
0-7803-9508-5/05/$20.00 ©2005 IEEE

Empirical study design in the area of High-Performance Computing (HPC)

Forrest Shull1, Jeffrey Carver2, Lorin Hochstein3, Victor Basili1,3

 1Fraunhofer Center Maryland 2Mississippi State University 3Univ. of Maryland, College Park
 {fshull, basili}@fc-md.umd.edu carver@cse.msstate.edu {lorin, basili}@cs.umd.edu

Abstract
The development of High-Performance Computing
(HPC) programs is crucial to progress in many fields of
scientific endeavor. We have run initial studies of the
productivity of HPC developers and of techniques for
improving that productivity, which have not previously
been the subject of significant study. Because of key
differences between development for HPC and for more
conventional software engineering applications, this
work has required the tailoring of experimental designs
and protocols.

A major contribution of our work is to begin to
quantify the code development process in a specialized
area that has previously not been extensively studied.
Specifically, we present an analysis of the domain of
High-Performance Computing for the aspects that
would impact experimental design; show how those
aspects are reflected in experimental design for this
specific area; and demonstrate how we are using such
experimental designs to build up a body of knowledge
specific to the domain. Results to date build confidence
in our approach by showing that there are no significant
differences across studies comparing subjects with
similar experience tackling similar problems, while
there are significant differences in performance and
effort among the different parallel models applied.

Keywords: Developer productivity, High-Performance
Computing, parallel programming, empirical study

1. Introduction

Within the field of software engineering, optimizing
developer productivity has long been recognized as one
of the primary motivating goals of research and practice.
A significant portion of the literature consists of
descriptions or evaluations of software development
methods, practices, tools, etc., that are aimed at reducing
the effort required to develop software, removing or
avoiding defects and the rework they cause, quickly
developing systems that respond better to customer

requirements – in short, that are aimed at somehow
improving productivity.

Empirical study has been increasingly seen as a
necessary approach for understanding software
developer productivity and the factors that increase or
reduce it. In a survey of software engineering
publications, Zelkowitz and Wallace showed that the
number of papers published with no empirical validation
has been dropping from 36% in 1985 to 29% in 1990 to
19% in 1995 [16]. A number of different empirical
approaches have been developed and applied, each
suited to different research hypotheses and types of
environments, ranging from observational studies to case
studies to controlled experiments.

However, fields outside of software engineering
represent a very different paradigm, and empirical
studies of developer productivity for specialized
computing systems have not been as common. In this
paper, we present initial results from novel work in the
application of empirical studies of development
productivity in the area of High Performance Computing
(HPC). The outputs of this work, presented in this paper,
include:
1. A set of lessons learned describing the similarities

and differences between “typical” software
development and the creation of specialized HPC
codes (Section 2).

2. A set of guidelines and a template for empirical
studies in this area (Section 3).

3. An overview of key quantitative results produced to
date (Section 4).

These results are indicative not only of the unique points
of HPC but may also serve as a blueprint for adapting
empirical study to other specialized areas of computer
science.

2. Overview of HPC software development

An HPC program (usually referred to as a “code”) is a
program which is written to run on parallel computers.
The objective is to decompose the computation among

multiple processors so that independent parts of the
solution can be computed at the same time, thus
returning a final answer in a fraction of the time required
if all computation had to be done sequentially on a
single processor. An HPC code will contain instructions
pertaining not only to logic and control flow, but also to
managing communication among the various processors.

Different programming models are available which
determine how this communication among processors is
managed in the code. The most widely used
programming model is known as message-passing, since
it generally achieves the best performance on a wide
range of HPC machines. Most message-passing
programs are written using the MPI library (see section
3.2). However, since it is believed to require a
significant amount of effort to implement programs in
MPI, there is an interest in alternative models.

While software engineering studies have been
applied to a wide variety of different development
contexts, HPC development is a highly specialized niche
with several important disparities to the usual range of
assumptions concerning developer behavior.

Who are the developers? The development of HPC
codes is crucial to progress in many fields of scientific
endeavor (e.g. climate science, astrophysics, molecular
biology). Since development of such codes first and
foremost requires an expertise in the scientific domain in
which a solution is being sought, those domain experts
are likely to be novice HPC programmers, at least when
they are beginning their careers.

Truly effective HPC programmers are rare because
HPC code development requires individuals who are
both experts in the domain and in the HPC architecture
on which the code is being developed. These problems
will only increase in the future as tougher problems are
attacked and more powerful (yet likely more difficult to
program) HPC machines are created. For this reason, we
decided to emphasize in our initial studies the question
of how novice programmers learn to effectively develop
HPC codes. This research question would have
important implications for expanding the base of
effective HPC programmers.

Both because of this focus on learning HPC
programming, and to help debug our experimental
protocols in a more controlled setting, we focused first
on classroom studies. Still, as classes require access to
specialized machines and are only taught at the graduate
level, the pool of such courses and the number of
subjects in each course were both much smaller than is
typically expected of software engineering classes. This
also had important implications for our study design
(namely, results need to be abstracted from across
multiple classes rather than from within a single class).

How important is hardware? In a “typical” software
engineering study, the computing hardware is likely to
merit only a brief mention along with the operating
system (e.g. programming was done on a Unix
workstation or a Windows PC), since modern compilers
isolate programmers from the details of a particular
machine architecture. Most software development
studies place a higher importance on the programming
language used, since this is assumed to have a much
higher correlation with programmers’ strategies for
decomposing the problem and hence with overall
development effectiveness.

In contrast, HPC machines vary considerably in
their architectures [13]. Machine architectures have
substantial effects on the effectiveness of different
algorithms and programming models, since the way in
which the processors are connected in the hardware
needs to be reflected directly in the software which is
written to take advantage of them, and may be more or
less suitable to the ways in which various problems can
be decomposed. To date, there are no HPC compilers
that can shield the programmers from such details and
still achieve acceptable performance. Thus, effective
HPC development requires appropriate matches between
the type of problem, the programming approach, and the
underlying hardware architecture. In empirical study,
then, reporting as much detail as possible about the
hardware platform, and controlling for this source of
variation, becomes extremely important.

What is optimized during development? As in other
types of software development, the usual goal of
developing HPC codes is to arrive at the solution of a
problem with minimal effort and time. Thus, an
important metric for evaluating various approaches to
code development in HPC is “time to solution,”
encompassing both the effort required to understand and
develop a solution as well as the amount of computer
time it takes to execute that solution and arrive at an
answer. Unlike most other software applications, the
time to execute the implemented solution can be quite
high. Hence the time to execute the code is a non-trivial
part of the above equation.

The activities required to actually develop HPC
code differ significantly from what would be expected
on a development project outside of the HPC domain.
While only a small subset of software development
projects require significant effort to be spent on
tweaking the code to improve performance, in HPC code
development a large percentage of the effort is always
expected to be spent on optimizing the code. This
optimization is necessary to take advantage of the
underlying hardware architecture and hence improve
performance. Many HPC codes are designed for very
specific problems. Those codes are typically run only

once, with a significant running time. In this case, the
time taken to do these optimizations is expected to pay
off with a measurable decrease in execution time.

Within the HPC community, metrics and even
predictive models have already been developed for
measuring the final code performance, under various
constraints (e.g. [12, 5]). However, little empirical work
has been done to date to study the human effort required
in the development of those solutions. There has been
for example no investigation of what percentage of the
total development effort is spent on optimizing code as
opposed to developing it in the first place, and how
much the effort spent on optimization improves the final
execution time. However, development decisions are
being made based on beliefs about how much
improvement is likely to be obtained from effort spent
on optimizing code performance.

How is quality assured? Although the issue of cost-
effective software testing and quality assurance is an
entire research area unto itself, for the vast majority of
applications the general testing strategy is understood: a
number of representative test cases are selected and the
software product is executed under those conditions, so
that the actual behavior can be compared to the
expected. A discrepancy between the two points to a
defect in the software.

The issue is much more complicated for many HPC
codes, which are developed to help expand the
understanding in a given field of science, usually by
simulating complex physical phenomena (such as
climate change) where experimental validation is
impractical or impossible. That is, these codes are
developed to tackle exactly those problems for which
there is no “expected” answer. The code is developed to
produce a result that would have been impossible to
ascertain without it, not to automate an already well-
understood task. For this reason, extensive checking of
the code and domain models occurs during development.

Because of these differences, traditional approaches

for measuring and improving productivity cannot be
applied without modifications in the HPC domain. We
therefore faced some difficulty when we were
approached by DARPA to design and conduct studies of
HPC development productivity. Despite years of running
software productivity studies, we had little intuition
about how to adapt our knowledge to run studies in this
context.

To obtain the understanding necessary to run
effective studies, we proceeded iteratively. We began
with very informal, subjective data collection, the results
of which we encoded as heuristics. These heuristics were
used to suggest an initial set of feasible and testable
hypotheses, which were then tested via an initial set of

pilot studies. The results of the pilot studies were used
both to evolve the hypotheses and further evolve our
experimental protocols.

3. Implications for HPC study design

The above lessons point to a large number of variables
that can affect the productivity of developing HPC
solutions. This would imply the need for a large number
of studies to compare and contrast them appropriately,
especially when the number of problem domains that
could be addressed are taken into consideration.

For these reasons, our solution has been to define
the parameters of a family of related experiments that
would help us to understand how to best leverage the
results of the studies that we can collect. Such a family
also addresses the need discussed in Section 2 to
combine subjects from multiple classroom environments
to build up a sufficiently large sample size. Applying an
over-arching framework to the problem space also
allows us to collect data opportunistically (depending on
the specific circumstances and interests of the educators
with whom we are working) while still providing overall
guidance and direction (e.g. we can see for what
combinations of variables we have so far achieved little
coverage).

Since the studies within the family have to be
comparable, in order for each to contribute to the overall
body of knowledge, we first define a common set of
dependent and independent variables, then show
experimental designs that permit the capture of the
required information. The overall family of studies is
summarized in Table 1.

3.1. Dependent variables

We define the following as the variables of interest for
describing the outcome of an HPC code development:
• A primary measure of the quality of the HPC

solution is the speedup achieved, that is, the relative
execution time of a program running on a multi-
processor system compared to a uniprocessor
system. The speedup measured for a given HPC
implementation can be assessed in comparison to
the number of processors on which the code is run:
Running on 8 processors, a hypothetical ideal HPC
version of a functionally equivalent serial program
can achieve a speedup of up to 8 times. In practice,
HPC implementations are not expected to exhibit
this idealized behavior, but it does provide a useful
way of understanding the level of improvement that
is achieved. (In this paper, all values reported for
speedup were measured when the application was
run on 8 parallel processors, as this was the largest

number of processors that was feasible for use in
our classroom environments.)

• A primary measure of cost is the amount of effort
required to develop the final solution, for a given
problem and given approach. The effort undertaken
to develop a serial solution includes the following
activities: thinking/planning the solution,
coding/debugging, and testing. In comparison, the
effort undertaken to develop a parallel solution
includes all of the above as well as tuning the
parallel code (i.e. improving performance through
optimizing the parallel instructions). It is necessary
to break effort measures down at this level of detail
in order to understand the tradeoffs with the code
performance achieved; it is not sufficient to know
which model required more effort, but rather what
degree of better performance was achieved for the
extra effort. Our mechanisms (both automated and
manual) for measuring subjects’ effort are described
in much more detail in a separate paper [1]. (In this
paper, HPC development was always done with
subjects producing a serial version first and then
developing a parallel version from that. Whether
this is an effective way for parallel development to
be done, or whether developers should start from
scratch and think from the beginning in a parallel
computing paradigm, is a question of current debate
in the HPC community. But, measures of effort thus
have to include the effort for both versions.)

• In comparing various parallel programming models,
an important description of the solution is captured
by the code expansion factor of the final code. In
order to take full advantage of the parallel
processors, HPC codes can be expected to include
many more lines of code (LOC) than serial
solutions. For example, certain parallel
programming models require a significant amount
of code to deal with communication across different
nodes. The expansion factor is the ratio of LOC in
an HPC solution to LOC in a baseline serial solution
of the same problem.

• Another metric that assists in comparing the effects
of different HPC programming approaches is the
cost per LOC of the final codes. This value is
another measure (in person-hours) of the relative
cost of producing code in each of the HPC
approaches. It is relevant for an investigation of
HPC development since LOC has been used by the
HPC community in the past as a proxy for effort
[e.g. 3, 14]. It is important for our empirical work to
validate whether LOC does indeed meaningfully
correlate to effort across various models.

3.2. Independent variables

We identify the following variables which can influence
the outcome (costs and benefits) of an HPC code
development, and hence which needed to be controlled
or monitored in productivity studies:

Problem type: Because the scientific applications
implemented on HPC machines vary so widely, it is
important to investigate whether the results observed
vary from one problem to the next or, more interestingly,
from one class of problem to another.

As examples, the assignments used in our studies to
date can be grouped into four distinct problem types.
Problems categorized as “nearest neighbor” are those in
which the problem space can be subdivided into regions,
with each processor assigned to a region. Two
processors only need to communicate with each other if
their regions are adjacent in order to obtain a solution
[12]. In contrast, “embarrassingly parallel” problems
rely on computations that can easily be broken into
mostly independent components, requiring almost no
communication among nodes. The analysis discussed in
this paper makes use of data concerning both of those
problem types.

There are other problem types possible; for
example, “broadcast” problems, which require that one
processor communicates with all others, or “all-to-all”
problems, in which each node must communicate with
all others. As we accumulate more data, we will be able
to investigate whether there are characteristic patterns
observable within and among the various problem types.

The data sets described in this paper were generated
for two specific applications: The “game of life” posits a
two-dimensional grid where every cell can be either on
or off; over a series of turns the grid evolves with the
behavior of each cell determined according to a set of
rules about the state of the cells surrounding it. The
Buffon-Laplace needle problem posits a grid of evenly
spaced parallel lines, where each square on the grid is of
size a by b. If a needle of length l is dropped onto this
grid, it will land on at least one grid line with probability
(2*l*(a+b)-l2)/(pi*a*b). Running Monte Carlo
simulations of various numbers of pin drops is then used
to approximate pi.

The names of the other specific applications are
included just to give a flavor of the range of problems
being addressed. However, a full treatment of these
problem types is outside the scope of this paper.

HPC parallel programming model: A second key
factor that will affect the outcome of a development
effort is the parallel programming model, which

describes how components of the code running on
different processors communicate with one another.

The two instances of parallel programming models
about which we have collected the most data are MPI
and OpenMP. These approaches are mature and are used
in industry. MPI [10] is a portable, scalable
programming approach that can be used on both
distributed-memory multicomputers and shared-memory
multiprocessors. All communication is explicitly
managed by the programmer, who must call “send” and
“receive” functions to communicate messages between
processes. MPI is implemented as a library and requires
no special compiler support [5].

OpenMP [11] is a shared-memory programming
model. OpenMP takes advantage of the ability to
directly access shared memory throughout the system
along with fast shared-memory locks to improve on the
complexity of the MPI approach. OpenMP is meant to
be useful for quickly parallelizing existing code and for
developing a broad set of new applications. It is
commonly used to achieve “loop-level parallelism”: the
programmer annotates loops with special compiler

directives, and the compiler distributes the iterations of
the loop across multiple processors. OpenMP is
implemented as an extension of C and Fortran and
requires support from the compiler [4].

Some of the researchers whose classes we observed
are also using new HPC approaches which they have
developed. These include StarP, a parallel extension to
the Matlab environment [8], and Explicit Multi-
Threading (XMT), a conceptual framework with
language extensions to C that implement parallel
random-access algorithms [15].

We also use the value “serial” to represent the
decision to use no parallel programming model at all
(i.e. to create a non-HPC baseline).

Developer experience: In the studies reported here,

the majority of subjects were novices in the area of HPC
development (not surprisingly, as the studies were run in
a classroom environment). Such a student population is
highly relevant to our work, since one of our key
research areas is how people learn to program HPC
codes effectively. Also, as mentioned in Section 2, many

 Serial MPI OpenMP StarP XMT

Nearest-Neighbor Type Problems

GoL (Game of Life) C3A3 C3A3
C0A1; C1A1

C3A3

GoR (Grid of Resistors) C2A2 C2A2 C2A2 C2A2

LE (Laplace’s Eq.) C2A3 C2A3

SWIM C0A2

Sharks & Fishes C6A2 C6A2 C6A2

Broadcast Type Problems

LU Decomposition C4A1

Parallel Matvec C3A4

Embarrassingly Parallel Type Problems

Buffon-Laplace Needle C2A1; C3A1 C2A1; C3A1 C2A1; C3A1

(Miscellaneous Problem Types)

Parallel Sorting C3A2 C3A2 C3A2

Array Compaction C5A1

Randomized Selection C5A2

Matrix power computation C8A1 C8A1

Parallel sums C6A1 C6A1 C6A1

Sparse matrix multiply C7A1

Dense matrix multiply C6A1 C6A1 C6A1

Table 1: Matrix describing the problem space of HPC studies being run. Each study is indicated with a label CxAy,
identifying the participating class (C) and the assignment (A). Results discussed in this paper are grey-shaded.

of the likely users of HPC computers in government and
industrial contexts, who are researchers and domain
experts in other, unrelated fields, are likely to be
classified as novice users of many HPC approaches
themselves.

3.3. A framework for a family of studies

Our current framework is illustrated in Table 1. It helps
organize studies according to two major variables: The
problem being solved and the parallel programming
model that was applied to create the solution. These
make natural axes for this matrix since the problem type
is of primary importance for our work: We are hoping to
uncover basic phenomena in HPC studies by
understanding which types of problems seem to respond
best to similar solutions, and why. Since the
programming model is one of the basic choice points for
a code developer, we hope to be able to provide useful
decision support on this issue by understanding under
what contexts the various approaches lead to the most
effective solutions.

By labeling each dataset according to the class and
assignment, we show which data came from the same
subjects and hence where dependencies are. The
assignment number conveys some information about the
order in which assignments were done; since our
subjects were in a learning environment, it may be the
case that they were more effective at doing later
assignments than earlier ones.

One piece of information missing from this view is
the machine type/platform on which the solutions were
developed. We do not have enough data yet across
different platforms in order to contrast results under
different circumstances. Eventually, we hope to have
enough data within each cell of the matrix that we can
evaluate whether there are differences among solutions
developed using the same approach but on different
platforms.

3.4. A design for HPC productivity studies

The following designs were created to be used in a
number of different environments, with minimal further
tailoring. Through our connection with HPC classroom
environments we have discovered that there are two
approaches to a graduate class curriculum in HPC
development:

Introduction to multiple HPC approaches, one at a
time. In this approach to structuring the class, multiple
programming models are introduced one at a time and
discussed in-depth. For the sake of simplicity, let us
assume two different models are to be introduced and

refer to these as mod1 and mod2. Subjects will be asked
to apply each model to a given problem, in order to gain
experience with its use. A study design that fits into such
a class is described in Table 2. It requires randomly
dividing the class into two groups. This design also
requires two different problems, prob1 and prob2, which
will be implemented by the groups in varying order.

By switching documents between the two groups,

we allow the techniques to be taught in sequence but
allow the interaction between the problems and the HPC
approaches to be understood. If desired, this design can
accommodate each group implementing the given
problems in serial code, or can allow developers to work
only in HPC versions. This design does however still
suffer from the threat to validity concerning maturation,
i.e. results may be biased in favor of mod2 since it is not
taught until later in the semester, and some skill
development in general HPC programming may have
occurred.

The design can of course be easily extended to
include additional HPC models that might be taught over
the course of the semester, if the class is divided into an
additional group, so that the same algorithm for varying
documents could be followed.

Introduction to multiple HPC models at once, with a
large assignment to compare and contrast. An
alternate approach to the class is to introduce students to
multiple HPC models at the same time. A single problem
to be solved is then taught and students are expected to
solve the problem using all of the HPC models taught in
order to compare and contrast them.

Step Group 1 Group 2
1 Instruction in HPC model1 (mod1)

2 Treatment1
(optional):
serial version of
prob1

Treatment1 (optional):
serial version of prob2

3 Treatment2:
mod1 applied to
prob1

Treatment2:
mod1 applied to prob2

4 Instruction in HPC model 2 (mod2)

5 Treatment3
(optional):
serial version of
prob2

Treatment3 (optional):
serial version of prob1

6 Treatment4:
mod2 applied to
prob2

Treatment4:
mod2 applied to prob1

Table 2: Design variant 1 for HPC classroom studies.

As in the previous case, this design allows the use of
multiple HPC models, generically referred to as mod1
and mod2, applied to different problems to be solved,
prob1 and prob2. This design is illustrated in Table 3.

This design removes the threat of the maturation

effect; all HPC models are applied both early and late in
the semester. It does require students to conform to an
order in which they apply the various HPC models to the
given problem; we are solving this by giving out each
portion of the assignment individually and setting a due
date for each treatment. Once we have finished piloting
this design in the current semester’s classes we will have
some feedback as to whether this way of imposing an
ordering on the assignment is comfortable for student
subjects.

4. Example results to date

To verify that our framework is a meaningful way of
combining families of studies, we need to show that data
collected within a cell is more highly correlated than
data across cells. Said another way, we are concerned
with verifying that our identified variables of the
computing problem and the HPC approach are in fact
important factors for predicting the outcome of a
development effort.

To carry out this verification, and as examples of
the kinds of analyses that our framework was intended to
support, we compare data for the same problem but
different models, and for the same model but different
problems. For the statistical tests run in this paper, we
used an alpha-value of 0.05 in all cases. (It should be
noted that, since our experimental design has been
evolving over time, some of these studies were

conducted using an experimental design that is similar to
the one in Table 2 but with only one group of subjects,
that is, with all subjects applying the same activities at
the same time. New data is being collected using the
design as it is found in Table 2.)

Studies included in this analysis were:
• C0A1. This data was collected in Fall 2003, from a

graduate-level course with 16 students. Subjects
were asked to implement the Game of Life program
in C on a cluster of PCs, first using a serial solution
and then parallelizing the solution with MPI. In this
class, 56% of subjects had no experience in HPC
development; 33% had previous class experience;
and 11% had some industrial experience.

• C1A1. This data was from a replication of the
C0A1 assignment in a different graduate-level
course at the same university in Spring 2004. 10
subjects participated. In this class, 63% of subjects
had no experience in HPC development; and 37%
had previous class experience.

• C2A1. This data was collected in Spring 2004, from
a graduate-level course with 26 students. Subjects
were asked to implement the Game of Life and
Buffon-Laplace problems in C on a cluster of PCs,
first as a serial and then as an MPI and OpenMP
version. 100% of the students had no previous
experience with HPC development.

• C3A{1,3}. This data was collected in Spring 2004,
from a graduate-level course with 20 students.
Subjects were asked to implement the Game of Life
and Buffon-Laplace problems in C on a cluster of
PCs, first as a serial and then as an MPI and
OpenMP version. In this class, 50% of subjects had
no experience in HPC development while 50% had
previous class experience.

4.1. Analyzing differences among problem
types

One research question of interest is whether different
problems have different, characteristic levels of
improvement that can be achieved by using an HPC
approach to implementing the solution. To validate our
research framework, we would also like to test the
related question of whether, regardless of the class
implementing the solution, the codes developed for the
same problem and using the same programming model
exhibit similar behaviors.

 To address this, we analyzed the four
independent datasets summarized in Table 4.

Step Group 1 Group 2
1 Treatment1 (optional): serial version of prob1

2 Treatment2:
mod1 applied to
prob1

Treatment2:
mod2 applied to prob1

3 Treatment3:
mod2 applied to
prob1

Treatment3:
mod1 applied to prob1

4 Treatment4 (optional): serial version of prob2

5 Treatment5:
mod2 applied to
prob2

Treatment5:
mod1 applied to prob2

6 Treatment6:
mod1 applied to
prob2

Treatment6:
mod2 applied to prob2

Table 3: Design variant 2 for HPC classroom studies.

We first test for similarities within the same

problem type. We used a t-test to test the hypothesis that
the mean speedup achieved by C0A1 for the game of life
is different from the mean achieved by C1A1. With a p-
value of 0.96, we cannot conclude that the results for the
two classes were different. Similarly, a test for
differences between C2A1 and C3A1 on the Buffon-
Laplace needle problem yields a p-value of 0.07, so we
cannot conclude that these two classes were different.
Thus there are no significant differences in the
performance achieved for classes for either of our two
problems.

Comparing across problems, we therefore combine
datasets and run a t-test on the hypothesis that the mean
speedup achieved for the game of life (regardless of
class) is significantly different than the speedup
achieved for Buffon-Laplace (regardless of class). The
resulting p-value, 0.006, shows that there is in fact a
statistically significant difference in the speedup
achieved using the MPI model for these two problems.

4.2. Analyzing differences among parallel
programming models

A second question of importance to HPC research is,
what are the strengths and weaknesses of the various
parallel programming models? That is, what are the
tradeoffs between cost and benefits of the available
parallel programming models?

Two datasets had sufficient number of subjects to
enable a meaningful within-subjects comparison of
effects: C3A3, applying the MPI and OpenMP models to
the Game of Life problem, and C3A1, applying the same
two models to the Buffon-Laplace needle problem. We
investigated whether the two models required a different
amount of effort for implementing the solution and thus
a different final cost. (Unfortunately, since students were
instructed to execute their Game of Life solution on 8
processors and their Buffon-Laplace solution on 2
processors, we could not meaningfully compare the
speedup achieved on the two models.) Recall that the
HPC effort here represents the effort needed to produce

first a serial version and from that develop a parallel
version. The effort/LOC metric is thus computed as total
effort over total LOC for both serial and parallel
versions.

Since the same individuals implemented versions of
the same problem using different models, we rely on the
paired t-test to test the differences in mean values for
statistical significance.

Regarding the effort required to implement a
solution using the two parallel programming models, the
data show an interesting pattern, as shown in Table 5.
For the Buffon-Laplace problem, OpenMP required
significantly greater effort than MPI (p=0.02). However,
for the Game of Life problem the relationship was also
significant (p=0.01) but in the opposite direction. When
the total implementation effort is normalized by the
number of LOC written, as in Table 6, the mean value of
this metric is also significantly different from one
approach to the other (p=0.01 for the Buffon-Laplace
problem and p=0.02 for the game of life).

As a result of the above analysis, we conclude that

the number of LOC in a code is not a good proxy for
developer effort. This has important implications for

Data
set

Problem Speedup

C0A1 Game of life mean 4.86, sd 2.4, n=14
C1A1 Game of life mean 4.81, sd 1.7, n=5
C2A1 Buff.-Lap. mean 2.01, sd 1.0, n=8
C3A1 Buff.-Lap. mean 3.73, sd 2.1, n=8
Table 4: Mean, standard deviation, and number of
subjects for computing speedup achieved on
different problems. All values were recorded for
solutions using the MPI parallel programming
model in C.

Data
set

Prob. Prog.
model

Effort (person-hrs)

C3A1 BL MPI mean 1.4, sd 1.1, n=20
C3A1 BL OpenMP mean 2.5, sd 2.0, n=20
C3A3 GoL MPI mean 9.1, sd 4.3, n=15
C3A3 GoL OpenMP mean 4.3, sd 3.6, n=15
Table 5: Mean, standard deviation, and number of
subjects for computing the effort required for
implementing the solution. Data is from two
different programming models applied to the
Buffon-Laplace needle (BL) or the Game of Life
(GoL) problems.

Data
set

Prob. Prog.
model

Effort (person
minutes/LOC)

C3A1 BL MPI
mean 0.02, sd 0.02,
n=15

C3A1 BL OpenMP
mean 0.05, sd 0.04,
n=15

C3A3 GoL MPI
mean 0.04, sd 0.03,
n=13

C3A3 GoL OpenMP
mean 0.03, sd 0.01,
n=13

Table 6: Mean, standard deviation, and number of
subjects for computing effort per line of code.
Data is from two different programming models
applied to the Buffon-Laplace needle (BL) or the
Game of Life (GoL) problems.

attempts to build predictive models, or at least define
easy-to-measure proxies for the phenomena of interest.

4.3. Threats to validity

The fact that these studies were run, not only in a
classroom environment, but across several classroom
environments, means that there are threats to the validity
of our conclusions that should be kept in mind when
interpreting the results. There is a threat to external
validity in that our studies involved two-week
assignments run on a small number of processors, while
“real” HPC programs may take years of development
and run on hundreds of thousands of processors.

One possible threat to internal validity resulting
from the classroom environment is that we have to deal
with problems of incomplete data, e.g. subjects not
filling out their logs, or subjects creating implementing
serial versions on non-instrumented machines or not
submitting the serial version of their code. We have not
observed any systematic bias in which subjects have
omitted data. However, we do report the total number of
students in each class and the size of the subset that was
able to be included in each analysis.

We have already characterized the major context
variables that may vary from one classroom environment
to another, such as the programming language being
used or the specific application assigned to the students.
We argue that the experience level of subjects, as
described in Section 4, is similar enough to be compared
across studies: Nearly all of the students had either no
experience or only classroom experience in parallel
programming.

We used performance data that was reported by the
subjects. This represents an internal threat to validity
since the students may not have reported their data
truthfully. They may have also made errors while
recording execution time data (e.g. recording execution
time when the machine is heavily loaded).

All effort data was collected through instrumenting
the compiler and batch scheduler on the development
machines. Our analyses show that there are some
discrepancies between these measures and the self-
reported logs that subjects also kept, although the results
point to the instrumented data as being the more
accurate source. Our analysis and process for reconciling
these differences has been described in some detail
elsewhere [7].

Finally, there is the possibility that students
experienced a learning effect, i.e. that they might have
become simply better HPC programmers over the course
of multiple assignments, regardless of the HPC approach
being used.

5. Future work

In order to facilitate the running of more studies that can
contribute to this analysis framework, we have put effort
into designing web-based lab packages that organize all
the resources necessary for educators to implement the
studies in their own courses. By making a library of
predetermined choices available for each field of the
template, we hope to show educators a range of choices
that can meet their classroom conditions while
maintaining the ability to compare between studies.

We have made available the instrumentation along
with installation instructions for setting up automated
data collection. Packets are available for batch
processors and compilers on most HPC machines. We
are currently working with HackyStat [9] and Eclipse [6]
to create plugins for most common editors, which will
eventually be available for downloading as well.

Our work has shown that the variables we have
identified as of primary importance (namely, the type of
problem implemented and the parallel programming
model used) do have a measurable impact on the results
of HPC development. As we collect more data and
populate the matrix, we will build more sophisticated
models of cause and effect, for example by investigating
the role played by developer experience and whether its
effect varies for different models. We will also explore
additional research questions; for example, an important
topic is whether a developer’s workflow (the overall
strategy used at the individual level in order to solve the
problem) has an effect on development success. One of
our long-term goals in this work is to investigate which
types of developer behaviors have the best correlation
with improved outcomes, e.g. when developing a
parallel solution to a problem, is it always a good idea to
create a serial version of the solution first, or is it better
to begin programming directly on the parallel
architecture? Such questions can be addressed once we
have the solid baseline of data for addressing variations
in problems and HPC programming models, which we
are building in this work.

6. Conclusions

In this paper we have described a research program
aimed at conducting empirical studies of a specialized
type of software development. We have so far been
successful at forging collaborations among researchers
in software engineering as well as high-performance
computing, and in adapting an empirical approach to the
study of how HPC codes are engineered effectively. We
have reported our high level approach for evolving our
designs over time as we discover more about unique
constraints in this area, which we hypothesize will be

useful for similar efforts of tailoring empirical study for
other specialized fields. We have reported what we have
discovered about the particular constraints for empirical
studies of HPC codes, and showed an experimental
framework that takes the constraints into account.

Furthermore, we have begun collecting baseline
data about how novices perform on various HPC
applications, which can be useful for both researchers
and educators who would like to replicate those
experiences. The data help build confidence in our
approach by showing that there are no significant
differences across classes with similar experience
tackling similar problems, while there are significant
differences in performance and effort for the different
parallel models applied.

Clearly, however, more work needs to be done to
explore the influence of context variables and collect
data from more widely disparate application
development. Such work will be guided by the matrix
that describes the problem space (Table 1) to show
where we are lacking coverage. Future studies will be
run to generate the large and diverse data sets, covering
a majority of cells in the matrix, which will be required
to address those questions in the most general case. We
are also working with industrial and government HPC
developers, to determine in what ways experience level
affects development practices and results.

7. Acknowledgements

This research was supported in part by Department of
Energy contracts DE-FG02-04ER25633 and DE-
CFC02-01ER25489, and NASA Ames Research Center
grant NNA04CD05G to the University of Maryland. We
wish to acknowledge the contributions of the various
faculty members and their students who have
participated in the various experiments we have run over
the past 2 years. This includes Alan Edelman at MIT,
John Gilbert at the University of California Santa
Barbara, Mary Hall at the University of Southern
California, Jeffrey Hollingsworth at the University of
Maryland, Alan Snavely at the University of California
San Diego, Alan Sussman at the University of Maryland,
and Uzi Vishkin at the University of Maryland.

8. References

[1] S. Asgari, V. R. Basili, J. Carver, L. Hochstein, J. K.
Hollingsworth, F. Shull, and M. V. Zelkowitz, "Challenges in
Measuring HPCS Learner Productivity in an Age of
Ubiquitous Computing: The HPCS Program", In Proc. ICSE
Workshop on High Productivity Computing, Edinburgh,
Scotland, May 2004, pp. 27-31.

[2] S. Asgari, L. Hochstein, V. Basili, J. Carver, J.
Hollingsworth, F. Shull, and M. V. Zelkowitz, “Generating
Testable Hypotheses from Tacit Knowledge for High
Productivity Computing,” In Proc. ICSE Workshop on High
Productivity Computing, St. Louis, USA, May 2005.

[3] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi.
Productivity Analysis of the UPC Language. IPDPS 2004
PMEO workshop. 2004.

[4] L. Dagum and R. Menon, "OpenMP: An Industry-Standard
API for Shared-Memory Programming," IEEE Comp. Science
& Engineering, 5(1), 1998, pp. 46-55.

[5] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, "A
message passing standard for MPP and workstations," CACM,
39(7), 1996, pp. 84-90.

[6] Eclipse.org. http://www.eclipse.org/

[7] L. Hochstein, V. R. Basili, M. Zelkowitz, J. Hollingsworth,
and J. Carver. "Combining self-reported and automatic data to
improve effort measurement." Accepted at the European
Software Engineering Conference / ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
2005 (ESEC-FSE'05).

[8] P. Husbands and C. Isbell, “MATLAB*P: A tool for
interactive supercomputing,” Proc. SIAM Conference on
Parallel Processing for Scientific Computing, 1999.

[9] P. M. Johnson. Hackystat system.
http://csdl.ics.hawaii.edu/Research/Hackystat/.

[10] Message Passing Interface Forum, http://www-
unix.mcs.anl.gov/mpi/mpi-standard/mpi-report-2.0-sf/mpi2-
report.htm

[11] OpenMP C and C++ Application Interface, OpenMP
Architecture Review Board Version 2.0, March 2002.
http://www.openmp.org/drupal/mp-documents /cspec20.pdf

[12] J. T. Schwartz, “Ultracomputers,” ACM Trans. Program.
Lang. Syst., 2(4): 484-521, 1980.

[13] A.J. van der Steen, and J. J. Dongarra. Overview of
Recent Supercomputers. http://www.top500.org/ORSC/2004.

[14] S. P. VanderWiel, D. Nathanson, and D. J. Lija.
Complexity and performance in parallel programming
languages. 2nd International Workshop on High Level
Programming. 1997.

[15] U. Vishkin, S. Dascal, E. Berkovich and J. Nuzman,
“Explicit Multi-Threading (XMT) Bridging Models for
Instruction Parallelism,” Proc. 10th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), 1998.

[16] M. V. Zelkowitz and D. Wallace, Experimental models
for validating computer technology, IEEE Computer 31, 5
(May, 1998) 23-31.

