DATA COLLECTION
We collected data from students as they worked on a pro-

gramming assignment for a graduate-level course on Grid
Computing at the University of Maryland [2]. The assign-
ment was to implement Conway’s Game of Life [4] to run in
parallel on a Beowulf Linux cluster [1]. The students used
the MPI library [3] to implement the parallel program.

We collected data by instrumenting the compiler. Each
time a student compiled a program, we asked two questions.
First, how long have you been working before the compila-
tion? A blank response indicated that they had been work-
ing continuously since the previous compilation. Second,
what kind of work were you doing? The student selected
the kind of work from a list of seven activities, which are
listed in the first column of Table 1.

Table 1: Activities and Power Ratings
Activity Power Rating
Tuning 0.9

Parallelizing 0.7
Functionality 0.6

Learning 0.5
Compile-Time Error 0.2

Run-Time Error 0.2
Other 0.1

The instrumented compiler recorded the responses along
with a time stamp indicating when the compilation occurred.
From this data, we computed a set of time intervals for each
student along with the activity associated with that interval.

A fundamental problem in trying to define a productiv-
ity metric in software development is the definition of work.
Each kind of activity in each time interval corresponds to
some work that advances the student toward the solution
of a problem. Some activities advance the student more
quickly than others, that is, they produce work at a higher.
It is sufficient, for our purposes, to know the rate at which
work accumulates, the power rating, without defining the ac-
tual unit of work itself. One unit of work can be converted to
any other unit of work through a suitable conversion factor.
The work associated with each activity can be converted
into whatever unit of work we want without changing our
results.

13

The important quantity for our analysis is the unit of
power, ρ, which we define as the maximum rate at which any
programmer can perform work to finish the project. In each
interval of time, each programmer, denoted by superscript
i, performs some activity, denoted by subscript j, at some
fraction of peak power,

ρi
j = αi

jρ . (1)

The dimensionless parameters 0 ≤ αi
j ≤ 1 characterize the

behavior of each programmer. Table 1, in its second column,
shows the power ratings, αi

j , assigned to each activity. We
have given all programmers the same power rating for the
same activity although we could, with more information,
assign different ratings to each one.

These power ratings are the input parameters to our model.
Their values are purely subjective at this point, and we
claim no profound meaning to them. They are dimension-
less quantities that represent the fraction of peak power for
each activity.

3. THE SET OF PROGRAMMERS
Consider a specific software development project with some

(finite) set of programmers,

P = {P 1, P 2, . . . } , (2)

assigned to the project. Let t ≥ 0 represent time measured
from the beginning of the project at time t = 0. Let T i be
the time spent on the project by programmer P i and let

T i = [0, T i] (3)

be the corresponding time interval.
Programmers spend their time doing different things at

different times during the project. To reflect this changing
activity, we divide each time interval T i into subintervals,

T i
j = [ti

j−1, t
i
j] , j = 1, ni . (4)

Each programmer starts at

ti
0 = 0 , (5)

and finishes at

ti
ni = T i . (6)

The number of intervals ni is different for each programmer,
and the total time spent T i is different for each programmer.
The width of each time interval is

σi
j = ti

j − ti
j−1 , (7)

and the activity performed in each interval is different for
each programmer as represented by the constants αi

j from
equation (1) and Table 1.

4. WORK AND ACTION
In each time interval T i

j , programmer P i is involved in

some activity that contributes some work, W i
j (t), toward

finishing the project. Some activities advance the project
more than others. For each activity, the power function of
equation (1) is the derivative of the work function,

ρi
j(t) =

dW i
j

dt
, (8)

the rate of work production for programmer P i in time in-
terval T i

j .

For simplicity, we assume that the power function ρi
j is

constant in each interval so that

W i
j (t) = ρi

j

Z t

ti
j−1

ds , (9)

and hence work accumulates linearly in each interval,

W i
j (t) = ρi

j(t− ti
j−1) . (10)

At the end of each time interval, the work accumulated over
that interval is

W i
j (ti

j) = ρi
jσ

i
j (11)

where we have used the width of the interval from equation
(7).

As time increases from one interval to the next, work accu-
mulates at different rates at different times. At time t ∈ T i

k

the total accumulated work,

W i(t) = W i
k(t) +

k−1
X

j=1

ρi
jσ

i
j , (12)

is the sum of the work done during all the intervals preceding
interval T i

k plus the additional work done so far in interval
T i

k .
The action generated in each time interval is the integral,

Si
j(t) = 2

Z t

ti
j−1

W i
j (s)ds , (13)

where we inserted the factor of two for convenience. Substi-
tuting the work function from equation (10) into the integral
and evaluating the integral, we find

Si
j(t) = ρi

j(t− ti
j−1)

2 . (14)

At the end of each interval, the action accumulated over that
interval is

Si
j(t

i
j) = ρi

j(σ
i
j)

2 . (15)

The total accumulated action in interval T i
k at time t is the

sum,

Si(t) = Si
k(t) +

k−1
X

j=1

ρi
j(σ

i
j)

2 . (16)

5. A METRIC SPACE FOR PROGRAMMERS
We make the set of programmers P a metric space [5]

by defining a distance function based on the difference in
how each programmer generates action during the project.
We want this function to be a dimensionless function of a
dimensionless variable such that the distance between pro-
grammers is a pure number. We also want the measure of
a programmer’s individual contribution to be the distance
from the null programmer, a laggard that spends time on
the project but produces nothing.

First we define a set of units. The unit of time, T , is the
maximum time spent by any programmer in the set,

T = max
i

(T i) . (17)

The unit of power is ρ and the unit of action is

Ŝ = ρT 2 . (18)

14

To put each programmer onto the same time scale [7], we
define the dimensionless time variable,

z = 1 + (t− T i)/T . (19)

We define a dimensionless action function si(z) in interval
T i

k from the sum in equation (16) evaluated at time

t = Tz + T i − T (20)

and scaled by the unit of action Ŝ,

si(z) =
1

Ŝ
·

"

Si
k(Tz + T i − T) +

k−1
X

j=1

ρi
j(σ

i
j)

2

#

. (21)

The dimensionless time variable z spans the interval

1 − T i/T ≤ z ≤ 1 , (22)

and the first time interval for each programmer shifts to a
new starting point,

z = 1− T i/T . (23)

At this value of z, from definition (19), the time, t = 0,
corresponds to the left end of the first interval where the
action is zero. We extend the action function continuously
to z = 0 by defining

si(z) = 0 , 0 ≤ z ≤ 1− T i/T . (24)

In the variable z, every programmer ends activity at the
same time,

z = 1 . (25)

The programmer spending the longest time spans the whole
interval from z = 0 to z = 1.

With these definitions, we define the distance between
two programmers as the integral of the difference of the two
action functions,

dist(P i, P j) =

Z

1

0

|si(z)− sj(z)|dz . (26)

The size of each programmer’s contribution is the distance
to the null contributor, always assumed to be in the set of
programmers, such that

dist(P i, 0) =

Z

1

0

|si(z)|dz . (27)

6. APPLICATION TO EMPIRICAL DATA
Figure 1 shows the action functions defined by equation

(21) for the set of ten programmers we considered. Each
programmer is marked by a symbol at the beginning and
end of the corresponding interval in the dimensionless time
variable z. The size of each programmer’s contribution is the
area under the action function. The distance between pro-
grammers is the area under the absolute difference between
action functions.

We can approximate the area under each curve by the
area of the triangle determined by the end points of each
curve [6]. Table 2 lists the values obtain this way in milli-
action units, ρT 2 × 10−3.

To interpret the information measured by our metric space,
we isolate two programmers, number three and number eight
in Table 2, whose contributions are approximately equal.

z

s(z)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04
•

•

2

2

4

4

∇

∇

♦

♦

♥

♥

♣

♣

?

?
♠

♠

Figure 1: Action as a function of time for ten differ-
ent programmers as a function of time. Each pro-
grammer is assigned a symbol that marks the be-
ginning and ending of each curve. Time has been
scaled so that the unit of time equals the longest
time spent by any programmer in the set. The time
for other members of the set are shifted to the right
so that each programmer starts work at a different
time but ends work at the same time.

Figure 2 shows the action curves for these two program-
mers along with two dotted triangles, determined by the end
points of each curve, which we use to approximate the area
under each curve. Although the area under the two curves is
about the same under, indicating that the two programmers
contributed about the same amount to the project, the way
they contributed is quite different. One programmer took a
long but steady approach while the other took a short but
steep approach. The quantitative measure of the difference
between the two approaches is the area between the two
curves, which, from the corresponding entry in the table,
equals 5.9 milli-action units.

7. SUMMARY
We have defined a metric space for a set of programmers.

The distance function for that space allows us to measure
the contribution of an individual programmer and to mea-
sure the difference in contributions between pairs of pro-
grammers. The metric is based on the action function for
each programmer as it evolves in time. This function pro-
vides not only a measure for the total contribution, the area
under the curve, but also a picture of how the approach
of one programmer differs from another at each instance of
time during the project. We illustrated this property by dis-
playing the action functions for two programmers who con-
tributed equally but followed very different paths through
the project.

15

Table 2: Individual contributions in milli-action
units, ρT 2×10−3. The values on the diagonal are the
individual contributions from equation (27). The
values below the diagonal are the distances between
contributions from equation (26).

1 1.2
2 0.8 1.9
3 5.3 4.7 6.6
4 3.3 3.3 5.4 3.0
5 1.4 0.9 4.4 2.8 2.2
6 3.6 3.4 4.8 0.8 2.8 3.5
7 1.6 1.6 5.2 1.7 1.2 2.2 1.4
8 6.3 5.9 5.9 3.6 5.1 3.0 5.1 6.5
9 5.2 5.0 6.2 2.1 4.4 1.6 3.7 1.6 5.0
10 1.3 1.8 6.3 2.7 2.0 3.3 1.1 6.3 4.8 0.3

1 2 3 4 5 6 7 8 9 10

Our model depends on several assumptions, which can be
changed. We assumed that the power function is constant
for each activity, independent of the time interval and in-
dependent of the programmer. This assumption results in
a simple linear increase in work and a quadratic increase in
action over each time interval. It is not clear that letting the
power function vary over the time interval would add much
to the analysis. But it might add something if we assign
different constants to different programmers for the same
activity. After all, some programmers are more productive
than others, for example, while writing parallel code.

In the end, the distance function for our metric space
takes experimental measurements of programmer activity as
input and returns a dimensionless, pure number as output.
By shifting and scaling the time, it accounts for the dispar-
ities in the start and stop times for different programmers.
We never needed to specify the unit of work. Each activity
produces work of some kind that advances the project. We
subjectively judged the effectiveness of each activity by as-
signing a higher or a lower power rating to it. These power
ratings are crucial input to the model, and the determina-
tion of what these ratings should be is the next important
step we need to take to judge the utility of this model.

8. ACKNOWLEDGEMENTS
This research was supported in part by Department of

Energy contract DE-FG02-04ER25633 to the University of
Maryland. We thank Alan Sussman for allowing us to collect
data from his class on grid computing at the University of
Maryland. It was also supported in part by two Department
of Energy contracts to the University of Minnesota: contract
DE-FC02-01ER25505, as part of the Center for Program-
ming Models for Scalable Parallel Computing, and contract
DE-FG02-04ER25629, as part of the Petascale Application
Development Analysis Project, both sponsored by the Office
of Science.

9. REFERENCES
[1] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband,

U. A. Ranawake, and C. V. Packer. Beowulf: A parallel
workstation for scientific computation. In Proceedings

z

s(z)

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

4

4

♣

♣

Figure 2: Action as a function of time for program-
mers three and eight from Table 2. The area under
each curve is approximated by the triangle deter-
mined by the end points of each curve. The two
programmers contributed about the same to the
project, the area under the two curves is about the
same, but they worked in two quite different ways
to the same end.

of the 1995 International Conference on Parallel
Processing (ICPP), 1995.

[2] J. Carver, S. Asgari, V. R. Basili, L. Hochstein,
J. Hollingsworth, F. Shull, and M. V. Zelkowitz.
Studying code development for high performance
computing: The hpcs program. In Workshop on High
Productivity Computing, Edinburgh, Scotland, pages
32–36, May 2004.

[3] J. Dongarra, S. Otto, M. Snir, and D. Walker. A
message-passing standard for MPP and workstations.
Communications of the ACM, 39(7):84–90, 1996.

[4] M. Gardner. The fantastic combinations of John
Conway’s new solitaire game “Life”. Scientific
American, 223:120–123, 1970.

[5] A. N. Kolmogorov and S. V. Fomin. Introductory Real
Analysis. Dover, revised English edition, 1970.

[6] R. W. Numrich. Performance metrics based on
computational action. International Journal of High
Performance Computing Applications, 18(4):449–458,
2004.

[7] R. W. Numrich. A dynamical approach to computer
performance analysis, submitted, 2005.

16

