
�

�

Abstract

instantiated

1 Introduction

W. M. Thomas, A. Delis & V. R. Basili

AN EVALUATION OF ADA SOURCE CODE REUSE

Department of Computer Science

University of Maryland

College Park, MD 20742

This was supported in part by the National Aeronautics and Space Administration grant NSG{5123 and a TRW

Graduate Fellowship.

This paper presents the results of a metric{based investigation into the nature and bene�ts

of reuse in an Ada development environment. Four medium scale Ada projects developed in

one organization over a three year period were analyzed. The study indicates bene�ts of reuse

in terms of reduced error density and increased productivity. The Ada generic features are

observed as an enabler of reuse at higher levels of abstraction. Finally, using several metrics,

we identify trends indicating an improving reuse process.

Reuse has long been cited as essential for obtaining signi�cant improvement in software devel-

opment productivity. Jones [16] indicates that only 15 percent of the developed software is unique

to the applications for which it was developed. As development e�ort is often considered to be an

exponential function of software size, a reduction in the amount of software to be created can pro-

vide a dramatic savings in development cost [8]. Reduced development cost is not the only bene�t

of reuse. Reused software has a track record|it has been well tested and exercised and thus may

be more reliable and defect{free than newly developed software. The e�ect of the improved quality

will not stop at the completion of development{rather the most signi�cant bene�t of reuse may be

its e�ect on maintenance [18, 23].

To realize such bene�ts, techniques to achieve e�ective reuse have been the focus of extensive

research e�ort over the past twenty years [24]. Generational approaches such as those described in

[4, 5] attempt to achieve reuse through the generation of source code from other forms. Boyle and

Muralidaharan [12] view the automatic translation as a successful mechanism to transfer programs

into new programming environment. Repository based techniques strive for reuse by collecting

reusable entities and providing e�cient means to locate the appropriate object for a particular

task. Techniques for storing objects to allow for e�ective automated retrieval are outlined in

[2, 22]. Lanergan and Grasso [18] were able to provide for their organization a classi�cation of

functional modules in the context of the COBOL language and obtain a leverage of 60% of the

regularly used code. Cheatham [25] outlines a methodology of abstract programs that can be

to a family of concrete programs using very high level languages. Some other attempts

geared predominantly towards source code reuse are found in [19, 20]. The common element in

1

2 A Measurement Guided Reuse Process

these e�orts is that they all strive for the reuse of products or by-products of the software life cycle.

Basili et al. [6, 7] indicate that the reuse of processes in addition to software products may result

in even greater bene�ts.

Caldiera and Basili [13] identify four fundamental steps in a reuse process cycle and introduce

the idea of metric use for the identi�cation and extraction of reusable code. A validation study was

performed focusing on the identi�cation of reusable components in a C/Unix environment.

In this paper we discuss the use of measurement to better understand and evaluate an Ada

reuse process. Using various metrics, we analyzed the e�ect of reuse in Ada developments in a

single organization over a 3 year period. This paper extends the work presented in [13] in the Ada

environment and generalizes the approach of using software metrics to determine the e�ectiveness

of reuse. We argue that metrics, in addition to facilitating the extraction of software components,

can aid in the evaluation of reused code and reuse processes. We have performed an investigation

into the nature and relative bene�ts of reuse in the Software Engineering Laboratory (SEL). The

SEL is a joint e�ort of the NASA/Goddard Space Flight Center, the University of Maryland,

and the Computer Sciences Corporation to study software engineering issues and promote modern

development techniques.

The paper is organized as follows. Section 2 describes the use of metrics for the assessment

of a reuse process. Section 3 describes the environment that was analyzed. Section 4 presents the

results of the analysis in three areas: the resulting e�ect of reuse in the development environment,

how well the Ada generic constructs support reuse, and what trends can be seen as the organization

gains reuse experience. Section 5 summarizes and identi�es major conclusions.

Basili and Rombach [7] outline a framework for the support of a reuse oriented development

environment. The framework consists of a reuse model, describing how objects are taken from a

repository to their new context, a characterization schemes for the model, allowing for e�ective use

of the model, and an environment model supporting the integration of reuse into the development

environment.

A project organization can be tailored toward reuse by separating project concerns from soft-

ware component development concerns. Such an organization is described in detail in [13]. The

distinction with traditional development is that in this reuse oriented organization, the project

organization provides speci�cations to the factory organization, which retrieves the appropriate

components, and provides them to the project organization for integration. As shown in �gure 1,

the project side of the development is relieved of the of the work in developing components, rather,

it must specify, design, and integrate components into a working system. The item of concern in

this organization is the system, not the components. Component release takes place in the factory

side of the organization. Components requested by the project organization can be created new, or

reused from a component repository. Thus activities involved in the factory side include searching

for components, adapting and creating components, qualifying and storing the components. This

side is focused on the component rather than the system into which the component must be inte-

grated. It is not expected that the factory side is driven solely by project requests; rather domain

analyses will sustain continuing development in the factory.

The work of Caldiera and Basili [13] deals with the factory side of the organization. The major

goal of that work is the ability to locate potentially reusable components in existing software using

2

Specify

Integrate

Test

Lookup

Create

QualifyStore

Specifications

Components

Project
Organization

Factory
Organization

Figure 1: A Reuse-Oriented Software Development Organization

tuples of software metrics for the quali�cation of the candidates. Once identi�ed as a candidate,

the component is re-engineered in to an object suitable for the repository. This re-engineering may

be in making the component more general, removing certain domain dependencies, or in adding a

detailed speci�cation.

Ada provides support for reuse in several ways. Separation of speci�cations from bodies al-

lows the developer to separate the concerns of the interface from the implementation. Packages

provide for the encapsulation of related entities, and facilitate the creation of abstract data types.

Generic program units provide parameterized program templates that enable the adaptation of an

abstraction to a variety of contexts.

Even with such language features, the transition to a reuse{oriented organization will be a

gradual one. As more and more experience is captured and packaged, we expect a decrease in e�ort

spent in the product life cycle, an increase in e�ort spent in the factory cycle. Throughout the

transition the e�ectiveness of reuse can be monitored. Measurement can help us to better under-

stand, evaluate and improve the quality of the reuse processes. A general architecture supporting

the integration of measurement with software development processes is outlined in [7]. The reuse-

oriented organization can only be e�ective if it shows an overall improvement over a traditional

organization. By monitoring the resulting e�ect on the cost and quality of the �nal product, we

can better understand the reuse process and evaluate its e�ectiveness.

Our goal is to examine, through the use of various metrics, the development side of the cycle to

understand how reuse facilitates Ada development. In particular, we wanted to learn what bene�ts

can be achieved relative to reuse in terms of quality and cost. A second goal was to examine the use

of the Ada generic features to determine how well they support the reuse process. Finally, we try

to identify trends that can be observed as the organization gains reuse experience. To determine

the e�ectiveness of reuse in the environment, we examined error density, program complexity, and

productivity relative to reuse rates. We examined the use of generics relative to error density and

complexity to better determine how the Ada language features were being used in the context of

reuse.

3

WITH

3 Description of the Experiment

4 Results

4.1 E�ect of Code Reuse on Product Development

We analyzed a collection of four medium-scale Ada projects developed at the NASA/Goddard

Space Flight Center. The projects ranged in size from 35 to 75 thousand non-comment non-blank

source lines of code (KSLOC), and required development e�ort of 30 to 175 technical sta� months.

We analyzed reuse from two perspectives, the �rst, o�-the-shelf code reuse of previously developed

compilation units, and the second, reuse of functionality achieved with generic instantiations. An-

other direction that was taken was to investigate the project development over time, and assess how

experience acquired to date has contributed to greater reuse achievements in the SEL environment.

The percentage of reused code on these projects ranged from 9 to 87 percent (verbatim), and 29 to

94 percent (verbatim and with modi�cation) [17].

The purpose of this experiment was to quantify reuse with objective metrics, assess the impact

of reuse on complexity, and to investigate the viability of a metrics based approach to reuse in an

Ada development environment. The NASA/GSFC SEL has collected a wealth of data on software

development over the past �fteen years. We used several types of data in our analyses. The �rst

type of data has to do with the origin of a component|whether it was newly created or reused.

For each component in the system a component origination form is �lled out by the developer,

identifying the origin as one of four classes: newly created, reused with extensive modi�cation

(greater than 25% of the SLOC modi�ed), reused with slight modi�cation (less than 25% of SLOC

modi�ed), and reused verbatim. For Ada systems, a compilation unit is viewed as a component.

Thus our analysis focuses on looking at the di�erent classes of compilation units.

Our second notion of reuse is the reuse achieved via the instantiation of generic units. For this

analysis, we split our system into two parts, the generic part, consisting of units associated with

generic library units and instantiated library units, and the non-generic part, consisting of units

associated with all other library units. As with custom versus reused code, we believed we would

see di�erences between the two classes.

We analyzed the systems with a source code static analysis tool, ASAP [14], which provided

us with a static pro�le of each compilation unit, including, for example, basic complexity measures

such as McCabe's Cyclomatic Complexity and Halstead's Software Science, as well as counts of

various types of declarations. ASAP also identi�es all statements, so we were able to

develop a measure of the externals visible to each unit.

Two measures of development productivity were analyzed, namely, the productivity associated

with the code/unit test phase, and the productivity in the system and acceptance test phases. We

also use, as a measure of quality, counts of development error reports for each compilation unit.

In this section we discuss results of our analysis in three areas. The �rst compares reused with

newly created code from the perspective of the resulting e�ect on product quality and development

e�ort. We then analyze how well the Ada Generic features facilitate reuse. Finally, we discuss how

measurement can be used to identify trends in reuse over several projects.

Reuse has been advocated as a means for reducing development cost and improving reliability.

4

10.0

7.5

 5.0

 2.5

 0.0
E

rr
or

s/
K

S
LO

C

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AANew Ext. Mod. Slt. Mod. Old

10.0

7.5

 5.0

 2.5

 0.0
E

rr
or

s/
K

S
LO

C

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AANew Ext. Mod. Slt. Mod. Old

4.1.1 Error Density

4.1.2 Product Complexity

Figure 2: Error Density by Class of Reuse

Boehm and Papaccio [9] identify the reuse of software components as one of the most attractive

strategies for improving productivity.

The following sections describe what we have seen relative to reuse across four recent projects

in three areas: error density, product complexity, and productivity.

Rework has been identi�ed as a major cost factor in software development. Jones [15] indicates

that it typically accounts for over 50% of the e�ort for large projects. Reuse of previously developed,

tested, and quali�ed components can reduce the number of errors in development, thus reducing

rework e�ort.

Figure 2 shows the error density found in each of our four reuse classes over the four projects

analyzed. The bar labeled \New" indicates error density in newly created components. \Ext.

Mod.", \Slt. Mod." and \Old" refer to error densities found in the components in the classes of

Extensively Modi�ed, Slightly Modi�ed, Reused Verbatim, respectively. As expected, fewer errors

were found associated with reused code vs. new code. Error density (Errors/KSLOC) was found to

be 0.9 in the code reused verbatim, 5.6 in the slightly modi�ed code, 8.1 in the extensively modi�ed

code, and 9.5 in the newly developed code. The lower density in the reused components implies

an easier time in integrating the reused components into a new system than in developing code

from scratch. However, it also appears that there is a signi�cant di�erence in error densities of the

modi�ed code compared to the verbatim code. In fact, there seems to be no di�erence in error

density between components that were developed new and those reused with extensive modi�cation.

The slightly modi�ed code shows a 40% improvement in error density relative to newly developed

code; however the most signi�cant bene�t comes with the unchanged components, as they show a

90% reduction relative to the new components. Clearly, the greatest bene�t comes from reusing

the code without modi�cation.

A software system can be viewed as an inter-related collection of components. The quality of

the system thus is a function of the quality of both the components and the component relations.

5

 8.0

6.0

 4.0

 2.0

 0.0 AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA

New Ext. Mod. Slt. Mod. Old

Ave. Cyclomatic Complexity

Ave. Visibility

AA
AA

Figure 3: Relationship of Reuse and Program Complexity

Cyclomatic complexity [21] is a graph{theoretic measure of the control organization of a component.

Highly complex components may be more error-prone and di�cult to understand. In the context

of reuse, excess complexity is seen as an inhibitor of e�ective reuse, as it can make the integration

and rework costs outweigh the cost of developing a component from scratch [13]. The complexity of

the component interface is also an important factor. Limiting program dependencies is suggested

as a means for improving reusability, and techniques for transforming existing software to limit

dependencies is discussed in [3]. Agresti et al. [1] have developed multivariate models of software

qualities using characteristics of the software architecture. Increasing dependencies in the system is

shown to reduce the reliability of the system. There is a trade{o� between these two complexities.

One can achieve a simple interface complexity at the expense of increased internal complexity, and

vice versa. Developers strive for the proper balance of these complexities.

To assess the internal complexity of the components in the systems, we examined the cyclo-

matic complexity of the executable program units. As a rough measure of the interface complexity

of the compilation unit we observed the number of library units that are made visible to the com-

pilation unit. Figure 3 shows the relationship between reuse, cyclomatic complexity, and visibility.

Among the executable program units, the mean program unit cyclomatic complexity was lower for

reused components than for the new components. New components had an average complexity

of 6.4, extensively modi�ed 5.1, slightly modi�ed 4.4, and unchanged 3.6. A nonparametric test

of the signi�cance of the di�erence in the class medians indicates the di�erence to be statistically

signi�cant at for all pairs of classes except in distinguishing between new and extensively modi�ed

components. The overall relation ship of reuse with project complexity is not so clear. While there

seems to be a signi�cant drop in average complexity (over the entire system) from the �rst project

to the second, there is only a slight decrease in each of the subsequent projects.

In terms of the visibility to the compilation units, we observed a lower average number of

visible library units in the verbatim reused components. This average visibility was found to be 6.3

in the class of new components, 5.0 in the extensively modi�ed, 6.0 in the slightly modi�ed, and

3.6 in the reused verbatim. While there was a signi�cant di�erence (at .0001 level) between the

visibility in the reused verbatim class and each of the other classes, no such distinction was found

when comparing the classes of new, slightly modi�ed and extensively modi�ed components. This

supports the view presented in [3] that reducing dependencies may make a module more reusable.

One possible explanation for the lower complexity observed in the reused code is that the

reused components comprise only simple, straightforward functions (e.g. general utilities), and as

6

 8.0

6.0

 4.0

 2.0

 0.0

New

Ext. Mod.

Slt. Mod.

Old

AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA

AAA
AAA

AA
AA
AA
AA

AA
AA
AA

AA
AA

AA
AA
AA
AA

AAA
AAA
AAA
AAA

1 2 3 4

AA
AA
AA
AA
AA

A
ve

. C
yc

lo
m

at
ic

 C
om

pl
ex

ity

4.1.3 Productivity

4.2 Generics vs. Non{Generics

Figure 4: Complexity of Reused Objects Over Time

such, should have lower complexity and fewer dependencies. However, in this environment we saw

an increasing level of reuse from project to project, and a decreasing complexity over the entire

system. Figure 4 shows the relationship between reuse and complexity from the four observed

projects. We see reuse of increasingly complex objects, both in terms of their internals and their

interfaces, but at the same time see an overall reduction in the complexity of the entire system.

While it certainly is true that general utilities are being reused, it also is evident that there is a

trend toward the reuse of more complex functionality.

We also analyzed productivity across the projects from the perspective of reuse. In particular,

we wanted to see if reuse would provide a signi�cant reduction in e�ort in the testing phases, as well

as in the coding phase. We de�ned implementation productivity as thousands of non{comment,

non{blank source lines of code divided by sta�-months (KSLOC/SM) charged during the code/unit

test phase, and test productivity as KSLOC divided by sta�-months charged during the system

and acceptance test phases.

Figure 5 shows that as reuse increases, productivity increases both in the implementation phase

and the test phase. The lines indicate the (log of the) percentage of reuse, both verbatim reuse and

total reuse, and the bars indicate implementation and test productivities. Implementation produc-

tivity ranged from 2.5 KSLOC/SM on the project with the least reuse (26%) to 5.8 KSLOC/SM for

the project with the most reuse (94%). It was expected that reuse would have a signi�cant positive

impact on e�ort expended in the implementation phase. We observed a similar result with respect

to productivity in the system and acceptance test phases, as we saw a productivity range from 2.5

to 6.5 KSLOC/SM. While this data is not su�cient to build an accurate model relating reuse and

cost, it does provide an indication that the e�ect of reuse is widespread|in addition to the savings

in the implementation phase we see an indication of savings in integration and test phase.

Booch [10] identi�es the primary use of generic units as reusable software components. The

parameterization of generic units allows them to be applied to a range of uses, and thus can reduce

7

 8.0

6.0

 4.0

 2.0

 0.0
1 2 3 4
AA
AA
AA

AAA
AAA

AAA
AAA
AAA

AA
AA
AA
AA
AA
AA

Impl. Prod. (KLOC/Staff Month)

Total Reuse (log)

Verbatim Reuse (log)

AA Test Prod. (KLOC/Staff Month)

 12.0

6.0

 4.0

 2.0

 0.0
New Ext. Mod. Slt. Mod. OldAA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA

AAA
AAA

8.0

10.0

E
rr

or
s/

K
S

LO
C

Generic Components

AAA
AAANon-Generic Components

Figure 5: E�ect of Reuse on Productivity

Figure 6: Error Density Pro�le in Generic and Non{Generic Components

the amount of code that needs to be written. One goal of this experiment was to see whether the

increased e�ort in making a component generic would manifest itself with higher error densities

or increased complexity. To investigate this, we divided the components in two classes - generics,

consisting those compilation units related to generic library units either by instantiation or as a

secondary unit, and non-generics, consisting of the others. Ignoring the origin of the components,

we see a lower error density in the generics, relative to the non-generics, as the error density was

4.6 errors/KSLOC in the generic part, and 7.7 in the non generic part. We expected a signi�cantly

lower error density in the generic part, since it may contain a greater proportion of reused software.

When we further distinguish between classes of component origins, as described previously, we see

more interesting patterns. Figure 6 shows the error density pro�le in each class of component origin

for both the generic units and the non-generic units. Overall, among the newly developed units,

we found a signi�cantly lower error density in the generic components (8.0 errors/KSLOC) than in

the non-generic components (10.1). Among the components reused with modi�cation, the overall

error density is 6.6. For the generics, we found a slightly higher error density, 7.5 errors/KSLOC,

vs. 5.7 for the non-generic part. Among the reused verbatim components, overall error density is

very low (0.7 errors/KSLOC), and there was little di�erence in the error densities associated with

the reused generics versus reused non-generics.

8

 8.0

6.0

 4.0

 2.0

 0.0
1 2 3 4
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA

AAA
AAA

AA
AA

Generic Components

AA
Non-Generic Components

A
ve

. C
yc

lo
m

at
ic

 C
om

pl
ex

ity

4.3 Reuse Trends

Figure 7: Cyclomatic Complexity in Generic and Non-Generic Components

These results may be interpreted as follows: either that the developers of the generic units took

more care in their creation, and thus made fewer mistakes, or that the generic components were

simple units to develop, and should have fewer errors associated with them. Further analysis of the

complexity of the newly created generics over time show that more and more complex objects are

being created generically, and simpler objects being created as non-generics. Figure 7 depicts this

trend. As the generic proportion of the software increases, we see little change in the complexity of

the generic part, while observing a signi�cant reduction in the complexity in the non-generic part.

There is a di�erent pattern in the generic components when comparing error density by origin.

Among the modi�ed components, there is a lower error density than in the new components.

However, in the class of modi�ed components we see a higher error density in the generics than

in non-generics. This suggests a greater di�culty in modifying generic components than in non{

generic.

Our �nal purpose was to examine the e�ect of reuse over time using a metric{based approach. The

change to a more generic architecture is evident from the percentage of the generic portion of the

system. This change provided signi�cant bene�ts|a reduction in development cost, duration, and

error density [11]. Looking across all projects, we see few di�erences among the classes in terms

of the complexity metrics. However, when we look at each project individually, we see a changing

pattern of reuse. Figures 8 and 9 show the changing pro�le of reuse over time. The class of custom

components includes both the newly created and extensively modi�ed components, while the reused

class includes slightly modi�ed and verbatim reused components.

Across the four projects we see a slight trend of increasing complexity in the reused components,

and decreasing complexity in the custom components, both in terms of internal (cyclomatic) and

external (visibility) complexities. This suggests that as an organization packages more and more

domain experience, the complex objects will be reused, and relatively simple objects will be newly

created to join them together. This is supported by the falling complexity in the custom, non-

generic components (i.e. the most application speci�c components). We do not see such a clear

pattern in the visibility of the custom non generic components. This may simply be evidence that

these components are still being created at a relatively high level in the application hierarchy. When

we examine the complexities of the reused components, we see a trend of increasing complexity

9

15

1 2 3 4A
A
A

AA
AA
AA
AA
AA
AA

Generic Components

AA
Non-Generic Components

10

5

12

AA
AA
AA

A
A
A

AA
AA
AA
AA

AA
AA

1 2 3 4A
A
A
A

AA
AA
AA
AA

A
A
A
A

AA
AA

 8

4

A
ve

. C
yc

lo
m

at
ic

 C
om

pl
ex

ity

A
ve

. V
is

ib
ili

ty

Generic ComponentsAA
AA

Non-Generic Components

15

1 2 3 4A
A
AA
AA
AAA
AA

10

5

12

AAA
A
AA
AA
AA
AA
AA

1 2 3 4A
A
AA
AA
A
A
AA
AA
AA

 8

4

Generic Components

AA
Non-Generic Components

Generic ComponentsA
A

Non-Generic Components

A
ve

. C
yc

lo
m

at
ic

 C
om

pl
ex

ity

A
ve

. V
is

ib
ili

ty

5 Conclusions

Figure 8: Complexity Trends in Custom Components

Figure 9: Complexity Trends in Reused Components

in the reused generics, both in terms of cyclomatic complexity and visibility. This may indicate

that more complex objects (including those at higher levels in the application hierarchy) are being

reused.

Analysis of the complexities of the objects over time illustrates the improvement of the reuse

process. Object-Oriented design and the Ada language features may be a primary reason for

the improving reuse process in this organization. The increased complexity of the reused objects

suggests that reuse is occurring at higher levels of abstraction. This supports the notion that a

model of reusability must be evolved over time to keep pace with a changing environment [13]. While

the lower cyclomatic complexity and visibility associated with the reused components indicates that

such measures may work well in the initial assessment of reuse candidates. Clearly, however, reuse

with Ada is not limited to these types of candidates.

In this paper we present a metrics-based process to assess Ada reuse. We analyzed an Ada

development environment from a reuse perspective and found signi�cant bene�ts of increasing reuse.

Productivity increased and error density was reduced. As expected, we observed that while reduced

10

6 Acknowledgment

References

Proceedings of the Fifteenth Annual Software Engineering Workshop

Ada:

The Choice for '92 (Proceedings of the Ada{Europe International Conference)

Proceedings

of the Eighth National Conference on Ada Technology

IEEE Computer

Software Engi-

neering Notes

Proceedings of the 6th Symposium on Empirical Foundations of Information and Software Sciences

Software Engineering Journal

IEEE Transactions on Software Engineering

IEEE Transactions

on Software Engineering

[1] W. W. Agresti, W. M. Evanco, and M. C. Smith. Early Experiences Building a Software Quality Pre-

diction Model. In , NASA/GSFC,

Greenbelt, Maryland, November 1990.

[2] N. Badaro and Th. Moineau. ROSE{Ada: A Method and a Tool to Help Reuse of Ada Codes. In

, Athens, Greece, May

1991.

[3] J. Bailey and V. Basili. Software Reclamation: Improving Post-Development Reusability. In

, 1990.

[4] R. Balzer, T. Cheatham, and C. Green. Software Technology in the 1990's: Using a New Paradigm.

, 16(11), November 1983.

[5] D. Barstow. Rapid Prototyping, Automatic Programming, and Experimental Sciences.

, 7(5), December 1982.

[6] V. Basili, D. Rombach, J. Bailey, and A. Delis. Ada Reusability Analysis and Measurement. In

,

Atlanta, Georgia, October 1988.

[7] V. R. Basili and H. D. Rombach. Support for Comprehensive Reuse. ,

6(5), September 1991.

[8] B. W. Boehm. Software Engineering Economics. , SE{10(1),

January 1984.

[9] B. W. Boehm and P. N. Papaccio. Understanding and Controlling Software Costs.

, 14(10), October 1988.

error densities (compared to newly created components) can be achieved both in verbatim reuse

and in reuse with modi�cation, a much more substantial reduction occurred with the verbatim

reuse. This supports the view that the most bene�t from reuse comes from direct reuse without

modi�cation.

The Ada package and generic constructs enable e�ective reuse within an application domain.

The marked improvement in verbatim reuse has shown substantially lower error rates and devel-

opment e�ort. The adoption of a generic architecture in the SEL [11] clearly has resulted in an

improved, reuse-oriented development. We see no indication that generics are signi�cantly more

di�cult to develop than non-generics, in fact we have seen lower error densities in newly devel-

oped generic components than in newly developed non-generic components. In terms of reuse of

the generics, we observed little di�erence between error rates associated with verbatim reuse of

generics and non-generics. However, when looking at the modi�ed components, extensive modi�-

cation of the generics was seen to be signi�cantly more error prone than extensive modi�cation of

non-generic components.

Finally, we have indications that metrics can be used to show trends of an improving reuse

process. The increased use of generics has resulted in the creation of simpler custom components,

and allowed the reuse of more complex components.

We would like to thank Frank McGarry of NASA/GSFC and William Agresti of the Mitre Corpo-

ration for their help in the realization of this study.

11

12

Software Engineering with Ada

Proceedings of Tri-Ada 1991

IEEE Transac-

tions on Software Engineering

IEEE Com-

puter

Programming Productivity

IEEE Transactions on

Software Engineering

Proceedings of the 15th Annual GSFC

Software Engineering Workshop

IEEE Transactions

on Software Engineering

IEEE Transactions on Software Engineering

IEEE Transactions on Software Engineering

IEEE Transactions on Software Engineering

IEEE Software

Information and Software

Technology

IEEE Transactions on Software Engineering

IEEE Transactions on Software

Engineering

[10] G. Booch. . Benjamin{Cummings, second edition, 1987.

[11] E. W. Booth and M.E. Stark. Designing Con�gurable Software: COMPASS Implementation Concepts.

In , October 1991.

[12] J. Boyle and M. Muralidaran. Program Reusability through Program Transformation.

, SE{10(5), September 1984.

[13] G. Caldiera and V. R. Basili. Identifying and Qualifying Reusable Software Components.

, 24(2), February 1991.

[14] D. Doubleday. ASAP: Ada Static Analyzer Program. Technical report CS{TR{1897, University of

Maryland, May 1987.

[15] C. Jones. . McGraw{Hill, 1986.

[16] T.C. Jones. Reusability in Programming: A Survey of the State of the Art.

, SE{10(5), September 1984.

[17] R. Kester. SEL Ada Reuse Analysis and Representations. In

. NASA/GSFC, November 1990.

[18] R. Lanergan and C. Grasso. Software Engineering with Reusable Designs and Code.

, SE{10(5), September 1984.

[19] S. Litvintchouk and A. Matsumoto. Design of Ada Systems Yielding Reusable Components: An Ap-

proach Using Structured Algebraic Speci�cation. , SE{

10(5), September 1984.

[20] Y. Matsumoto. Some Experiences in Promoting Reusable Software: Presentation in Higher Abstract

Levels. , SE{10(5), September 1984.

[21] T. McCabe. A Complexity Measure. , SE-2(4), December

1976.

[22] R. Prieto-Diaz and P. Freeman. Classyfying Software for Reusability. , 4(1), January

1987.

[23] H. D. Rombach. Software Reuse: A Key to the Maintenance Problem.

, 33(1), January/February 1991.

[24] T. Standish. An Essay on Software Reuse. , 10(5), Septem-

ber 1984.

[25] Jr. T. Cheatham. Reusability Through Program Transformations.

, SE{10(5), September 1984.

