
ICSM'94 proceedings - 1

A Change Analysis Process to Characterize Software Maintenance Projects

Lionel C. Briand, Victor R. Basili, Yong-Mi Kim
Computer Science Department and Institute for Advanced Computer Studies

University of Maryland, College Park, MD, 20742

Donald R. Squier
Computer Sciences Corporation

System Sciences Division
Lanham-Seabrook, MD, 20706

Abstract

In order to improve software maintenance processes, we
need to be able to first characterize and assess them.
This task needs to be performed in depth and with
objectivity since the problems are complex. One
approach is to set up a measurement program
specifically aimed at maintenance. However,
establishing a measurement program requires that one
understands the issues and is able to characterize the
maintenance environment and processes in order to
collect suitable and cost-effective data. Also, enacting
such a program and getting usable data sets takes time .
A short term substitute is needed.
We propose in this paper a characterization process
aimed specifically at maintenance and based on a
general qualitative analysis methodology. This process
is rigorously defined in order to be repeatable and usable
by people who are not acquainted with such analysis
procedures. A basic feature of our approach is that
maintenance changes are analyzed in order to understand
the flaws in the change process. Guidelines are provided
and a case study is shown that demonstrates the
usefulness of the approach.

1 Introduction

As described in [HV92], numerous factors can affect
software maintenance quality and productivity, e.g., the
maintenance personnel experience profile and training,
the way knowledge about the maintained systems is
managed and conveyed to the maintainers and users, the
maintenance organization, processes and standards in
use, the initial quality of the software source code and
its documentation. This last factor involves concepts
such as self-descriptiveness, modularity, simplicity,
consistency, expandability, and testability.
Because of the complexity of the phenomena studied, it
is difficult for maintenance organizations to identify and
assess the issues they have to address in order to
improve the quality and productivity of their
maintenance projects. Each project may encounter
specific difficulties and situations that are not
necessarily alike across all the organization's

 This work was supported in part by NASA grant NSG-
5123

maintenance projects. This may be due in part to
variations in application domain, size, change
frequency, and/or schedule/budget constraints. As a
consequence, each project has first to be analyzed as a
separate entity even if, later on, commonalities across
projects may require similar solutions for
improvement. Informally interviewing the people
involved in the maintenance process would be unlikely
to help determine accurately the real issues.
Maintainers, users and owners would likely each give
very different, and often contradictory, insights on the
issues due to a somewhat incomplete and biased
perspective.
Establishing a measurement program integrated into the
maintenance process is likely to help any organization
achieve an in-depth understanding of its specific
maintenance issues and thereby lay a solid foundation
for maintenance process improvement [RUV92].
However, defining and enacting a measurement program
may take time and a short term, quickly operational
substitute is needed in order to obtain a first quick
insight, at low cost, into the issues to be addressed.
Furthermore, defining efficient and useful measurement
procedures first requires a characterization of the
maintenance environment in which measurement takes
place, i.e., organization structures, processes, issues,
risks, etc. [BR88].
This paper presents a qualitative and inductive analysis
methodology for performing objective project
characterizations and thereby identifying their specific
problems and needs. It is an implementation of the
general qualitative analysis methodology defined in
[SS92]. It encompasses a set of procedures which aids
the determination of causal links between maintenance
problems and flaws of the maintenance organization and
process. Thus, a set of concrete steps for maintenance
quality and productivity improvement can be taken
based on a tangible understanding of the relevant
maintenance issues. Moreover, this understanding
provides a solid basis on which to define relevant
software maintenance models and metrics.
Section 2 describes the phases, techniques and
guidelines composing the methodology. Section 3
presents a case study of an orbit determination system
maintained by the Flight Dynamics Division (FDD) of
the NASA Goddard Space Flight Center for the last 26
years and still used daily for most operating satellites

ICSM'94 proceedings - 2

Observational Data Base:
- Interviews with maintainers/users
- System and release documents
- Field data
- Change request forms

Interpretative Knowledge Base
- Definitions (e.g., activities)
- Taxonomies (e.g., tools)
- Working hypotheses (e.g., error
mechanisms, process flaws)

Inductive Inference

Deductive Inference

Figure 1: Qualitative Analysis Process for Software Maintenance

(GTDS: Goddard Trajectory Determination System).
This study takes place in the framework of the NASA
Software Engineering Laboratory (NASA-SEL), an
organization aimed at improving FDD software
development processes based on measurement and
empirical analysis. Recently, responding to the
growing cost of software maintenance, the SEL has
initiated a program aimed at characterizing, evaluating
and improving its maintenance processes. This paper is
a first step in this direction. Section 4 outlines the
main conclusions of the case study and the future
research directions.

2 Causal Analysis of Maintenance Problems

In this section, we present a (mainly) qualitative
methodology that allows for an in-depth
characterization of maintenance projects at a relatively
low cost. However, this approach could be easily
augmented to integrate data collection and analysis and
could thus provide more quantitative information (but
at a higher cost).

2 . 1 A Qualitative Analysis Process

This characterization process is essentially an
instantiation of the generic qualitative analysis process
defined in [SS92]. Figure 1 illustrates at a high level
our maintenance specific analysis process. It is a
combination of both inductive and deductive inferences.
Inductive inferences are made from the collected
information. Deductive inferences occur when
experimentally validating and refining our taxonomies,
process models, organizational models and working

hypotheses. These deductive inferences then serve to
refine the data collection process, which leads to refined
and revised inductive inferences. The process continues
in an iterative fashion.
We present below a general description of the process
involved in preparing and performing characterizations
of maintenance projects. Maintenance is defined here as
any kind of enhancement, adaptation or correction
performed on the software system, once in operation.
At the highest level of abstraction, parts of this process
are not specific to maintenance and could be used for
development. However, the taxonomies and guidelines
developed to support this process and presented in
Section 2.2 are specifically aimed at maintenance.

Step 1 focuses on defining the organizational
structures, i.e., organization entities, their
communication channels and information flows. The
process of producing a new release is then described and
modeled in Step 2. It is important to note that we do
not address here the issues related to emergency bug
fixing procedures but only those relevant to regular
product releases that go into configuration
management. Step 3 maps generic activities into the
release process in order to specify the type of work
performed at each stage of the process. Then, a release
(or several) has to be selected in order to define the set
of changes on which the analysis will be performed
(Step 4). In Step 5, relying on the work performed in
Steps 1-3, information about the changes is collected
and analyzed. Step 6 summarizes and abstracts from the
results obtained in Step 5.

ICSM'94 proceedings - 3

Although the steps are defined sequentially, they are
really iterated within and across steps. As we learn
more about the organization, we continue to refine the
characterization models. The organizational and process
models produced should include enough detail to allow
Step 5 to be performed, but should not be so detailed as
to obscure the maintenance process itself. We now
define the steps in more detail:

Step 1 Identify the organizational entities with which
the maintenance team interacts and the organizational
structure in which maintainers operate.

1.1 Identify distinct organizational entities, i.e., what
are the distinct teams involved in the maintenance
project? Usually, besides the maintainers themselves,
the following entities are encountered: users, owners,
QA team, configuration control team, change control
board. However, their roles and prerogatives can differ
significantly.
1.2 Characterize the working environment of each
entity, i.e., support tools (see tool taxonomy in
Section 2.2), internal organizational structure.
1.3 Characterize information flows between entities,
i.e., what is the type (and amount when data is
available) of information, documentation, source code
and other software artifacts flowing between
organizational entities?

Step 2 Identify the phases involved in the creation of
a new system release.

2.1 Identify the phases as defined in the environment
studied. At this stage, it is important not to map an a
priori external/generic maintenance process model and
vocabulary.
2.2 Each artifact (e.g., document, source code) which
is input or output of each phase has to be determined
and its content carefully described (see document
taxonomy in Section 2.2).
2.3 The personnel in charge of producing and
validating the output artifacts of each phase have to be
identified and located in the organizational structure
defined in Step 1.

Step 3 Identify the generic activities involved in each
phase.

3.1 Select (from the literature [C88, BC91]) or define
a taxonomy of generic activities based on widely
accepted definitions and used in the maintenance
process. As a guideline, such a taxonomy is proposed
in the next section.
3.2 Map these activities into each phase by reading
the technical documents produced and interviewing the
technical project leaders and maintainers about their real
work habits. If possible, collect effort data for each

activity so that the importance of each activity in each
phase can be assessed somewhat quantitatively.

Step 4 Select one or several past releases for analysis.

We need to select releases on which we can analyze
problems as they are occurring and thereby better
understand process and organization flaws. However,
because of time constraints, it is sometimes more
practical to work on past releases. We present below a
set of guidelines for selecting them:

. Recent releases are preferable since maintenance
processes and organizational structure might have
changed and this would make analyses based on old
releases somewhat irrelevant.
. Some releases may contain more complete
documentation than others. Documentation has a very
important role in detecting problems and cross-checking
the information provided by the maintainers.
. The technical leader(s) of a release may have left the
company whereas another release's technical leader may
still be contacted. This is a crucial element since, as we
will see, the causal analysis process will involve
project technical leader(s) and, depending on
his/her/their level of control and knowledge, possibly
the maintainers themselves.

Step 5 Analysis of the problems that occurred while
performing the changes of the selected releases.

For each change (i.e., error correction,
enhancement, adaptation) in the selected release(s), the
following information should be acquired by
interviewing the maintainers and/or technical leaders
and by reading the related documentation (e.g., release
documents):

I1. Determine the difficulty or error-proneness of the
change.
I2. Determine whether the change difficulty could have
been alleviated or the error(s) resulting from the change
avoided and how?
I3. Evaluate the size of the change (e.g., # components,
LOCs changed, added, removed).
I4. Assess discrepancies between initial & intermediate
planning and actual effort / time.
I5. Determine the human flaw(s) (if any) that originated
the error(s) or increased the difficulty related to the
change. A taxonomy of human errors is proposed in
Section 2.2.
I6. Determine the maintenance process flaws that led to
the identified human errors (if any). A taxonomy of
maintenance process flaws is proposed in Section 2.2.
I7. Try to quantify the wasted effort and/or delay
generated by the maintenance process flaws (if any).

ICSM'94 proceedings - 4

The knowledge and understanding acquired
through steps 1-3 is necessary in order to understand,
interpret and formalize the information of type I2, I5 or
I6. As a guide for conducting interviews, templates of
questions will be provided in Section 2.2.

Step 6 Establish the frequency and consequences of
problems due to flaws in the organizational structure
and the maintenance process by analyzing the
information gathered in Step 5.

Based on these results, further complementary
investigations (e.g., measurement-based), related to
specific issues that have not been fully resolved by the
qualitative analysis process, should be identified.
Moreover, a first set of suggestions for maintenance
process improvement should be devised.

For those steps which are iterative, we map
the appropriate step back into the qualitative analysis
process (Figure 1) showing how our characterization
process fits into the general methodology. In this
context, a step usually corresponds to a set of iterations
of the qualitative analysis process. In each step, the
input defines the Observational Database (ODB), the
output contains the resulting characterization models
that go into the Interpretative Knowledge Base (IKB),
and the validation procedure helps verify the correctness
of the characterization models. The pieces of
information which compose the ODB are given in
decreasing order of importance at each step. The order
and content of the ODB varies at each step since the
analysis focus shifts progressively [SS92].

Step 1: Model organizational structures

Input: maintenance standards definition document,
interviews, sample of release documents, organization
chart
Output: organization model (roles, agents, teams,
information flow, etc.)
Validation:

. Are all the standard documents and artifacts
included in the modeled information flow?

. Do we know who produces, validates, and
certifies the standard documents and artifacts?

. Are all the people referenced in the release
documents a part of the organization scheme?

Steps 2, 3: Model process and map activities into
process phases

Input: maintenance standards definition document,
interviews, release documents, organization model
Output: process model
Validation:

. Are all the people in the process model a part of
the organization scheme?

. Do the documents and artifacts included in the
process model match those of the information flow of
the organization model?

. Is the mapping between activities and phases
complete, i.e., exhaustive set of activities, complete
mapping?

. Are the taxonomies of maintenance tools,
methods, and activities adequate, i.e., unambiguous,
disjoint and exhaustive classes?

Step 5: Perform causal analysis

Input: interviews, change request forms, release
documents, organization model, process model,
maintenance standards definition document
Output: causal analysis
Validation:

. Are the taxonomies of errors and maintenance
process flaws adequate, i.e., unambiguous, disjoint and
exhaustive classes? This is checked against actual
change data and validated during interviews with
maintainers.

2 . 2 Guidelines and Taxonomies

This section presents a set of guidelines aimed at
facilitating the characterization process described in the
previous section. These guidelines are mainly
composed of taxonomies distinguishing maintenance
activities, errors and maintenance process flaws. In
addition, a set of questions which can be used during
maintainers' interviews and for each change is provided.

Step 1: Identify organizational entities

Taxonomies of Maintenance Tools and Methods (Step
1.2)

The maintenance tools and methods available to
maintainers can be used to understand the maintenance
process, and identify potential sources of problems. The
following paragraphs represent the first level of
abstraction of taxonomies of environment char-
acteristics that should be used to characterize the change
framework:

. Maintenance tools: impact analysis and planning
tool; tools for automated extraction and representation
of control and data flows; debugger; cross-referencer;
regression testing environment (data generation,
execution, and analysis of results); information system
linking documentation and code.
. Maintenance methods are characterized by the
following taxonomy: rigorous impact analysis,
planning, and scheduling procedures; systematic and
disciplined update procedures of the user and system
documentation; communication channels and procedures
with the users.

ICSM'94 proceedings - 5

A Taxonomy of Maintenance Documentation (Step
1.3)

The type of documentation related to a software system,
which may be available to maintainers, can be defined
by a generic taxonomy as shown below.
Documentation has been described as one of the most
important factors affecting the maintainability of a
software system [HA93, P94]. This is why it is
important to define precisely what should be contained
in a complete set of documentation (either on-line or
off-line) for maintenance. Also, when some of these
documents appear to be missing, potential sources of
maintenance problems may be identified. Based on the
literature [BC91] on the subject and our own
experience, we propose the following taxonomy:

. Product-related: software requirements specifications;
software design specifications; software product
specifications
. Process-related: test plans; configuration management
plan; quality assurance plan; software development plan
. Support-related: software user's manual; computer
systems operator's manual; software maintenance
manual; firmware support manual

Step 3: Identify the generic activities involved in each
phase.

Generic Description of Maintenance Activities (Step
3.1)

Acronym Activity

DET Determination of the need for a change
SUB Submission of change request
UND Understanding requirements of changes:

localization, change design prototype
IA Impact analysis
CBA Cost/benefit analysis
AR Approval/rejection/priority,

assignment of change request
SC Scheduling/planning of task
CD Change design
CC Code changes
UT Unit testing of modified parts

i.e., has the change been implemented?
IC Unit Inspection, Certification

i.e., has the change been implemented
properly and according to standards?

IT Integration testing,
 i.e., does the changed part interface correctly
with the reconfigured system?

RT Regression testing,
i.e., does the change have any unwanted side
effects?

AT Acceptance testing

i.e., does the new release fulfill the system
requirements?

USD Update system and user documentation
SA Checking conformance to standards;

quality assurance procedures
IS Installation
PIR Post-installation review of changes
EDU Education/training regarding the application

domain/system

All these activities usually contain an overhead of
communication (meeting and release document writing)
with owners, users, management hierarchy and other
maintainers, which should be estimated. This is
possible through data collection or by interviewing
maintainers (e.g., Delphi method).

Step 5: Perform causal analysis

Questions asked for each change in selected release(s)
(Items I1-I4)

The following list describes a set of questions for
which answers can be provided by maintainers and/or
release standard documents. These questions attempt to
capture the information necessary for the identification
of maintenance process flaws.

1 - Description of the change

1.1 Localization
. subsystem(s) affected
. module(s) affected
. inputs/outputs affected

1.2 Size
. LOCs deleted, changed, added
. Modules examined, deleted, changed, added

1.3 Type of change
. Preventive changes: improvement of clarity,

maintainability or documentation.
. Enhancement changes: add new functions,

optimization of space/time/accuracy
. Adaptive changes: adapt system to change of

hardware and/or platform
. Corrective changes: corrections of development

errors.

2 - Description of the change process

2.1 effort, elapsed time

2.2 maintainer's expertise and experience
. How long has the person been working on the

system?
. How long has the person been working in this

application domain?

ICSM'94 proceedings - 6

2.3 Did the change generate a change in any document?
Which document(s)?

3 - Description of the problem

3.1 Were some errors committed?
. Description of the errors (see taxonomies below)
. Perceived cause of the errors:

maintenance process flaw(s)

3.2 Difficulty
. What made the change difficult?
. What was the most difficult activity associated

with the change?

3.3 How much effort was wasted (if any) as a result of
maintenance process flaws?

3.4 What could have been done to avoid some of the
difficulty or errors (if any)?

Taxonomies of human errors (Item I5)

Note that we are exclusively referring to errors
occurring during the maintenance process, not errors
resulting from the development process.

. Error origin: when did the misunderstanding occur?
. Change requirements analysis
. Change localization analysis
. Change design analysis
. Coding

. Error domain: what caused it?
. Lack of application domain knowledge:

operational constraints (user interface, performance),
mathematical model

. Lack of system design or implementation
knowledge: data structure or process dependencies,
performance or memory constraints, module interface
inconsistency

. Ambiguous or incomplete requirements

. Language misunderstanding <semantic, syntax>

. Schedule pressure

. Existing uncovered fault

. Oversight.

Determining the origin and cause of the errors will help
determine their possible causal relationships to
maintenance process flaws in the taxonomy presented
below.

Taxonomy of Maintenance Process flaws (Item I6)

. Organizational flaws:
. communication: interface problems, information

flow "bottlenecks" in the communication
between the maintainers and the

. users

. management hierarchy

. quality assurance (QA) team

. configuration management team
. roles:

. prerogatives and responsibilities are not
fully defined or explicit

. incompatible responsibilities, e.g.,
development and QA

. process conformance: no effective structure for
enforcing standards and processes

. Maintenance methodological flaws
. Inadequate change selection and priority

assignment process
. Inaccurate methodology for planning of effort,

schedule, personnel
. Inaccurate methodology for impact analysis
. Incomplete, ambiguous protocols for transfer,

preservation and maintenance of system
knowledge

. Incomplete, ambiguous definitions of change
requirements

. Lack of rigor in configuration (versions,
variations) management and control

. Undefined / unclear regression testing success
criteria.

. Resource shortages
. Lack of financial resources allocated, e.g.,

necessary for preventive maintenance, unexpected
problems unforeseen during impact analysis.

. Lack of tools providing technical support (see
previous tool taxonomy)

. Lack of tools providing management support
(i.e., impact analysis, planning)

. Low quality product(s)
. Loosely defined system requirements
. Poor quality design, code of maintained system
. Poor quality system documentation
. Poor quality user documentation

. Personnel-related issues
. Lack of experience and/or training with respect

to the application domain
. Lack of experience and/or training with respect

to the system requirements (hardware,
performance) and design

. Lack of experience and/or training with respect
to the users' operational needs and constraints

In order to demonstrate the feasibility and usefulness of
the above approach, we present the following case
study.

ICSM'94 proceedings - 7

3 A Case Study

This case study is intended to provide actual examples
and results of the change causal analysis process
described in previous sections. We first present the
maintained system used as a case study. Then, the
specific maintenance organization and process are
described in detail according to the template provided in
Section 2.1. Examples of change causal analyses are
shown and the lessons learned resulting from this
analysis process are presented.

3 . 1 System History and Description

GTDS is a 26 year old, 250 KLOC, FORTRAN orbit
determination system. It is public domain software and,
as a consequence, has a very large group of users all
over the world. Usually, 1 or 2 releases are produced
every year in addition to mission specific versions that
do not go into configuration management right away
(but are integrated later on to a new version by going
through the standard release process). Like most
maintained software systems, very few of the original
developers are still present in the organization, but the
turnover of the maintenance team is low compared to
other maintenance organizations. However, turnover
still remains a crucial issue in this environment.

3 . 2 Modeling of the Maintenance
Organization and Processes

During the process of building a new release of GTDS,
different organizational entities interact in different
ways. By performing Step 1 of the characterization
process described in Section 2.1, two types of entities
and five types of interactions (i.e., differentiated
according to the purpose of the information flow) were
identified.

The entities, teams and groups, are represented
in Figure 2 by boxes and ellipses, respectively. Teams
are persistent organizational structures; groups are
composed of members of several different teams, and
are dynamic entities in the sense that they only exist
when group members meet. These groups have been
designed to facilitate communication between teams and
decision making.

In the five interaction types identified,
information was used for the following purposes:

. decision: decision based on information provided

. review: review of documents

. approval: approval of documents or plans

. transformation: supplied information product is
transformed into another information product

. information: dissemination of information

Teams:
. Testers: they present acceptance test plans, perform
acceptance test and provide change requests to the
maintainers when necessary.
. Owners/Users: they suggest, control and approve
performed changes.
. Product Assurance Organization (PAO): They
control maintainers' work, e.g., conformance to
standards, attend release meetings, audit delivery
packages. They have a different management from the
maintenance team.
. Configuration Management (FDCM): They integrate
updates into the system. Coordinate the production and
release of versions of the system. Provide tracking of
change requests.
. Maintenance management: They grant preliminary
approvals of maintenance change requests and release
definitions.
. Mainta iners : They analyze changes, make
recommendations, perform changes, perform unit and
change validation testing after linking the modified
units to the existing system, perform validation and
regression testing after they get back the recompiled
system from the FDCM team.
. Configuration Control Board and Configuration
Management Office (CCB/CMO): They are officially
responsible for all changes to configured software and
the allocated budget. Their goal is to ensure that the
production of new releases is consistent with the long-
term goals of the organization. It is composed of high-
level managers.

Groups:
. Software Management Planning Board (SMPB):
Their main goal is to address management issues that
run across maintenance projects. For example, they
help resolve conflicts between owners and maintainers
and review release planning documents. Also, they
allow task leaders and higher level managers to
exchange relevant information about the evolution of
their respective systems. However, the SMPB has no
official function. The board is composed of the task
leader, section manager, department manager, and
operation manager.
. GTDS user's group: It is a forum for discussion of
technical issues but has no official function. It is
composed of users, maintainers, and testers.

The process described below represents our
understanding of the working process for a release of
GTDS and the mapping into standard generic activities.
This combines the information gained from Steps 2 and
3 of the characterization process. Phases, their
associated inputs/outputs and activities are presented
below. Activity acronyms are used as defined in Section
2.2. In this case, each phase milestone in a release is
represented by the discussion, approval and distribution
of a specific release document.

ICSM'94 proceedings - 8

Audit reports

ATRR
document

Change
Requests

New
Components

Reconfigured
New Release

All Release
Docs

Release Doc.
ReviewsMaintainers

Final
New
Release

Acceptance
Testers

Users

FDCM

Recompiled
New Release

All
Release
Doc.

Management
issues

Suggestions

PAO

SMPB

CCB/CMO
Maintenance
Management

GTDS
user's group

technical
suggestions

Technical
issues

Release
definition
document

Release
pre-approval

Release
approval

Requests for
changes in
current configuration

I1

I2

I3

I4

I5

I6
I7

I8

I9

I10

I12

I11

I13

I14

I15
I16

I17
I18

I1: approval
I2: information
I3: review
I4: information

I5: review
I6: information
I7: transformation
I8: transformation

I9: transformation
I10: transformation
I11: transformation
I12: transformation

I13: review
I14: transformation
I15: decision
I16: review

I17: decision
I18: information

Information Flow Purpose:

Figure 2: Information Flow within the Maintenance Organization

Phase 1. Change analysis
Input: change requests from software owner and priority
list
Output: Release Content Review (RCR) document
which contains change design analysis, prototyping,
and cost/benefit analysis that may result in changes in
the priority list that will be discussed with the software
owner/user.
Activities: UND, IA, CBA, CD, some CC, UT and IT
for prototyping

Phase 2. RCR meeting
Input: draft of Release Content Review document
proposed by maintainers is discussed, i.e., change
priority, content of release.
Output: Updated Release Content Review document
Activities: AR, SA (QA engineers are reviewing the
release documents and attending the meeting)

Phase 3. Solution analysis
Input: updated Release Content Review document

Output: devise technical solutions based on prototyping
analysis they performed in Step 1, Release Design
Review (RDR) document.
Act iv i t i e s : SC, CD, CC, UT (prototyping),
(preparation of test strategy for) IT (based mainly on
functional testing: equivalence partitioning)

Phase 4. RDR meeting
Input: RDR documentation
Output: approved (and possibly modified) RDR
documentation
Activities: review and discuss CC, UT, (plan for) IT,
SA

Phase 5. Change implementation and test
Input: RDR and prototype solutions (phases 1, 3)
Output: changes are completed and unit tested; change
validation test is performed with new reconfigured
system (integration test); formal inspections are
performed (when quality of code and design allows it)
on new or extensively modified components; some
(usually superficial) regression testing is performed on

9

the new system to insure minimal quality before AT; a
report with the purpose of demonstrating that the
system is ready for AT is produced: Acceptance Test
Readiness Review document (ATRR)
Activities: CC, UT, IC, IT, RT, USD, SA

Phase 6. ATRR meeting
Input: Acceptance Test Readiness Review document
Output: The changes are discussed and validated and the
testing strategy used is discussed. The acceptance test
team presents its acceptance testing plan.
Activities: review the current output of IT, SA

Phase 7. Acceptance test
Input: the new GTDS release and all release
documentation
Outputs: A list of Software Change Requests (SCRs)
is provided to the maintainers. These changes
correspond to inconsistencies between the new
reconfigured release and the general system
requirements.
Activities: UND, RT, AT

Steps 1, 2, and 3 of our characterization process
required several iterations before there was sufficient
validation of the resulting characterization of the
organization, phases and documents. As part of Step 2,
for each of the standard documents generated for the
studied GTDS releases, we determine who produces it,
who approves it, and what additional relevant
information and data they contain. When doing so, we
have to look for possible inconsistencies between the
organization model (Step 1) and the identified
producers/approvers of the documents.

. Document 1: Release Content Review (RCR):
Producer: maintenance team
Approvers: users, maintenance management, CCB
Content:
. change requirement description
. description of defect (if any) that originated the change
. design of a prototype solution
. schedule, effort plans
. impact analysis assessment

. Document 2: Release Design Review (RDR):
Producer: maintenance team
Approvers: users, CCB
Content:
. identification of modified units
. proposed definitive solution
. rough cost/schedule estimates

. testing guidelines: mainly equivalence partitioning
classes
. definition of test success criteria

. Document 3: Acceptance Test Readiness Review
(ATRR):
Producers: maintenance team, acceptance test team (test
plan)
Approvers: CCB, testers
Content:
. results of test cases and benchmarks (regression
testing)
. screen printouts, short reports
. acceptance test plan

. Document 4: Delivery package:
Producer: maintenance team
Approvers: CCB
Content:
. cause of error (if any)
. effort breakdown: analysis, design, code, test
. number of components examined, modified, added,
deleted.
. number of LOCs modified, added, deleted

As specified in Step 4 of our process, we selected a
release for analysis. This release was quite recent, most
of the documentation identified in Step 2 was available,
and most importantly, the technical leader of the release
was available for additional insights and information.

Step 5 involved a causal analysis of the problems
observed during maintenance and acceptance test of the
releases studied. These problems were linked back to a
precise set of issues belonging to taxonomies presented
in Section 2.2. Figure 3 summarizes Step 5 as
instantiated for this case study.

In order to illustrate Step 5, we provide below
an example of causal analysis for one of the changes in
the selected release. Implementation of this change
resulted in 11 errors that were found by the acceptance
test team, 8 of which had to be corrected before final
delivery could be made. In addition, a substantial
amount of rework was necessary. Typically, changes do
not generate so many subsequent errors, but the flaws
that were present in this change are representative of
maintenance problems in GTDS. In the following
paragraphs, we discuss only two of the errors generated
by the change studied.

10

Release:

. RCR, RDR, ATRR

. S/W

. User's guide

Maintenance
process
execution

Acceptance
testing

Reported
errors

Inputs Outputs

Causal link

Problems

. Organization

. Process

. Resources
. Products
. Personnel

Causal
Analysis

Figure 3: Causal Analysis in GTDS

. Increased difficulty related to change (rework)

. Description: Initially, users requested an enhancement
to existing GTDS capabilities (change 642). The
enhancement involved vector computations performed
over a given time span. This enhancement was
considered quite significant by the maintainers, but
users failed to supply adequate requirements and did not
attend the RCR meeting. Users did not report their
dissatisfaction with the design until ATRR meeting
time, at which time requirements were rewritten and
maintainers had to perform rework on their
implementation. This change took a total of 3 months
to implement, of which at least 1 month was attributed
to several flaws in the process.

. Maintenance process flaw(s): organizational: a lack of
clear definitions of the prerogatives/duties of users with
respect to release document reviews and meetings
(roles), and a lack of enforcement of the release
procedure (process conformance); maintenance
methodological flaw: incomplete, ambiguous
definitions of change requirements.

. Errors caused by change 642
The implementation of the change itself resulted in an
error (A1044) found at the acceptance test phase. When
the correction to A1044 was tested, an error (A1062)
was found that could be traced back to both 642 and
A1044.

A1044

. Description: Vector computations at the endpoints of
the time span were not handled correctly. But in the
requirements it was not clear whether the endpoints
should be considered when implementing the solution.
. Error origin: change requirement analysis

. Error domain: ambiguous and incomplete
requirements
. Maintenance process flaw(s): organizational:
communication between users and maintainers, due in
part to a lack of defined standards for writing change
requirements; maintenance methodological flaw:
incomplete, ambiguous definitions of change
requirements.

A1062

. Description: One of the system modules in which the
enhancement change was implemented has two
processing modes for data. These two modes are listed
in the user manual. When run in one of the two
possible processing modes, the enhancement generated
a set of errors, which were put under the heading
A1062. At the phase these errors were found, the
enhancement had already successfully passed the tests
for the other processing mode. The maintainer should
have designed a solution to handle both modes
correctly.
. Error origin: change design analysis.
. Error domain: lack of application domain knowledge.
. Maintenance process flaw(s): personnel-related: lack
of experience and/or training with respect to the
application domain.

The next section presents in detail the results of
performing Step 6.

3 . 3 Lessons Learned about the Studied
Maintenance Project

The lessons learned are classified according to the
taxonomy of maintenance flaws defined in Section 2.2.
By performing an overall analysis of the change causal

11

analysis results (Step 6), we abstracted a set of issues
classified as follows:

Organization

. There is a large communication cost overhead
between maintainers and users, e.g., release standard
documentation, meetings, management forms. In an
effort to improve the communication between all the
participants of the maintenance process, non-technical,
communication-oriented activities have been
emphasized. At first glance, this seems to represent
about 40% (rough approximation) of the maintenance
effort. This figure seems excessive, especially when
considering the apparent communication problems
(next paragraph).
. Despite the number of release meetings and
documents, disagreements and misunderstandings seem
to disturb the maintenance process until late in the
release cycle. For example, design issues that should be
settled at the end of the RDR meeting keep emerging
until acceptance testing is completed.

As a result, it seems that the administrative
process and organization scheme should be investigated
in order to optimize communication and sign-off
procedures, especially between users and maintainers.

Process

. The tools and methodologies used have been
developed by maintainers themselves and do not belong
to a standard package provided by the organization.
Some ad hoc technology transfer seems to take place in
order to compensate for the lack of a global, commonly
agreed upon strategy.
. The task leader has been involved in the maintenance
of GTDS for a number of years. His expertise seems to
compensate for the lack of system documentation. He
is also in charge of the training of new personnel (some
of the easy changes are used as an opportunity for
training). Thus, the process relies heavily on the
expertise of one or two persons.
. The fact that no historical database of changes exists
makes some changes very difficult. Maintainers very
often do not understand the semantics of a piece of code
added in a previous correction. This seems to be partly
due to emergency patching for a mission which was not
controlled and cleaned up afterwards (this has recently
been addressed), a high turnover of personnel, and a lack
of written requirements with respect to performance,
precision and platform configuration constraints.
. For many of the complex changes, requirements are
often ambiguous and incomplete, from a maintainer's
perspective. As a consequence, requirements are often
unstable until very late in the release process. While
prototyping might be necessary for some of them, it is
not recognized as such by the users and maintainers.

Moreover, there is no well defined standard for
expressing change requirements in a way suitable for
both maintainers and users.

Products

. System documentation other than the user's guide is
not fully maintained and not trusted by maintainers.
Source code is currently the only reliable source of
information used by maintainers.
. GTDS has a large number of users. As a
consequence, the requirements of this system are varied
with respect to the hardware configurations on which
the system must be able to run, the performance and
precision needs, etc. However, no requirement analysis
document is available and maintained in order to help
the maintainers devise optimal change solutions.
. Because of budget constraints, there is no document
reliably defining the hardware and precision
requirements of the system. Considering the large
number of users and platforms on which the system
runs, and the rapid evolution of users' needs, this would
appear necessary in order to avoid confusion while
implementing changes.

People

. There is a lack of understanding of operational needs
and constraints by maintainers. Release meetings were
supposed to address such issues but they seem to be
inadequate in their current form.
. Users are mainly driven by short term objectives
which are aimed at satisfying particular mission
requirements. As a consequence, there is a very limited
long term strategy and budget for preventive
maintenance. Moreover, the long term evolution of the
system is not driven by a well defined strategy and
maintenance priorities are not clearly identified.

As a general set of recommendations and based
on the analysis presented in this paper, we suggest the
following set of actions:
. A standard (that may simply contain guidelines and
checklists) should be set up for change requirements.
Both users and maintainers should give their input with
respect to the content of this standard.
. The conformance to the defined release process should
be improved, e.g., through team building, training. In
other words, the release documents and meetings should
more effectively play their specified role in the process,
e.g., the RDR meeting should settle all design
disagreements and inconsistencies.
. Those parts of the system that are highly convoluted
as a result of numerous modifications should be
redesigned and documented for more productive and
reliable maintenance. Technical task leaders should be
able to point out the sensitive system units.

12

4 Conclusion

Characterizing and understanding software maintenance
processes and organizations are necessary, if effective
management decisions are to be made and if adequate
resource allocation is to be provided. Also, in order to
plan and efficiently organize a measurement program—
a necessary step towards process improvement
[BR88]—, we need to better characterize the
maintenance environment and its related issues. The
difficulty of performing such a characterization stems
from the fact that the people involved in the
maintenance process, who have the necessary
information and knowledge, cannot perform it because
of their inherently partial perspective on the issues and
the tight time constraints of their projects. Therefore, a
well defined characterization process, which is cost-
effective, objective, and applicable by outsiders, needs
to be devised.

In this paper, we have presented such an
empirically refined characterization process which has
allowed us to gain an in-depth understanding of the
maintenance issues involved in a particular project, the
GTDS project. We have been able to gather objective
information on which we can base management and
technical decisions about the maintenance process and
organization. Moreover, this process is general enough
to be followed in most maintenance organizations.

However, such a qualitative analysis is a priori
limited since it does not allow us to quantify precisely
the impact of various organizational, technical, and
process related factors on maintenance cost and quality.
Thus, the planning of the release is sometimes
arbitrary, monitoring its progress is extremely difficult,
and its evaluation remains subjective.

Hence, there is a need for a data collection
program for GTDS and across all the maintenance
projects of our organization. In order to reach such an
objective, we will base the design of such a
measurement program on the results provided by this
study. In addition, we need to model more rigorously
the maintenance organization and processes so that
precise evaluation criteria can be defined [SB94].

This approach will be used to analyze several
other maintenance projects in the NASA-SEL in order
to better understand project similarities and differences
in this environment. Thus, we will be able to build
better models of the various classes of maintenance
projects.

Acknowledgments

We are grateful to Steve Condon, Walcelio Melo,
Carolyn Seaman, Barbara Swain and Jon Valett for
reviewing early drafts of this paper. We also would like
to thank Amy Bleich for helping us to analyze the
release documents.

References

[BC91] K. Bennett, B. Cornelius, M. Munro, D.
Robson, "Software Maintenance", S o f t w a r e
Engineering Reference Book, Chapter 20, Butterworth-
Heinemann Ltd, 1991

[BR88] V. Basili and H. Rombach,"The TAME
Project: Towards Improvement-Oriented Software
Environments", IEEE Trans. Software Eng., 14 (6),
June, 1988.

[C88] N. Chapin, " The Software Maintenance Life-
Cycle", CSM'88, Phoenix, Arizona, 1988.

[HA93] C. Hartzman, C. Austin, "Maintenance
Productivity: Observations Based on an Experience in a
Large System Environment", CASCON'93, Toronto,
Canada, 1993

[HV92] M. Hariza, J.F. Voidrot, E. Minor, L.
Pofelski, and S. Blazy, "Software Maintenance: An
analysis of Industrial Needs and Constraints", CSM'92,
Orlando, Florida.

[P94] D. Parnas, "Software Aging", ICSE 16th,
May 1994, Sorrento, Italy.

[RUV92] D. Rombach, B. Ulery and J. Valett,
"Toward Full Cycle Control: Adding Maintenance
Measurement to the SEL", Journal of systems and
software, May 1992.

[SB94] C. Seaman, V. Basili, "OPT: An Approach to
Organizational and Process Improvement", AAAI 1994
Spring Symposium Series, Stanford University, March
1994.

[SS92] A, Shelly, E. Sibert, "Qualitative Analysis: A
Cyclical Process Assisted by Computer", Qualitative
Analysis, pp 71-114, Oldenbourg Verlag, Munich,
Vienna, 1992

