
Investigating Maintenance Processes in a Framework-Based Environment

Victor R. Basili† Filippo Lanubile‡ Forrest Shull†

†Institute for Advanced Computer Studies
Computer Science Department

University of Maryland
College Park, MD, USA

{basili, fshull}@cs.umd.edu

‡Dipartimento di Informatica
University of Bari

Bari, Italy
lanubile@di.uniba.it

Abstract1

The empirical study described in this paper focuses on
the effectiveness of maintenance processes in an
environment in which a repository of potential sources of
reuse exists, e.g. a context in which applications are built
using an object-oriented framework. Such a repository
might contain current and previous releases of the system
under maintenance, as well as other applications that are
built on a similar structure or contain similar
functionality. This paper presents an observational study
of 15 student projects in a framework-based
environment. We used a mix of qualitative and
quantitative methods to identify and evaluate the
effectiveness of the maintenance processes.

1. Introduction

An object-oriented framework is a class hierarchy
augmented with a built-in model that defines how the
objects derived from the hierarchy interact with one
another to implement some functionality [16, 22]. A
framework is tailored to solve a particular problem by
customizing its abstract and concrete classes, allowing
the framework architecture to be reused by all specific
solutions within a problem domain. By providing both
design and infrastructure for developing applications, the
framework approach promises to develop applications
faster [13]. Another benefit is that the use of frameworks
results, over time, in a set of applications all based on the
same underlying structure. The existence of this
common infrastructure poses new questions for
maintenance: Are different models of maintenance

1 This work has been supported by NSF grant
CCR9706151 and UMIACS.

necessary in such an environment? Can a set of
applications, all based on the same underlying
framework, be exploited for reuse?

These questions become especially interesting and
relevant if we think about the state of the practice in the
software maintenance field. Consider the three
maintenance process models in [2]: the quick-fix model,
the iterative enhancement model, and the full-reuse
model. With the quick-fix model, maintainers start by
modifying the source code, then test the new version, and
finally modify the existing documentation. Because of
time pressure, this model is the most popular
maintenance process model. With the iterative
enhancement model, maintainers start with an analysis of
the existing system's documents, and modify any relevant
software artifact working downward from the
requirements through the lower abstraction levels,
including source code. This process model is applied in
those more mature environments where maintenance
activities are planned ahead and more effort is spent on
preserving the integrity of the original design. The third
model, the full-reuse model, differs from the iterative-
enhancement model because it assumes that there exists a
repository of software artifacts that can be reused. This
repository might consist of the current and earlier
versions of the application under maintenance, and/or a
set of “similar” applications. This model is more “theory
than practice” due to the high investment costs of
repositories in which extensive reuse is feasible.

However, object-oriented frameworks and framework-
based applications can be viewed as a repository of both
design and code, a source of reusable components such
as design patterns [7] and object-oriented classes.
Domain-oriented frameworks, such as those developed in
the financial and manufacturing domain, also implement
a basic set of domain-specific requirements that can be
considered reusable. In contrast to the quick-fix and

iterative enhancement models, which assume that there is
only one source of reusable code (the existing system
release), a full-reuse model, enabled by the usage of a
framework, supports multiple sources of reuse. (For
example, a set of applications that cover the functionality
that needs to be added to the system under maintenance.)
This model raises other questions: Is it feasible to expect
the maintainer to find the right reuse sources for a given
piece of functionality? Can we leverage this multiplicity
for making changes faster and better?

This study examines some of the practical
implications of this process of developing new
applications by adapting functionality from a set of
applications previously developed. A survey of the
literature on frameworks shows that relatively little has
been written on using frameworks (as opposed to
building or designing them [6]). Most of the current work
on using frameworks tends to ignore the possibilities
provided by the previously developed applications and
concentrates instead on strategies for documenting the
framework design [4, 8, 11, 14, 23].

However, the effort required to learn enough about the
framework to begin coding is very high, especially for
novices [16, 22]. As in conventional maintenance,
obtaining this understanding is a non-trivial task for a
developer unfamiliar with the system. A new approach,
which developers could use to minimize their learning
curve, is necessary. Considering how quickly the use of
commercial frameworks, such as Microsoft Foundation
Classes and Java Development Kit, is increasing,
framework-based applications will become the legacy
systems of the near future.

The case study described in this paper is part of a
broader empirical study addressing software reading for
construction [3]: how application developers understand
system artifacts in order to develop a new system or
release. Reading for construction is important for
comprehending what a system does, what capabilities
exist and do not exist; it helps us abstract the important
information in the system. It is useful for maintenance as
well as for building new systems from reusable
components and architectures.

2. Description of the Study

We ran an exploratory study into framework usage as
part of a software engineering course at the University of
Maryland. This study took place in an environment much
like the one described in the previous section: subjects
were asked to develop an application by adapting a
framework. Some of the functionality required for the
new application could be reused from a set of existing
applications that had been previously developed using
the same framework.

Our class of upper-level undergraduates and graduate
students was divided into 15 two- and three-person
teams. Teams were chosen randomly and then examined
to make certain that each team met certain minimum
requirements (e.g., no more than one person on the team
with low C++ experience). Each team was asked to
develop an application during the course of the semester,
going through all stages of the software lifecycle
(interpreting customer requirements into object and
dynamic models, then implementing the system based on
these models). The application to be developed was one
that would allow a user to edit OMT-notation diagrams
[18]. That is, the user had to be able to:
• graphically represent the classes of a system and the

different types of relations between them,
• perform some operations, e.g., moving or resizing,

directly on these representations, and
• enter descriptive attributes (class operations, object

names, multiplicity of relations, etc.) that would be
displayed according to the notational standards.

The project was to be built on top of the ET++
framework [24], which assists the development of GUI-
based applications. ET++ provides a hierarchy of over
200 classes that provide windowing functionality such as
event handling, menu bars, dialog boxes, and the like.
ET++ came with a set of 32 example applications that
had been implemented using the framework. Although
some of these were simple programs intended to
demonstrate some aspect of the framework functionality,
the majority were applications such as graphical file
browsers, spreadsheets, and window-based text editors.

Since we approached this study from the viewpoint of
software reading, our primary focus was on the processes
developers would engage in, as they attempted to
discover enough information about the framework and
the set of existing applications to be able to use them to
effectively construct a new application. We reasoned
that the best approach would be to observe in practice a
number of different techniques for reusing functionality
from a set of applications, and the effects of these
techniques in practice.

All of the subjects received training on using the
ET++ framework and were encouraged to reuse
functionality from the existing applications. Half of our
subjects (8 of the 15 teams) were trained in a technique
for reusing functionality from the application set,
although they were not required to use it if they did not
find it helpful for reuse. This training took place in
classroom lectures, in which a small example was used to
demonstrate the steps of the technique, which can be
summarized as:

Aspect of Interest Measures Form of Data Unit of
Analysis

Collection Methods

Adaptation Processes techniques used Qualitative team interviews, final reports

tools used Qualitative team Interviews

team organization Qualitative team interviews, self-
assessments

starting point for implementation Qualitative team interviews, final reports

difficulties encountered with
technique

Qualitative team problem reports, self
assessments, final reports

Products degree of implementation for
each functionality

Quantitative team implementation score, final
reports

Other Factors effort Quantitative team progress reports,
questionnaires

level of understanding of
technique taught

Quantitative individual exam grades

previous experience Quantitative individual questionnaires

Table 1. Types of measurements and means for collecting

• looking through the example applications in order to
find a potential match for the functionality sought;

• using the tools available to discover which classes
in the example were responsible for implementing
the functionality;

• adapting either whole classes or particular methods
and attributes from the example application for use
in the new system.

 (The full techniques can be found in [20].)We call
this a “strictly adaptive” technique because it was
focused entirely on guiding the developer to find useful
functionality in the existing applications, which could
then be tailored to the current system.

The remaining 7 teams did not receive explicit
training in the technique (for reasons pertaining to the
larger study) but could adapt functionality from the
applications in an ad hoc manner.

During implementation, our subjects did undertake
significant amounts of reuse from the existing
applications. We asked the students to provide records of
the activities they undertook so that we could understand
what methods they used and how effective these were. In
this paper, we report our observations about their
experiences from the point of view of a set of questions
focused on a full-reuse model of maintenance:
• Can a framework-based environment effectively

support a full-reuse model of maintenance?
• What are attributes of effective maintenance

techniques in a full-reuse environment?

• Should maintenance in this environment be driven
by the functionality provided by the framework and
application set, or by the model of the application to
be developed?

• Can we characterize the way in which functionality
is reused from the existing applications? Are there
attributes of the application set that make this
process more or less difficult?

3. Analysis

Since the analysis was carried out both for individuals
and the teams of which they were part, we treat the study
as an embedded case study [25]. In order to obtain an
accurate picture of the work practices involved, we
collected a wide variety of data over the course of the
semester, using a number of different methods (see Table
1).

We analyzed this mix of qualitative and quantitative
data to gain some insight into what was going on within
each team. By comparing and contrasting teams, we
searched for implications that addressed the study
questions given in section 2. Since there has not yet been
a large amount of work spent on understanding this area
of framework use, our focus was on using this
information to look for tentative but reasonable
hypotheses and not on testing known hypotheses. The
process of building theories from empirical research has
been first proposed in the social science literature [9, 5]
but it is also followed in the software engineering
discipline [19].

3.1. Analysis of Maintenance Processes

Our first step was to get an overview of what
adaptation processes teams had used. (By “adaptation
processes” we mean how the team had been organized,
what techniques they had used to understand the
framework and implement the functionality, whether
they based their implementation on an existing
application or started from scratch, and what tools they
had used to support their techniques.) To this end, we
performed a qualitative analysis of the explanations
given by members of the teams during the interviews and
final reports, and on the self-assessments.

We first focused on understanding what went on
within each of the teams during the implementation of
the project. We identified important concepts by
classifying the subjects’ comments under progressively
more abstract themes, then looked for themes that might
be related to one another. Once we felt we had a good
understanding of what teams did, we made comparisons
across groups to begin to hypothesize what the relevant
variables were in general. This allowed us to look for
variations in team effectiveness that might be the result
of differences in those key variables, as well as to rule
out confounding factors.

We found that teams used adaptation processes for
implementing the project that fell into 1 of 2 categories.
1. Starting from an existing application. 9 teams

exploited the fact that they could treat the
implementation as if it was a maintenance project in
a full-reuse environment. That is, they selected one
of the existing applications as a starting point and
began their implementation by modifying the
existing functionality of their base application.
Additional functionality was reused from the other
applications by adapting it to the base application.
Since this approach begins by modifying an existing
application, these teams are the basis for our
observations about maintenance processes.

2. Starting from “scratch”2. The remaining 6 teams
treated the implementation as more of a traditional
development project. That is, they began their
implementation from as little prior functionality as
they could by implementing directly on top of the
framework. Technically, this can still be considered
a full-reuse approach since functionality from the
existing applications was later extensively reused in
the new system, by learning from the working
examples and picking up the relevant pieces.

2 In the context of framework usage, starting from scratch
still implies that the design and code of the framework
are reused.

All teams who started from an existing application
chose the same one, a simple entity-relation diagram
editor (known as “ER”). It was similar to the OMT
editor to be developed, but much simpler: as specified for
the OMT editor, the ER diagram editor allowed simple
shapes to be added to an editable document, and allowed
these shapes to be selected, moved, and associated with
one another. However, more sophisticated functionality
was lacking. (It should be noted that the ER application
was the closest example in the set to the new
requirements. The only other real candidate was “Draw”,
a small drawing editor. Subjects reported that Draw was
not used as a basis for implementation because it was
more complicated and harder to understand than ER, and
contained too much extraneous functionality that would
have to be removed.)

We measured the effectiveness of the process used by
subjects by means of an “implementation score” that
reflected how well the functionality specified in the
requirements was implemented in the final system. To
calculate this score for each system, we first evaluated
the implementation of each required piece of
functionality on a 6-point scale3. We then weighted the
score for each functionality by a factor that represented
how important we thought that functionality was to the
entire system. The implementation score could then be
obtained by summing the scores for each functionality.
The weights were chosen in such a way that if each
functionality worked well, an implementation score of
100 would be obtained. Scores less than 100 provided a
rough indication of what percentage of system
functionality had been implemented. (Because “extra
credit” was awarded in rare instances that functionality
beyond what was required was implemented, it was also
possible for implementation scores to be slightly greater
than 100.)

We used a t-test to determine whether teams starting
from the ER application tended to achieve significantly
higher implementation scores than teams starting from
scratch. One point, representing a team that experienced
severe organizational difficulties that were primarily
responsible for a very low implementation score (equal to
44), was removed from this analysis as an extreme outlier
(according to the definition given in [15]). Due to the

3 This scale is based upon the suggested scale for
reporting run-time defects in the NASA Software
Engineering Laboratory [21]: “required functionality
missing”, “program stops when functionality invoked”,
“functionality cannot be used”, “functionality can only
partly be used”, “minor or cosmetic deviation”,
“functionality works well”.

small sample size and the exploratory nature of this
study, we used an α-level of 0.20, which is higher than
standard levels. Although not common, this α-level has
been used in similar hypothesis-building studies, e.g. [1].
We realize that statistical tests at this significance level
do not provide strong evidence of a relationship, but
instead see their contribution as helping detect patterns in
the data that can be specifically tested in future studies.

The t-test yielded a p-value of 0.15 (t = 1.538), which
is significant at the 0.20-level and provides some
evidence that teams who started by modifying an
application tended (mean implementation score = 89) to
be more effective than those starting from scratch (mean
score = 83).

Again following a qualitative method, we undertook
an investigation into whether there were characteristic
problems reported by the teams who adopted the full-
reuse maintenance process. Student remarks from the
problem reports, self assessments, and final reports were
examined and provided the following indications:
• One-third (3/9) of the maintenance teams in our

study had trouble adapting the example applications
because they did not conform to a consistent
organization or structure.

• Two-thirds (6/9) of the maintenance teams reported
difficulties in finding the necessary functionality
within the existing applications.

• Two-thirds (6/9) of the teams wasted time and effort
during the course of the implementation phase by
having to re-implement some functionality that they
had implemented previously in a short-sighted way.
Almost half (4/9) of the teams brought up the
importance of their object models as guides to
implementation. Half of these teams (2/4) reported
that they had been able to stay fairly close to their
original object model of the system during the
course of implementation. Both of these teams
ranked in the top half of the class with regards to
implementation score. The remaining 2 teams were
reporting problems; they had strayed from their
original model during implementation. It seems that
this inability to follow the model had some negative
effects, as both were ranked in the bottom half of the
class. (Since all but one of these teams had received
the same grade on the original model, it seems
unlikely that the variation in performance could have
been caused by factors outside the implementation
phase, such as the quality of the model itself.)

3.2. Analysis of Reuse Processes

In this section, we report our observations on reuse.
Since all fifteen teams extensively reused functionality
from the application set in implementing this system, our

observations in this section come from all teams.
As in the previous section, we undertook a qualitative

analysis to detect effective reuse techniques. The most
relevant factor turned out to be the type of reuse process
used by the team. There were two basic types of reuse
process:
1. One-third of the teams used the strictly adaptive

technique that we developed (discussed in section 2)
and for which we provided training to some of the
subjects.

2. Two-thirds of the teams used ad hoc reuse
techniques. This category includes a number of
different techniques which subjects developed on
their own and found to be effective.

In order to understand how the type of technique used
impacted the teams’ effectiveness, we focus on certain
key functionalities, that is, certain requirements for which
there was a large degree of variation between teams in
terms of their implementation score.

We then undertook a quantitative analysis of whether
the teams’ implementation of these key functionalities
was effected by the type of technique used. We used a
chi-square test of independence to test whether there was
a correlation between the way teams tended to implement
the functionality, and the type of reuse technique they
used. Again, we use an α-level of 0.20 due to the small
size of our sample. We also present the product moment
correlation coefficient, r, as a measure of the effect size
[12]. (An r-value of 0 would show no correlation
between the variables, whereas a value of 1 shows a
perfect correlation.)

We identified 4 key functionalities: links, dialog
boxes, deletion, and multiple views.
1. Links: The requirements for the OMT editor stated

how the program should handle links between
classes. The ER entity-relation editor provided
simple functionality that linked objects with a line
connecting their centers. Although useful as a
starting point, this implementation was not
sophisticated enough for the project, because the
same two classes in an OMT diagram may be
connected by multiple links, which should not
overlap. There was, however, no application with
functionality that explicitly addresses this concern.
Almost all (4/5) of the teams who used the
predefined technique implemented the less
sophisticated version of the functionality found in
the ER application. By comparison, less than half
(4/10) of the teams who used an ad hoc technique
turned in the less sophisticated implementation. The
chi-square test was used to determine whether teams
using the strictly adaptive technique had a different
probability of turning in the more sophisticated

implementation than ad hoc teams. This test resulted
in a p-value of 0.143 (χ2 = 2.143), which is
statistically significant at the selected α-level. An r-
value of 0.38 confirms that this shows a moderate
correlation [10] between level of sophistication and
type of technique.

2. Dialog Boxes: There were existing applications
which showed how to create dialog boxes containing
graphical devices (e.g. text fields, radio buttons) and
how to use them to display and store information.
The difficulty was that this functionality was spread
piecemeal over multiple applications and students
had a hard time finding and integrating all of the
functionality they needed. About half of the class
(7/15) managed to get the dialog box functionality
working correctly and interfaced with the rest of the
system. Both the ad hoc and strictly adaptive
techniques seemed equally likely to get this
functionality working correctly. The chi-square test
here yielded a p-value of 0.714 (χ2 = 0.134), for
which the related r-value is 0.10. This confirms that
response levels are effectively equal between the two
categories.

3. Deletion with Undo/Redo: There was at least one
existing application that clearly contained
functionality to delete classes and links from a
diagram. All teams were able to implement this
functionality. Getting the functionality to support the
ability to undo or redo a deletion was apparently
more challenging, however, although the existing
applications covered this as well. Partly, this may
have been due to students simply forgetting to
implement this part of the functionality since it was
not explicitly mentioned in the requirements. Teams
basically implemented deletion in one of three ways,
of increasing sophistication. Again, both the ad hoc
and strictly adaptive techniques seem equally
distributed among these three categories. The chi-
square test for this functionality yielded a p-value of
1 (χ2 = 0.000), with an associated r-value of 0,
indicating that response rates are exactly equal
regardless of the type of technique used.

4. Views: The requirements for the OMT editor stated
that the program must provide multiple views of the
currently opened document. Applications existed
which satisfied the project’s requirements about
views. However, there were also existing
applications that gave an even more sophisticated
implementation that allowed views to be
dynamically added and deleted. All but 3 teams
achieved the more sophisticated implementation. 2
of these 3 teams turning in less functionality used the
strictly adaptive technique. The chi-square test
resulted in a p-value of 0.171 (χ2 =1.875), which is

statistically significant at the selected α-level. An r-
value of 0.35 shows a moderate correlation between
the variables.

4. Study Findings

The following hypotheses represent the study
findings, along with the supporting evidence, based on
the qualitative and quantitative analysis of the study
results. They are organized by the research question to
which they relate.

Can a framework-based environment effectively
support a full-reuse model of maintenance?

This study shows that it was feasible to treat the
framework and example applications as a full-reuse
environment. All of our subjects did reuse functionality
from multiple applications and exploited the underlying
design and functionality of the framework, and
completed the implementation of the system in the time
allowed. (However, we cannot conclude that the full-
reuse maintenance model was superior to other
development models, since subjects in our study used
only the full-reuse model.)

Moreover, subjects who took the most advantage of
the full-reuse environment did better than those who
started directly from the framework.

Hypothesis 1: For implementing a set of requirements in
a framework-based environment, if a
suitable example application can be found,
then adapting that application is a more
effective strategy than starting from
scratch.

Obviously, more work needs to be done on how to
recognize a “suitable” example. The current study
indicates that the benefits of relying on an existing
application as a starting point (which include being able
to exploit an existing file structure and to model new
classes on similar ones which already exist in the
application) can outweigh the negatives (the extra work
of identifying relevant functionality and removing
irrelevant code), which leads us to our second question:

What are attributes of effective maintenance
techniques in a full-reuse environment?

Having decided that this environment could be
considered a full-reuse maintenance environment, we
used our observations of the students to reason about
useful attributes of full-reuse processes. In particular, we
looked for practices that tended to be effective or

difficult across some number of the student teams, in
order to find attributes that applied to full-reuse
maintenance in general and not just the approaches of
particular groups.

Our beginning learners did report characteristic
problems with their adaptation processes. For example,
the majority of teams experienced difficulties finding
desired functionality within the existing applications.

Hypothesis 2: Techniques for adapting framework-based
applications require guidance to help
developers find even minor bits of
functionality in the existing applications.

Although the teams using this technique usually
managed to get the functionality working in the end, the
problems with finding it in the first place seemed
especially acute when the functionality needed was a
very small part of a much larger application (e.g., the
dialog boxes from key functionality 2). This indicates
that we did not provide enough guidance to developers to
assist them in finding and extracting small pieces of
functionality embedded within larger existing
applications. Future studies need to be undertaken to
determine if we can add this sort of guidance to make
more useful techniques for developers who are not yet
used to the framework or its derived applications.

This study has also shown the effectiveness of the
adaptation technique relies on the set of applications:

Hypothesis 3: The effectiveness of a technique for
adapting framework-based applications
depends on breadth of functionality and
other characteristics of the existing
applications.

As others [17] have pointed out, learning how to
implement functionality from existing applications is
difficult because the rationales for design choices, which
explain why the finished implementation looks the way it
does, are usually not included in the documentation.
When attempting to reuse functionality from existing
applications, developers are implicitly asked to
reconstruct the choices that led to the finished
implementations they are studying. This situation can
actually be made worse in a full-reuse environment, since
effective reuse requires the developer to understand the
rationales behind a number of applications, not just one.

Should maintenance in this environment be driven by
the functionality provided by the framework and
application set, or by the model of the application to
be developed?

When using frameworks, there is the important
question of whether to modify the object model of the
system, so as to exploit a piece of functionality offered
by the framework that might not exactly fit the original
plan, or to keep the object model “as is”, even if it makes
implementing the application on top of the framework
harder. From our subjects’ comments about their object
models, we hypothesize:

Hypothesis 4: Techniques for adapting framework-based
applications should follow the original
object model of the system and resist the
temptation to incorporate additional
functionality provided by the framework,
so that functionality is implemented
correctly the first time.

One reason for this may be that if teams were too
willing to make modifications to their planned system in
order to reuse functionality from other applications,
undesired and unexpected changes to the system
architecture will occur. As the underlying structure of
the system continues to devolve, it becomes harder and
harder to add changes effectively. (It is possible that, as
developers get more experience with the framework, it
may be possible to synchronize the design of the system
more closely to the framework infrastructure from the
beginning, thereby avoiding this danger. Our study did
not address this possibility.)

Can we characterize the way in which functionality
was reused from the existing applications? Are there
attributes of the application set that make this process
more or less difficult?

Through our observations, we identified two main
categories of strategies for reusing functionality: strictly
adaptive and ad hoc adaptive, which were defined in
section 3.2, each with its own strengths and weaknesses.
The relative effectiveness of each seems to be most
strongly determined by how closely the object model of
the system to be developed corresponds with the existing
applications.

Hypothesis 5: The appropriate technique for reuse
depends on the distance between the
functionality provided by the application
set and that required by the object model
of the system.

Key functionalities 2 and 3 show that when the
functionality called for by the object model is well-
contained in the set of existing applications, just about
any adaptation technique should be helpful. However, as

illustrated by key functionality 1, a strictly adaptive
technique can’t take the developer far beyond what is
provided by the existing applications themselves. In a
situation in which the set of applications is sparse and
does not contain the necessary functionality, an ad hoc
technique may be more appropriate.

As key functionality 4 illustrates, if the set of
applications is particularly large, then a strict adaptation
technique may be most helpful. Despite its weaknesses,
such a technique in procedural form was shown to guide
the developer toward implementing the object model “as
is” and away from “gold-plating,” or spending time
providing extra features that seem nice but are not
necessary.

5. Conclusions

We described an empirical study of adapting
framework-based applications in the context of parallel
development projects undertaken by beginning users of
the framework. The purpose of the study was
exploratory, aiming to build some knowledge of reuse
and maintenance of object-oriented framework
applications.

It is remarkable to note that students successfully
adapted functionality from existing framework-based
applications to incorporate a new system, even if they
had a strict deadline and they had no previous experience
with the OO framework.

One limitation of our study might be that we used
students as the subjects of the study but professional
developers would have behaved differently. Certainly,
this is always a danger in studies of this sort. However, in
this case we feel that this difference would not be a
strongly significant one. Although the level of industrial
experience in the class was not high, all students had
experience both programming in the language used
(C++) as well as in object-oriented techniques. More
importantly, even professional developers would almost
certainly have been novices in terms of the use of the
ET++ framework, so that the most immediately
applicable experience would not have significantly varied
in either case. A second limitation might be that our
findings are tied to the framework we used, ET++.
Although ET++ is a freeware framework and cannot
compete in terms of usability with current visual-based
frameworks running on Wintel platforms, it incorporates
seventeen of the design patterns in [7]. Although
generalization can be achieved only through replication
in multiple studies, we believe that our findings are
relevant for the class of sophisticated white-box
frameworks.

Based on the evidence from qualitative and
quantitative analysis, we formulated a set of hypotheses

about the characteristics that contribute to the success of
techniques for adapting functionality in a framework-
based environment. These hypotheses should be further
examined by confirmatory studies, including both case
studies and controlled experiments.

Acknowledgments

Our thanks to Gianluigi Caldiera for his help and
assistance in designing and running this study. Thanks
also to the students of CMSC 435 (Fall 1996) for their
cooperation and hard work.

References

[1] V. Basili, R. Reiter, Jr. A Controlled Experiment
Quantitatively Comparing Software Development
Approaches. IEEE Trans. Software Engineering,
May 1981, pp. 299-320.

[2] V. Basili. Viewing Maintenance as Reuse-Oriented
Software Development. IEEE Software, January
1990, pp. 19-25.

[3] V. Basili, G. Caldiera, F. Lanubile, and F. Shull.
Studies on reading techniques. In Proc. of the
Twenty-First Annual Software Engineering
Workshop, SEL-96-002, pages.59-65, Greenbelt,
MD, December 1996.

[4] K. Beck, R. Johnson. Patterns generate
architectures. In Proc. ECOOP’94, Bologna, Italy,
1994.

[5] K. Eisenhardt. Building theories from case study
research, Academy of Management Review, 14 (4),
532-550, (1989).

[6] M. E. Fayad, and D. C. Schmidt (guest editors).
Object-Oriented Application Frameworks, Comm.
of the ACM, October 1997, pp.32-87.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Object-Oriented
Software Architecture. Addison-Wesley, 1995.

[8] D. Gangopadhyay, S. Mitra. Understanding
frameworks by exploration of exemplars. In Proc.
of the 7th International Workshop on CASE
(CASE-95), pages 90-99, July 1995, IEEE
Computer Society Press.

[9] H. G. Glaser, A. L. Strauss. The Discovery of
Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing Company, 1967.

[10] L. Hatcher, E. J. Stepanski. A Step-by-Step
Approach to Using the SAS® System for
Univariate and Multivariate Statistics. Cary, NC:
SAS Institute Inc.4, 1994.

4 SAS® is the registered trademark of SAS Institute Inc.

[11] R. Johnson. Documenting frameworks with
patterns. In Proc. OOPSLA‘92, Vancouver BC,
October 1992, SIGPLAN Notices, 27 (10), 63-76.

[12] C. M. Judd, E. R. Smith, and L. H. Kidder.
Research Methods in Social Relations, sixth
edition. Fort Worth: TX, Holt Rinehart and
Winston, 1991.

[13] T. Lewis et al. Object-Oriented Application
Frameworks. Mannings Publication Co.,
Greenwich, 1995.

[14] H. Mili, H. Sahraoui, I. Benyahia. Representing
and querying reusable object frameworks. In Proc.
Symposium on Software Reusability, Boston, May
1997.

[15] R. Ott. An Introduction to Statistical Methods and
Data Analysis, Duxbury Press, Belmont, CA, 1993.

[16] W. Pree Design Patterns for Object-Oriented
Software Development. ACM Press & Addison-
Wesley Publishing Co., 1995.

[17] S. Rugaber, S. B. Ornburn, and R. J. LeBlanc, Jr.
Recognizing design decisions in programs. IEEE
Software, January 1990, pp.46-54.

[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W Lorensen. Object-Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

[19] C. B. Seaman, V. R. Basili. An empirical study of
communication in code inspection. In Proc.
ICSE'97, Boston, MC, 1997.

[20] F. Shull, F. Lanubile, V. Basili. “Investigating
Reading Techniques for Framework Learning.”
Technical Report CS-TR-3896, Dept. of Computer
Science, University of Maryland, College Park.
May 1998.

[21] Software Engineering Laboratory. “Recommended
Approach to Software Development, Revision 3”.
SEL report SEL-81-305, June 1992.

[22] Taligent, Inc. The Power of Frameworks, Addison-
Wesley, New York, 1995.

[23] J. Vlissides. Unidraw Tutorial I: A Simple Drawing
Editor, Stanford University, 1991.

[24] A. Weinand, E. Gamma, R. Marty, Design and
implementation of ET++, a seamless object-
oriented application framework, Structured
Programming, 10 (2), 1989.

[25] R. Yin, Case Study Research: Design and
Methods, Sage Publications, London, 1994.

