
Empirical Findings in Agile Methods

Mikael Lindvall1, Vic Basili1,4, Barry Boehm3, Patricia Costa1, Kathleen Dangle1, Forrest
Shull1, Roseanne Tesoriero1, Laurie Williams2, and Marvin Zelkowitz1,4

1Fraunhofer Center for Experimental Software Engineering, Maryland

{mlindvall, vbasili, pcosta, kdangle, fshull, rtesoriero, mzelkowitz}@fc-md.umd.edu

2North Carolina State University
williams@csc.ncsu.edu

3University of Southern California Center for Software Engineering
boehm@sunset.usc.edu

4University of Maryland Empirical Software Engineering Group
{basili, mvz}@cs.umd.edu

Abstract. In recent years, the use of, interest in, and controversy about Agile methodologies have realized
dramatic growth. Anecdotal evidence is rising regarding the effectiveness of agile methodologies in certain
environments and for specified projects. However, collection and analysis of empirical evidence of this ef-
fectiveness and classification of appropriate environments for Agile projects has not been conducted. Re-
searchers from four institutions organized an eWorkshop to synchronously and virtually discuss and gather
experiences and knowledge from eighteen Agile experts spread across the globe. These experts character-
ized Agile Methods and communicated experiences using these methods on small to very large teams. They
discussed the importance of staffing Agile teams with highly skilled developers. They shared common suc-
cess factors and identified warning signs of problems in Agile projects. These and other findings and heuris-
tics gathered through this valuable exchange can be useful to researchers and to practitioners as they estab-
lish an experience base for better decision making.

1. The rise of Agile Methods

Plan-driven methods are those in which work begins with the elicitation and documentation of a “complete” set
of requirements, followed by architectural and high level-design development and inspection. Examples of plan-
driven methods include various waterfall and iterative approaches, such as the Personal Software Process (PSP)
[1]. Beginning in the mid-1990’s, some practitioners found these initial requirements documentation, and archi-
tecture and design development steps frustrating and, perhaps, impossible [2]. As Barry Boehm [3] suggests,
these plan-driven methods may well start to pose difficulties when change rates are still relatively low. The in-
dustry and the technology move too fast and customers have become increasingly unable to definitively state
their needs up front. As a result, several consultants have independently developed methodologies and practices
to embrace and respond to the inevitable change they were experiencing. These methodologies and practices are
based on iterative enhancement, a technique which was introduced in 1975 [4] and that has been come to be
known as Agile Methodologies [2, 5].

Agile Methodologies are gaining popularity in industry although they comprise a mix of accepted and con-
troversial software engineering practices. It is quite likely that the software industry will find that specific pro-
ject characteristics will determine the prudence of using an agile or a plan-driven methodology – or a hybrid of
the two. In recent years, there have been many stories and anecdotes [6-8] of industrial teams experiencing suc-
cess with Agile methodologies. There is, however, an urgent need to empirically assess the applicability of
these methods, in a structured manner, in order to build an experience base for better decision-making. This pa-
per contributes to the experience base and discusses the findings of a synchronous, virtual eWorkshop in which
experiences and knowledge were gathered from and shared between Agile experts located throughout the world.

2. An experience base for software engineering

In order to reach their goals, software development teams need to understand and choose the right models and
techniques to support their projects. They must consider key questions such as: What is the best life-cycle model
to choose for a particular project? What is an appropriate balance of effort between documenting the work and
getting the product implemented? When does it pay-off to spend major efforts on planning in advance and avoid
change, and when is it more beneficial to plan less rigorously and embrace change?

The goal of the NSF-sponsored Center for Empirically-Based Software Engineering (CeBASE)1 is to collect,
analyze, document, and disseminate knowledge on software engineering gained from experiments, case studies,
observations, interviews, expert discussions and real world projects. A central activity toward achieving this
goal has been the running of “eWorkshops” (or on-line meetings) that capture expert knowledge to formulate
heuristics on a particular software engineering topic. The CeBASE project defined the eWorkshop and has used
the technology to collect valuable empirical evidence on defect reduction and COTS. [9]

The rise of Agile Methods provides a fruitful area for such empirical research. This paper discusses the re-
sults of the first eWorkshop on Agile Methods sponsored by the Fraunhofer Center Maryland and North Caro-
lina State University using the CeBASE eWorkshop technology. The discussion items are presented along with
an encapsulated summary of the expert discussion. The heuristics can be useful both to researchers (for pointing
out gaps in the current state of the knowledge requiring further investigation) and to practitioners (for
benchmarking or setting expectations about development practices).

3. Collecting expert knowledge on Agile methods

Workshops in which experts discuss their findings and record their discussions are a classic method for creating
and disseminating knowledge. Workshops, however, possess limitations: 1) experts are spread all over the world
and would have to travel to participate, and 2) workshops are usually oral presentations and discussions, which
are generally not captured for further analysis. The eWorkshops are designed to help overcome these problems.
The eWorkshop is an on-line meeting that replaces the usual face-to-face workshop. While it uses a Web-based
chat-application, the session is structured to accommodate the needs of a workshop without becoming an uncon-
strained on-line chat discussion. The goal of the eWorkshop is to synthesize new knowledge from a group of
experts in an efficient and inexpensive manner in order to populate an experience base. More details about the
eWorkshop tool and process can be found in [10].

The goal of the Agile workshop, held in April 2002, was to create a set of heuristics that represent what ex-
perts in the field consider to be the current state of understanding about Agile Methods. The participants in this
event were experts in Agile Methods. Our lead discussants (the workshop leaders and authors of this paper)
formed part of the team that interacted with an international group of invited participant experts. The names of
these 18 participants are listed in the acknowledgements at the end of the paper.

 4. Seeding the eDiscussion

Participants of eWorkshops prepare for the discussion by reading relevant material, preparing a position state-
ment reacting to proposed discussion points, and reading the position statements of the other discussants. For
this eWorkshop, Barry Boehm’s January 2002 IEEE Computer article [3] and the Agile Manifesto [11-13]
served as background material. The Agile Manifesto documents the priorities of its signers. They value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

Many in industry debate the prudence of these values. Steven Rakitin comments [14] that the items on the
right are essential, while those on the left only serve as excuses for hackers to keep on irresponsibly throwing
code together with no regard for engineering discipline. Another example is Matt Stephens’ critical analysis of
XP and its applicability2.

It is important to remember that Agile includes many different methodologies, of which the best known in-
clude:

1 http://www.CeBASE.org
2http://www.softwarereality.com/lifecycle/xp/case_against_xp.jsp

• Extreme Programming (XP) [15-17]
• Scrum [18]
• Feature Driven Development (FDD) [19]
• Dynamic Systems Development Method (DSDM) [20]
• Crystal [5]
• Agile modeling [21]

In his article, Boehm brings up a number of different characteristics regarding Agile Methods compared to
what he calls “Plan-Driven,” the more traditional waterfall, incremental or spiral methods. Boehm contends that
Agile, as described by Highsmith and Cockburn, emphasizes several critical people-factors, such as amicability,
talent, skill, and communication, at the same time noting that 49.99% of the world’s software developers are be-
low average in these areas. While Agile does not require uniformly high-capability people, it relies on tacit
knowledge to a higher degree than plan-driven projects that emphasize documentation. Boehm’s point is that
there is a risk that this situation leads to architectural mistakes that cannot be easily detected by external review-
ers due to the lack of documentation.

Boehm also notes that Cockburn and Highsmith conclude that “Agile development is more difficult for larger
teams” and that plan-driven organizations scale-up better. At the same time, the bureaucracy created by plan-
driven processes does not fit small projects either. This again, ties back to the question of selecting the right
practices for the task at hand.

Boehm questions the applicability of the Agile emphasis on simplicity. XP’s philosophy of YAGNI (You
Aren’t Going to Need It) [15] is a symbol of the recommended simplicity that emphasizes getting rid of archi-
tectural features that do not support the current version. Boehm feels this approach fits situations where future
requirements are unknown. In cases where future requirements are known, the risk is, however, that the lack of
architectural support could cause severe architectural problems later. This raises questions like: What is the
right balance between creating a grandiose architecture up-front and adding features as they are needed?

Boehm contends that plan-driven processes are most needed in high-assurance software. Traditional goals of
plan-driven processes such as predictability, repeatability, and optimization, are often characteristics of reliable
safety critical software development. Knowing for what kind of applications different practices traditional or ag-
ile are most beneficial is crucial, especially for safety critical applications where human lives can be at stake if
the software fails.

The eWorkshop organizers planned to discuss each of these issues (people, team size, design simplicity, ap-
plicability for high assurance systems) outlined in Boehm’s article in relation to the Agile Manifesto. However,
the discussion took on its own shape based on the interests and desires of the discussants. Ultimately, the fol-
lowing issues were discussed:

1. The definition of agile
2. Selecting projects suitable for agile

a. Size requirements (and scale-up strategies)
b. Personnel requirements
c. Use with critical, reliable, safe systems

3. Introducing the methodology
a. Ideas for training

4. Managing the project
a. Success factors
b. Warning signs
c. Refactoring
d. Documentation

Each of these will be discussed in the following section.

5. Findings

During the eWorkshop on Agile Methods, participants contributed their own data and experiences on various
topics. Excerpts of the discussions are presented below, along with the resulting statements about Agile Meth-
ods. The full discussion summary can be found on the FC-MD web site.3

3http://fc-md.umd.edu/projects/Agile/main.htm

5.1 Definition

The eWorkshop began with a discussion regarding the definition of Agile and its characteristics, resulting in the
following working definition.

Agile Methods are:
• Iterative
• Incremental
• Self-organizing (The team has the autonomy to organize itself to best complete the work items.)
• Emergent (Technology and requirements are “allowed” to emerge through the product development

cycle.)
All Agile methods follow the four values and 12 principles of the Agile Manifesto.4

5.2 Selecting Projects Suitable for Agile Methods

5.2.1 Project Size
The most important factor that determines when Agile is applicable is probably project size. The goal of the first
topic was to collect experience regarding the size of projects that have been using Agile in order to determine
when it is applicable. From the discussion it became clear that there is:

• Plenty of experience of teams of up to 12 people
• Some descriptions of teams around size 25
• A few data points of size teams of up to 100 people, e.g. 45 & 90-person teams, described in Agile

Software Development [5]
• Isolated descriptions of teams larger than 100 people. (e.g. teams of 150 and 800 people were men-

tioned and documented in [2]).
Many participants felt that any team could be agile, regardless of the team size. Alistair Cockburn argued

that size is an issue. As size grows, coordinating interfaces becomes a dominant issue. Agile with face-to-face
communication breaks down and becomes more difficult and complex past 20-40 people. Most participants
agreed, but think that this statement is true for any development process. Past 20-40 people, some kind of scale-
up strategies must be applied.

One scale-up strategy that was mentioned was the organization of large projects into teams of teams. In one
occasion, an 800-person team was, for example, organized using “scrums of scrums” [18]. Each team was
staffed with members from multiple product lines in order to create a widespread understanding of the project as
a whole. Regular, but short, meetings of cross-project sub-teams (senior people or common technical areas)
were held regularly to coordinate the project and its many teams of teams. It was pointed out that a core team re-
sponsible for architecture and standards (also referred to as glue) is needed in order for this configuration to
work. These people work actively with the sub-teams and coordinate the work.

Effective ways of coordinating multiple teams include yearly conferences to align interfaces, rotation of peo-
ple between teams in 3-month internships, and shared test case results. Examples of strategies for coping with
larger teams are documented in Jim Highsmith’s Agile Software Development Ecosystems [2], in which the
800-person team is described.

5.2.2 Personnel
There is an ongoing debate about whether or not agile requires “good people” to be effective. This is an impor-
tant argument to counter as “good people” can make just about anything happen and that specific practices are
not important when you work with good people. This suggests that perhaps the success of Agile methods could
be attributed to the teams of good folks, rather than the practices and principles. On the other hand, participants
argued that Agile Methods are intrinsically valuable.

Participants agreed that a certain percentage of experienced people are needed for a successful Agile project.
There was some consensus that 25%-33% of the project personnel must be “competent and experienced.”

“Competent” in this context means:
• Possess real-world experience in the technology domain
• Have built similar systems in the past
• Possess good people & communication skills

4 http://www.agilemanifesto.org/

It was noted that experience with actually building systems are much more important than experience with Agile
development methods.
The level of experience might even be as low as 10% if the teams practice pair programming [22] and if the
makeup of the specific programmers in each pair is fairly dynamic over the project cycle (termed “pair rota-
tion”). Programmers on teams that practice pair rotation have an enhanced environment for mentoring and for
learning from each other.

5.2.3 Criticality, reliability, safety issues

One of the most widespread criticisms of Agile methods is that they do not work for systems that have critical-
ity, reliability and safety requirements. There was some disagreement about suitability for these types of pro-
jects. Some participants felt that Agile Methods work if performance requirements are made explicit early, and
if proper levels of testing can be planned for. Others argue that Agile best fits applications that can be built “bare
bones” very quickly, especially applications that spend most of their lifetime in maintenance.

There was also some disagreement about the best Agile Methods for critical projects. A consensus seemed to
form that the Agile emphasis on testing, particularly the test-driven development practice of XP, is the key to
working with these projects. Because all of the tests have to be passed before release, projects developed with
XP can adhere to strict (or safety) requirements. Customers can write acceptance tests that measure nonfunc-
tional requirements, but they are more difficult and may require more sophisticated environments than JUnit
tests.

Many participants felt that it is easier to address critical issues since the customer gives requirements, makes
important issues explicit early and provides continual input. The phrase “responsibly responding to change”
implies that there is a need to investigate the source of the change and adjust the solution accordingly, not just
respond and move on. When applied right, “test first” satisfies this requirement.

5.3 Introducing Agile Methods: Training requirements

An important issue is how to introduce Agile Methods in an organization and how much formal training is re-
quired before a team can start using it. A majority (though not all) of the participants felt that Agile Methods re-
quire less formal training than traditional methods. For example, pair programming helps minimize what is
needed in terms of training, because people mentor each other [23]. This kind of mentoring (by some referred to
as tacit knowledge transfer) is argued to be more important than explicit training. The emphasis is rather on skill
development, not on learning Agile Methods. Training in how to apply Agile Methods can many times be done
as self-training. Some participants have seen teams train themselves successfully. It was the conclusion that
there should be enough training material available for XP, Crystal, Scrum, and FDD.

5.4 Project management

5.4.1 Success factors
One of the most effective ways to learn from previous experience is to analyze past projects from the perspec-
tive of success factors. The three most important success factors identified among the participants were culture,
people, and communication.

To be Agile is a cultural thing. If the culture is not right, then the organization cannot be Agile. In addition,
teams need some amount of local control; they must have the ability to adapt working practices as they feel ap-
propriate. The culture must also be supportive of negotiation as negotiation is a big part of the Agile culture.

As discussed above, it is important to have competent team members. Organizations using Agile use fewer,
but more competent people. These people must be trusted, and the organization must be willing to live with the
decisions developers make, not consistently second-guess their decisions.

Organizations that want to be Agile need to have an environment that facilitates rapid communication be-
tween team members. Examples are physically co-located teams and pair programming.

It was pointed out that success factors are not free and that organizations need to carefully implement these
success factors in order for them to happen. The participants concluded that Agile Methods are more appropriate
when requirements are emergent and rapidly changing (and there is always some technical uncertainty!). An-
other factor that is critical for success is fast feedback from the customer. In fact, Agile is based on close
interaction with the customer and expects that the customer will be on site for the quickest possible feedback
because customer feedback is viewed as such a critical success factor.

5.4.2 Warning signs
A critical part of project management is recognizing early warning signs that indicate that something has gone
wrong. The question posed to participants was: How can management know when to take corrective action to
minimize risks?

Participants concluded that the daily meetings provide a useful way of measuring problems. Because of the
general openness of the project and because discussions of these issues is encouraged during the daily meeting,
people will bring up problems. Low morale expressed by the people in the daily meeting will also reveal that
something has gone wrong and that the project manager has to deal with it. Another indicator is when “useless
documentation” is getting produced, even though it can be hard to determine what useless documentation is.
Probably the most important warning sign is when the team is getting behind on planned iterations. As a result,
having frequent iterations is very important for frequent monitoring of this warning sign.

5.4.3 Refactoring
A key tenet of agile methodologies (especially in XP) is refactoring. [24] Refactoring means improving the de-
sign of existing code without changing the functionality of the system. The different forms of refactoring in-
volve: simplifying complex statements, abstracting common solutions into reusable code, and the removal of
duplicate code.

Not all participants were comfortable with refactoring the architecture of a system because refactoring would
affect all internal and external stakeholders. Instead, the approach should be frequent refactoring of reasonably
sized code, keeping the scope down so that changes would more local. Most participants felt that large-scale
refactoring is not a problem, because they are frequently necessary anyway and as a matter of fact, are more fea-
sible using Agile Methods. There was a strong feeling among participants that traditional “BDUF”5 is rarely on
target, but lack of applicability is not fed back to the team that created the BDUF so they do not learn from ex-
perience. It was again emphasized that testing is the major issue in Agile. Big architectural changes do not need
to be risky, for example, if a set of automated tests is provided as a “safety net.”

5.4.4 Documentation
Product and project documentation is a topic that has drawn much attention in discussions about Agile. Is any
documentation necessary at all? If so, how do you know how much? Scott Ambler commented that documenta-
tion becomes out of date and should be updated only “when it hurts.” Documentation is a poor form of commu-
nication, but sometimes it is necessary in order to retain critical information over time. Many organizations de-
mand more documentation than is needed. Organizations’ goal should be to communicate effectively and docu-
mentation should be one of the last options to fulfill that goal. Barry Boehm mentioned that a documented pro-
ject makes it easier for an outside expert to diagnose problems. Kent Beck disagreed, saying that, as an outside
expert who spends a large percentage of his time diagnosing projects, he is looking for people “stuff” (like quiet
asides) and not technical details. Bil Kleb said that with Agile Methods, documentation is assigned a cost and its
extent is determined by the customer (excepting internal documentation). Scott Ambler suggested his Agile
Documentation essay6 as good reference for this topic.

6. Conclusions

Whether or not to use a certain software development methodology is not trivial and depends on many factors.
Our approach to support selection of methodologies is based on collecting and analyzing experience from the
application of methodologies as well as the context under which the experience was gained. This experience
forms an experience base and as new experience is gained, the previous experience is refined and the experience
base grows. The experience base evolves over time into an asset that can support and guide future projects in se-
lecting the most appropriate methodology for the task at hand.

This expert discussion attempted to collect experience from applying Agile Methods. It was conducted by

identifying and analyzing some of the most important factors related to Agile Methods and their characteristics.
A post analysis of the discussion refined and structured the results. Several lessons can be learned from this dis-
cussion; lessons that seed the experience base and that can be useful to those considering Agile Methods in their
organization. These lessons should be carefully examined and challenged by future projects and the circum-
stances for when they hold and when they do not should be captured.

5Big Design Up Front
6http://www.agilemodeling.com/essays/agileArchitecture.htm

The lessons gained were discussed in the paper. A summary is provided below:

• Any team could be agile, regardless of the team size, but size is an issue because more people make
communication harder. There is much experience from small teams. There is less for larger teams, for
which scale-up strategies need to be applied.

• Experience is important for an Agile project to succeed, but experience with actually building systems

is much more important than experience with Agile methods. It was estimated that 25%-33% of the
project personnel must be “competent and experienced”, but the necessary percentage might even be as
low as 10% if the teams practice pair programming due to the fact that they mentor each other.

• Reliable and safety-critical projects can be conducted using Agile Methods. The key is that perform-

ance requirements are made explicit early, and proper levels of testing are planned. It is easier to ad-
dress critical issues using Agile Methods since the customer gives requirements, makes important
things explicit early and provides continual input.

• Agile Methods require less formal training than traditional methods. Pair programming helps minimize

what is needed in terms of training, because people mentor each other. This is more important than
regular training that can many times be completed as self-training. Training material is available in par-
ticular for XP, Crystal, Scrum, and FDD.

• The three most important success factors are culture, people, and communication. Agile Methods need

cultural support otherwise they will not succeed. Competent team members are crucial. Agile Methods
use fewer, but more competent people. Physically co-located teams and pair programming support
rapid communication. Close interaction with the customer and frequent customer feedback are critical
success factors.

• Early warning signs can be spotted in Agile projects, e.g. low morale expressed during the daily meet-

ing. Other signs are production of “useless documentation” and delays of planned iterations.

• Refactoring should be done frequently and of reasonably sized code, keeping the scope down and local.
Large-scale refactoring is not a problem, and is more feasible using Agile Methods. Traditional
“BDUF” is a waste of time and doesn’t lead to a learning experience. Big architectural changes do not
need to be risky if a set of automated tests is maintained.

• Documentation should be assigned a cost and its extent be determined by the customer. Many

organizations demand more than is needed. The goal should be to communicate effectively and
documentation should be the last option.

We have an ambitious goal of collecting relevant empirically based software engineering knowledge. Based on
our experiences on the topic of Agile Methods, the eWorkshop has been shown to be a mechanism for inexpen-
sively and efficiently capturing this information. It has been useful for discussing important Agile topics, and
we have obtained critical information regarding experience from real world projects using Agile Methods. To
continue this activity, we will run a second eWorkshop on Agile Methods in 2002. It will be a more detailed
discussion focusing on a more specific set of topics in order to collect even more detailed information about Ag-
ile Methods and their characteristics. We believe this is an important activity as practitioners need to understand
when and under what circumstances a certain method or process is optimal and how it should be tailored to fit
the local context.

7. Acknowledgements

We would like to recognize our expert contributors: Scott Ambler (Ronin International, Inc.), Ken Auer
(RoleModel Software, Inc), Kent Beck (founder and director of the Three Rivers Institute), Winsor Brown
(University of Southern California), Alistair Cockburn (Humans and Technology), Hakan Erdogmus (National
Research Council of Canada), Peter Hantos (Xerox), Philip Johnson (University of Hawaii), Bil Kleb (NASA
Langley Research Center), Tim Mackinnon (Connextra Ltd.), Joel Martin (National Research Council of

Canada), Frank Maurer (University of Calgary), Atif Memon (University of Maryland and Fraunhofer Center
for Experimental Software Engineering), Granville (Randy) Miller, (TogetherSoft), Gary Pollice (Rational
Software), Ken Schwaber (Advanced Development Methods, Inc. and one of the developers of Scrum), Don
Wells (ExtremeProgramming.org), William Wood (NASA Langley Research Center). This work is partially
sponsored by NSF grant CCR0086078, establishing the Center for Empirically Based Software Engineering
(CeBASE).

References

1. Humphrey, W.S., A Discipline for Software Engineering. SEI Series in Software Engineering, ed. P. Freeman,
Musa, John. 1995, Reading, Massachusetts: Addison Wesley Longman, Inc.

2. Highsmith, J., Agile Software Development Ecosystems. The Agile Software Development Series, ed. A. Cockburn
and J. Highsmith. 2002, Boston, MA: Addison-Wesley.

3. Boehm, B., Get Ready for Agile Methods, with Care. IEEE Computer, 2002. 35(1): p. 64-69.
4. Basili, V.R. and A.J. Turner, Iterative Enhancement: A Practical Technique for Software Development. IEEE

Transactions on Software Engineering, 1975. 1(4).
5. Cockburn, A., Agile Software Development. The Agile Software Development Series, ed. A. Cockburn and J.

Highsmith. 2001, Reading, Massachusetts: Addison Wesley Longman.
6. Marchesi, M., et al., eds. Extreme Programming Perspectives. XP Series, ed. K. Beck. 2002, Addison Wesley:

Boston.
7. Marchesi, M. and G. Succi, eds. Extreme Programming Examined. XP Series, ed. K. Beck. 2001, Addison Wesley:

Boston.
8. Highsmith, J., Does Agility Work? Software Development, 2002. 10(6): p. 30-37.
9. Shull, F., et al. What We Have Learned about Fighting Defects. in International Software Metrics Symposium.

2002. Ottawa, Canada.
10. Basili, V.R., et al. Building an Experience Base for Software Engineering: A Report on the first CeBASE eWork-

shop. in Profes (Product Focused Software Process Improvement). 2001.
11. Highsmith, J. and A. Cockburn, Gile Software Development: The Business of Innovation. IEEE Computer, 2001.

34(12).
12. Cockburn, A. and J. Highsmith, Agile Software Development: The People Factor. IEEE Computer, 2001. 34(11).
13. Beck, K., et al., The Agile Manifesto. 2001: p. http://www.agileAlliance.org.
14. Rakitin, S., Manifesto Elicits Cynicism. IEEE Computer, 2001. 34(12).
15. Beck, K., Extreme Programming Explained: Embrace Change. 2000, Reading, Massachusetts: Addison-Wesley.
16. Auer, K. and R. Miller, XP Applied. 2001, Reading, Massachusetts: Addison Wesley.
17. Jeffries, R., A. Anderson, and C. Hendrickson, Extreme Programming Installed. The XP Series, ed. K. Beck. 2001,

Upper Saddle River, NJ: Addison Wesley.
18. Schwaber, K. and M. Beedle, Agile Software Development with SCRUM. 2002: Prentice-Hall.
19. Coad, P., J. deLuca, and E. Lefebvre, Java Modeling in Color with UML. 1999: Prentice Hall.
20. Stapleton, J., DSDM: The Method in Practice. 1997: Addison Wesley Longman.
21. Ambler, S.W., Agile Modeling. 2002: John Wiley and Sons.
22. Williams, L., et al., Strengthening the Case for Pair-Programming, in IEEE Software. 2000. p. 19-25.
23. Palmieri, D., Knowledge Management through Pair Programming, in Computer Science. 2002, North Carolina

State University: Raleigh, NC.
24. Fowler, M., et al., Refactoring: Improving the Design of Existing Code. 1999, Reading, Massachusetts: Addison

Wesley.

http://www.agilealliance.org/

