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Executive Summary 
In August 1998 the President's Information Technology Advisory 
Committee (PITAC) submitted an Interim Report emphasizing the 
importance of sottw~se l:o the nation and calling for a significant 
new federal investment in software researck ~ An NSF workshop 
subsequently brought together representatives of a broad segment 
of the software conananity to discuss the software research 
agenda. Workshop l~trticipants included researchers and develop- 
ers from geographically diverse organizations in academia and 
industry. 

A major theme of the PITAC Report was the "fragility" of our 
software infrastructm'e, where fragility means "unreliability, lack 
of security, perforrm~cg lapses, errors, and difficulty in upgrad- 
ing." The P1TAC was :~aicularly concerned by these failings, 
because software now affects almost every aspect of personal and 
professional life in the nation. It manages our telephone networks 
and nuclear power plants; a large variety of embedded control and 
sensor devices, air-Wdffic:-control systems, and the readiness of the 
world's most advanced military force, to mention only a few ex- 
amples. Given the exportential growth curve for software use, we 
expect even greater dem~mds on software in the future. 

To meet them, the workshop concluded that software 
research has to expired the scientific and engineering 
basis for constrticting "no-surprise" software of all 
types. We need to: 

• Develop the empirical science underlying software as rapidly 
as possible. One iml:ortant activity will be to analyze how 
some commercial and government organizations have learned 
to build no-surprise ~stems in stable environments. By ex- 
tracting principles fram these analyses, empirical research can 
help enlarge the no-surprise envelope. By validating princi- 
ples derived from thcoretical research, where many excellent 

1 See: http://www.hpcc.gov/ac/ 

but unused ideas originate, it can enlarge the toolkit of soft- 
ware developers. 

• Advance our understanding of the basic elements of the com- 
puter science discipline, which is the foundation for all soft- 
ware construction. Progress in formal methods, algorithms, 
operating systems, database management systems, program- 
ruing languages, and many other areas is essential. Otherwise, 
we risk running out of ideas and methods for creating the "un- 
precedented" software of the future that will maintain our 
global competitiveness and national security. To help in the 
construction of real-world no-surprisc systems, theoretical re- 
search should be sensitive to the issues raised by empirical 
analyses and to the scalability problem. 

• Address human needs significantly better as we engineer the 
large, unprecedented systems of the next century subject to 
concurrent safety, evolvability, and resource constraints. 

• Form teams to build important advanced applications that will 
both serve as test-beds for the new ideas and address a serious 
problem identified by the PITAC: "desperately needed soft- 
ware is not being developed." 

A significant new research investment is required to understand 
and correct the software "fragility" problem. The following work- 
shop report discusses the issues in more detail. Below is a sum- 
mary of the detailed findings and recommendations. 

FINDINGS AND RECOMMENDATIONS 
F I Current software has too many surprises. The sources of 

surprise are poorly understood. 

R1 Emphasize empirical research aimed at understanding the 
sources of software surprises. 

F2 Key sources of software surprise include immature or 
poorly integrated software domain sciences, construction 
(product) principles, and engineering processes. Software 
research emphases have swung from process to product re- 
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search, with weak coverage of domain sciences and inte- 
gration. 

R2 Balance and incrementally expand research in the domain 
sciences, construction (product) principles, engineering pro- 
cesses, and their integration. 

F3 Key components of software surprises include scalability, 
evolvability, dependability, usability, performance, and pre- 
dictability of cost and schedule. 

R3 Emphasize the ability to address these issues in research 
support and evaluation. 

F4 Software technology is hard to transition into practice and 
feedback is needed on its effectiveness. Just doing software 
research is not enough. 

R4 Expand initiatives to transition research and provide feed- 
back to researchers via government/industry/academic col- 
laboration, incentives, and support. 

opment. In the sequel, we will discuss research strategies for: 

• extracting useful principles of software construction through 
empirical investigations of successful projects and validating 
design principles developed in the research literature and 
elsewhere; 

• advancing our understanding of the software engineering pro- 
cess by experimenting with new approaches in applications 
projects; 

• continuing to develop a rigorous formal basis for software 
development that is sensitive to issues raised by empirical 
analysis and that puts a special focus on adapting to change 
and scaling to systems of realistic size; 

• forming teams to build important advanced applications that 
will both serve as a testbed for the new ideas and help addres,, 
a problem identified by the PITAC---that "desperately needed 
software is not being developed;" and 

• Emphasizing human factors for both software products and 
processes. 

1. Introduction and Motivation. 
As an industry, information technology, especially software tech- 
nology, has had an immense impact on the U. S. economy. In his 
MIT commencement address on June 5, 1998, President Clinton 
observed that "in just the past four years, information technology 
has been responsible for more than a third of our economic expan- 
sion." Important new software technologies with the potential for 
driving the economy to even greater heights electronic com- 
merce and advanced communications networks, to mention only 
two exciting examples--- are now under development or already in 
the field. 

The software story is not one of unvarnished success, however. In 
their Interim Report to President Clinton, the President's Informa- 
tion Technology Advisory Committee (PIT AC) calls software "the 
new physical infiastructure of the information age ... fundamental 
to economic success, scientific and technical research, and national 
security" but observes that "the Nation currently depends on soft- 
ware that is fragile, unreliable, and extremely difficult and labor- 
intensive to develop, test, and evolve." The PITAC Report notes 
the increasing importance of software "for commerce, for commu- 
nication, for access to information, and for the physical infra- 
structure of the country." But it also warns that "our ability to 
construct ... needed software systems and our ability to analyze 
and predict the performance of the enormously complex software 
systems that lie at the core of our economy are painfully inade- 
quate. We are neither training enough professionals to supply the 
needed software, nor adequately improving the efficiency and 
quality of our construction methods." 

The NSF Workshop on a Software Research Program for the 21 "t 
Century, which was held in Greenbelt, Maryland, on October 15- 
16, 1998, examined and elaborated the PITAC recommendolions 
for significant new research efforts towards understanding how to 
consLruct, analyze, and evolve software. The discussions ranged 
over all types of software from the everyday variety that dominates 
the commercial activities of the nation to the most complex, lead- 
ing-edge software. Workshop participants believe that the best 
approach to improving software quality and software engineering 
productivity begins with understanding and building on the sub- 
stantial successes of the last twenty-five years of software devel- 

2. Defining the Basis For a Software Discipline. 
The P]TAC Report spotlights the fact that "the software our sys 
tents depend on is fragile" and notes that the "fragility is manJ 
fested as unreliability, lack of security, performance lapses, error. 
and difficulty in upgrading." In other words, too much soflwar 
has too many surprises. Our goal should be to develop technique 
for expanding the envelope of "no-surprise software" and for ur 
derstanding more precisely when we are in danger of crossing th 
surprise threshold. Then, if we need an application outside 
threshold, it will not be a surprise if it experiences ovemms c 
shortfalls. 

The no-surprise software envelope. We should keep in mind, ho~ 
ever, that a large amount of no-surprise software is created eac 
year by organizations that have developed a standard engineerin 
approach from long experience in stable domains. The develop 
ment of such business systems as payroll and order-entry is hat 
died well by many experienced companies as long as the rules ( 
legalities governing the systems have not changed radically an 
the computational environment is well understood. One importm 
characteristic of such systems is often the existence of some dom 
nating technology---a centraliTed database, for examplv---or reg~ 
lations that impose constraints on the construction of system 
Numerous companies use development methodologies that, wl~ 
not the mathematically rigorous formal methods of the resear¢ 
community, are nevertheless systematic engineering approache 
As in classical engineering, they produce appropriately function~ 
reliable, and maintainable systems, usually on time and w i ~  
budget. Other examples of this success include various kinds, 
manufacturing precess-control systems, many NASA satelli 
ground-support systems, and even some kinds of air-traffic contr, 
systems. 

Software development is similar to other engineering activities: v 
reach our engineering limits whenever the environment for a n, 
surprise system changes significantly. Sometimes technology q 
governing regulations change, or it may be that the system mu 
tolerate dramatically increased stress. Lacking processes to flit 
commitments to unachievable success levels, we can easily exc~ 
our engineering capabilities. One common example is the bnsine 
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system that must handle an order-of-magnitude more transactions 
with many interdependencies than similar previous systems. The 
same thing happens if we greatly increase the size and complexity 
of a database support system for example, the ground data Earth 
Observing System of NASA, which has been under development 
for more than a decade. 

Classical engineering disciplines understand the surprise/no- 
surprise threshold better than we do. They know how to limit 
change, calculate its impact, and, over time, make a systematic 
transition to increased capability. We need careful empirical stud- 
ies of the methods used by the developers of successful no-surprise 
systems, with a view to identifying and generalizing their methods. 
We also have to imvestigate projects that failed when they ex- 
ceeded the threshold of current engineering knowledge and learn 
how to recognize the ~:eshold and systematically push it higher. 
One goal should be m clevelop ways to bound the development 
problem and constrain its solution and to understand and exploit 
the relationship between the two. 

We believe that the soJ.~ware research community would profit 
greatly by having a deeper understanding and appreciation of the 
large number of successtul no-surprise systems built every year by 
the software industry. In our view, this is the proper starting point 
for addressing the problems of the many important software sys- 
tems that are built beyond the threshold of current engineering 
practice. 

These latter "outside-fl~e-envelope" systems are of great interest to 
us as well. They see wide use and may often work satisfactorily, 
but their development and maintenance costs can be very high, 
and, in many eases, fl~ey have unacceptable failure levels. Outside- 
the-envelope systems include telephone switching systems and 
local area networks. Fimlly, there are the unsuccessful and some- 
times highly visible systems that go well past the threshold of suc- 
cessful engineering practice--e.g., the FAA Advanced 
Automation System. A primary question facing the software disci- 
pline is: How do we learn from building no-surprise systems and 
apply that success to outside-the-envelope and unsuccessful sys- 
tems, as complexity and risks grow? 

Software-related research areas. For explanatory purposes, let's 
classify software-related research into three areas: domain science, 
the principles of construction, and the engineering process. This 
taxonomy can shed light on the key issues in any engineering dis- 
cipline. For example, in civil engineering: l) the domain science 
is that part of physics, materials science, engineering economics, 
engineering ergonomics, etc., that is useful for building bridges, 
roads, and other relevant artifacts; 2) the principles of construction 
are those scalable general principles for creating civil engineering 
objects; they would penmt the construction of useful prototypes; 
and 3) the engineering process is the standard practice that enables 
a well-trained civil engineer to build a real bridge with available 
materials and construction crews of normal skill, and operating 
under realistic time constraints and budgets. 

In software engineering, domain sciences for applications include 
computer science plus physics, accounting, and so on; for operat- 
ing systems, it's computer science. Except at the (us~mlly non- 
scalable) level of algorithms, large development teams generally 
use only non-formal, non-validated principles of construction--for 
example, the commercial methodologies for building routine sys- 

tems. Research into the science of software construction often does 
not address scalability, except to acknowledge that it is an issue. 
We have very rigorous underpinnings for certain foundational ar- 
eas of software---formal verification, formal specification of de- 
signs or requirements, for example---but much less for the 
principles of construction. (Program synthesis from high-level 
specifications is an important exception.) Research results in foun- 
dations are seldom accompanied by equally rigorous and usable 
techniques for constructing real-world software based on the for- 
mal representations and underlying theory. Lacking a sufficient 
construction science, it has been difficult to create a realistic, rig- 
orous software engineering process. 

Why is this important? Because the software problem is an engi- 
neering problem. As with all engineering disciplines, software 
requires rigor in the underlying sciences: 

• Domain science. We need advances in the science of com- 
puting, because it is an essential domain science for software 
engineering. The study of algorithms and their characteristics 
will continue to be an important foundation for software. We 
should pay special attention to scalable properties that can 
usefully be isolated at the algorithmic level--for example, 
properties of models of system interconnections. 

• Construction principles. As Mead and Conway wrote twenty 
years ago in establishing foundational principles for VLSI de- 
sign: "The task of designing very complex systems involves 
managing, in some highly structured way, the space and time 
relationships between the various levels of system building 
blocks so that the entire system will function as intended 
when it is finished." Commercial practice advocates many 
principles for "managing ... relationships between the various 
levels of system building blocks," and the software research 
literature is replete with design principles, from the highest to 
the lowest levels. In virtually all cases, the principles have 
neither been carefully classified for applicability nor validated 
for practical effectiveness. We believe those scientific activi- 
ties should have high priority in future research projects. 

• Engineering process.  Much research has been conducted on 
the software engineering process in recent years, and our un- 
derstanding of the importance of process has increased. The 
stage is now set for developing a customiTable standard engi- 
neering practice founded on a sophisticated set of validated 
tools and techniques from a relevant science of construction 
principles. This practice should also draw heavily on empiri- 
cal investigations of successful no-surprise systems from vari- 
ous important domains. 

This breakdown gives us a more careful way of talking about the 
"science" of software. In particular, it is now easier to address a 
question that occasionally arises: Is it possible that there is no sci- 
ence of software? That is, could building high-quality software be 
more a matter of artistic skill and good taste than a scientifically 
well grounded activity? Within our framework, an appropriate 
reply might be: Which science do you mean? 

Domain science clearly exists for constructing the software that 
compiles a program written in a conventional programming lan- 
guage for a conventional computing platform. But that science is 
far from enough to cover the computing and human aspects of a 
large, unprecedented air-traffic control system subject to simulta- 
neous safety, evolvability, and resource constraints. To provide a 
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scientific basis for developing and evolving such systems will re- 
quire the extension of the domain science---computer science, in 
this case--to provide capabilities for large-scale, distributed, ultra- 
reliable, real-time information capture, processing, management, 
and display. It will also require the integration of computer science 
with other domain sciences, such as the aero-sciences, economics, 
and social sciences to address such issues as collision avoidance, 
human-computer interaction, computer-supported collaborative 
work, and risk management. Thus, to more rapidly bring ambi- 
tions, outside-the-envelope software systems within the scope of 
no-surprise development techniques wiU require improvements not 
only in computer-domain science, but also in the collaboration of 
computer science with other domain sciences. Doing all this may 
sound unachievable, but as a benchmark, there exist medium-size, 
air-traffic control systems that have passed the no-surprise test. 
One example is the system developed by Raytheon for Norway. 
Such benchmarks indicate that for some complex but well- 
understood applications, there is a sufficient combination of spe- 
cialized subsets of various domain sciences (in addition to appro- 
priate construction principles and engineering processes, of 
course) for experienced organizations to produce no-surprise soft- 
ware systems. The major challenge is to extend this engineering 
capability so that we can address more ambitious, unprecedented 
systems, which are exactly those needed for future industrial com- 
petitiveness and future public services to enhance our quality of 
life. 

As we examine the sciences underlying software, the existence of 
domain science is indisputable. But what about construction? Con- 
struction principles are implicit in the development of successful 
no-surprise systems and explicit in methods long discussed and 
advocated by the research community (not to mention the commu- 
nity of commercial design consultants). Therefore, the appropriate 
questions are: Do the principles rest on a coherent scienlifie foun- 
dation? Are they actually useful for building software systems? 

The first question is easy to address. Researchers have frequently 
recommended this or that design principle after developing (or 
outlining) sound mathematical foundations. Design by abstract 
data types is an obvious example, to which we might add stepwise 
refinement, structured programming, and decomposition of multi- 
party interactions, to mention only a few popular examples. 
Sometimes, the principles are at a much higher level--- Dijkstra's 
statement that distributed systems should be designed as self- 
stabilizing systems, for example----but equally well founded in 
appropriate mathematical theory. There are a very large number of 
instances of mathematically well-founded construction principles. 

The second question--usefulness---is clearly addressable in prin- 
ciple, but the fact that it is rarely attempted continues to separate 
software from other engineering fields. The usefulness of our de- 
sign principles and, therefore, of the underlying science is a matter 
for empirical investigation, and that has not been a primary focus 
of software research. 

Finally, consider the software engineering process, It also has a 
validation problem, as well as a foundational issue---our process is 
rarely based on carefully stated construction principle~ but the 
"science" underlying it is akin to the same management science 
that supports all other engineering disciplines, 

Findings: 
• Software research must address the wide range of software 

needs: from systems we can build reasonably well (no- 
surprise systems), to systems that test our ingenuity, to un- 
precedented systems that are beyond our current abilities. 

• Research is needed in the underlying domain sciences, con- 
struction principles, and engineering processes. 

Recommendations: 
• We need to understand the state of the art and the state of the 

practice of software development when we try to define soft- 
ware research needs. For example, we have to answer such 
questions as, "What are the major difficulties in moving from 
no-surprise systems to unprecedented systems?" To do so wil: 
require a greater focus on the empirical study of existing sys- 
tems. 

• Software research requires advances in the underlying domail 
sciences (including computer science), the principles of soft- 
ware construction, and the engineering process. We need to 
create rigorous principles for software development, apply 
these principles to various classes of unprecedented systems, 
develop support methods and tools for using them, and un- 
dertake controlled studies of their application for continued 
learning about software development and evolving the princi- 
pies. 

3. One Example of an Important New Application. 
Past successes demonstrate that some software development o] 
gamzations can build no-surprise software until conditions chang 
too much, and a discontinuity occurs between capability and e~ 
pectatio~ The problem can arise because of a deficiency in any c 
the three areas discussed above--domain science, constructio 
principles, or engineering process---but it usually comes from 
latter two. As we try to understand development failures, we nee 
to identify where, within this or some other systematic frameworl 
the breakdown occurred and what new knowledge will be require 
to push beyond it in the future. This systematic study of develot 
ment problems characterizes classical engineering fields and helt 
explain their steady progress. As Levy and Salvadori put it in 
Buildings Fall Down, engineers "learn a lot from failures," typ 
c, ally through systematic investigation by experts. 

The software field requires special help to make the transition 1 
engineering, because we are driven much more than most fields t 
the rapid pace of our market. The industry is motivated primar~ 
by the need to meet market demands and cannot slow down 
study principles and process. But when the demands on systen 
are growing exponentially, we cannot afford to let engineem 
knowledge grow linearly. 

To ilhistmte likely demands on 21st-century software and tl 
evolution of the demands that move a system out of the "n, 
surprise" envelope, we provide a description of the evolution of 
sample application: electronic commerce. 

Electronic Commerce. A few years ago, electronic commerce w, 
virtually non-existent. Now it has grown to at least 
$6,000,000,000 business, and predictions for growth are extreme 
optimistic. Estimates of total worldwide E-Commerce from rep 
table information technology analysts include: 
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Year 2001 2002 2005 
$Amount $200B $400B $1000B 

Over time, these estimates have continually increased. 

The most visible pan of this activity, involving individual con- 
sumers, is only about 20% of the dollar volume, though a much 
higher percentage of the ~:otal number of transactions. As many as 
forty-million people have bought or sold something on the Web. 
This number will easdy rise past one-hundred million in a few 
years, and we can expect one billion customers worldwide by 
2010. 

Electronic technologies decrease the cost of many important eco- 
nomic activities by (l,terally) orders of magnitude. Historically, 
any large change in file factors or production and distribution 
eventually leads to huge dislocations and opportunities. Luckily, 
the United States is in the forefront of this technology and is in a 
position to take earl) adyeantage. The current successes in elec- 
tronic commerce are dire,~y attributable to the work of computer 
scientists over the pas!L couple of decades. We would not be able to 
shop on the Web--to l(K:ate goods there and pay securely for 
them--without impov~mt work in the underlying domain sciences 
such as cryptography, pa)ment protocols, the Web itself, the Inter- 
net, large-scale distributed systems, distributed database manage- 
ment systems, and human-interface interaction models. 

Investments in these rese~Lreh areas have been repaid many-fold by 
the growth in the Ameri,:an economy. (Just consider the market 
capitalization of Yahoo!, Amazon, eBay and similar companies.) 
And there are many bright expectations for the future, moving 
from occasional catalogue sales to a standard mode of doing busi- 
ness-perhaps the onl) mode in certain new areas. This move will 
be a genuine change in ~onomic organization around the world 
and will change beha,Ao:.-s of the average citizen. There will be 
major dislocations and discomforts, but the net result will be a 
much more efficient aJ~ (we hope) more equitable economy. 

Many problems will need to be solved to reach this desirable state. 
As e-commerce moves from novelty to business necessity, our 
tolerance for discomfort and failure will disappear, and the need to 
support transactions from anywhere at anytime without losing or- 
ders or payments will be essential. The e-commerce world will 
have to work with telephone-system reliability. The market will 
tolerate essentially no regional or global outages and very few 
local problems. Yet ~e ,~ll continue to have fallible networks, 
computers, peripherals, :rod software. Commerce will be con- 
ducted with finns arotmd the globe, products will be ordered at all 
times, and new services will be created at an accelerating rate. 
Somehow we must be able to provide improving service in many 
styles and languages over the world's largest, most complex dis- 
tributed computer system Furthermore, there will be very strong 
security requirements, to ensure that the parties to any transaction 
are identifiable and have appropriate authority (financial, organ- 
izational, political). The Web makes possible an entirely new level 
of privacy invasion e~td intrusion. It is possible to track every 
move on the Web, including lime and even physical location. On 
the other hand, it is also possible to hide one's identity in ways that 
are impossible in the traditional physical world. The tension be- 
tween these, and the r~sks of social problems on the one hand and 
economic ones on the other, creates a need for much research, ap- 
plied research, and advanced development. 

Most business today is transacted on the basis of fixed prices, 
standard goods, and an agreement between a single buyer and 
seller. In the future, much more complex intemctious may become 
the norm, involving more parties (for comparison shopping, com- 
petitive bids, alternatives, bundling, etc.). Traditional styles of 
database transactions may be woefully inadequate to support the 
new opportunities, about which we can only guess. There will be a 
rising level of experimentation in this world, so applications wil l  
be designed, tried, redesigned, in huge numbers and on a very 
short time scale. The set of applications and services that a user 
sees will, therefore, change from instant to instant, and many will 
be faulty, yet the overall economic and computing system must not 
falter. 

As e-commerce becomes more common, we will move from a 
world with 107 occasional participants to one with 10 9 frequent 
users and with enterprises doing very large fractious of their buy- 
ing and selling by the new means. Consumers will have many 
ways to communicate and at least 10 '1 software agents and 1011 
network-euabled gadgets. The new modes of interaction and new 
ways to control problems and the need to provide continuous 
availability pose truly grand challenges. In such a world, it is not 
obvious how to allocate resources appropriately or how to charge 
for them--economic approaches with competing agents and bid- 
cling offer one of the few plausible solutions. Finally, the software 
will not all be written by specialist professionals but in many cases 
will be provided in hosted environments with standard tools, or 
using software kits. How do we make it easy yet foolproof to 
specify and implement complex business models? 

Within the framework of this report, other questions naturally 
arise: Where are the principles of construction that apply to build- 
ing such systems? What is the engineering practice available? 
How do we determine which of the ever-expanding set of require- 
ments will force us out of the envelope to systems that we cannot 
build reliably? 

Findings: 
• Software systems are evolving at an enormous rate of com- 

plexity, driven by the needs of a very active marketplace. 
• The example application demonstrates the limits of our exist- 

ing domain models, principles of construction, and engineer- 
ing processes. 

• At the boundaries of no-surprise systems are the significant 
issues of scalability, system evolution, and engineering proc- 
ess. 

Recommendations: 
• We need progress in both the underlying software domain 

science (e.g., databases, security, human-computer interaction, 
distributed systems) and the new views of the application do- 
main science (e.g., e-commerce). 

• Research is required on the principles of construction and the 
engineering process for the development of unprecedented 
software systems, including problems in scalability (e.g., in- 
creases in the user set, the amount of functionality), evolution 
of systems (e.g., need for almost instant change of capabili- 
ties), process/product relationships (e.g., the need to predict 
and achieve ever-higher levels of reliability, availability, and 
performance; the need for tool support). 
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4. Recommended Directions. 
The PITAC Interim Report recommends substantial new invest- 
ment in basic information technology research, noting that "the 
NSF defines basic research as the study of the 'fundamental as- 
pects of phenomena and of observable facts without specific appli- 
cation toward processes or products.'" Applied research, on the 
other hand, "is aimed at determining the means to meet specific 
needs," while development is "the systematic use of knowledge to 
produce useful materials, devices, or methods." The Report ob- 
serves that R&D is much more than these definitions. It is "a com- 
plex non-linear interaction between concepts and theories, data 
and experiments, and new products and processes." The concepts, 
theories, data, and experimentation produced by "basic research is 
a critically important part of this interwoven system." 

We agree and would emphasize that both applied research directed 
at particular application domains and the development of particular 
products or services inevitably require a foundation of basic re- 
search, which solves problems that form the barriers to real prog- 
ress and often can be applied across domain boundaries. Thus, a 
solution to the problem of scalability, one of the most important 
basic research questions for software, would have a wide impact 
over many important application domains. To take another exam- 
ple: research that improved the software engineering process 
would positively benefit the development of almost all software. 

In well-established engineering disciplines, basic research can 
focus primarily, but, perhaps, not exclusively, on fundamental 
technical issues. In a field as young and dynamic as software, 
however, the research community must also put substantial effort 
into establishing the principles and basic components of the disci- 
pline. The software research community has been doing that by 
asking such questions as: How do we obtain observable facts? 
What are the fundamental variables of the software discipline? But 
the answers have been slow in coming, because the same forces 
that have made information technology "responsible for more than 
a third of our economic expansion" over the last four years--as 
President Clinton told the MIT commencement audience last 
June---have also put a focus on applied research to support new 
applications, rather than a fundamental understanding that could 
eventually lead to extraordinary increases in our ability to produce 
no-surprise sottware. In this section we argue for supporting both 
high-risk fundamental research and the exciting new technologies 
that come out of applied research. 

4.a. Problem areas. 
To illustrate the need for greater research investment in the soft- 
ware discipline, let's look at three significant basic research tech- 
nical problem areas. 

1. Scale-up. One of the most important expansions of the no- 
surprise envelope will come when we have a coherent and general 
approach to scalability. In various domains, we know how to build 
no-surprise systems of a certain size and complexity, but the seal- 
ability question asks, "How do we systematically expand our abil- 
ity to create more complex systems for a given domain?" 

One reasonably successful approach to scaling up construction has 
been to build large reusable components: operating systems, Web 
browsers, databases, accounting systems, and office productivity 
systems are all examples. These are very large components, often 
containing millions of lines of code, and they make most applica- 

tions much easier to build than in the past. 

We should investigate why the approach has worked with very 
large components, while smaller-scale reusable software has not 
been nearly as successful. In particular, we need to understand 
why certain attempts to capitalize on these ideas have not been 
successful-e.g., uses of COTS where the assumption was that wc 
would get over 70% reuse and ended up with at most 30%. Are the 
failures traceable to missing principles of construction using com- 
ponents, do they arise from an inadequate or inadequately fol. 
lowed software engineering process, or do they arise from a lacg 
of understanding of the real system requirements? How do w~ 
systematically create a component-based development methodol. 
ogy that builds on the large-scale successes? 

2. Evolving systems. Understanding how to expand the no-surpris( 
envelope for systems subject to continual evolution is extremel,~ 
important, because evolvability is a widespread requirement 
Software systems enable us to improve the way we do business 
They also accelerate changes in the way we do things, whicl 
causes our requirements for software solutions, and thus the soft. 
ware itself, to change along with them. 

This increased rate of change comes from a variety of factors. Fo: 
example, as a particular business domain changes, the softwar( 
must continue to adapt to be relevant. But there are also change~ 
that are driven by the nature of the software itself. As users be 
come more knowledgeable about a system, they understand thei 
needs better and, hence, have new requirements. In addition, thei 
expectations change. 

As the previously described example of e-systems demonstrates 
requirements for certain kinds of important systems will continu 
ously evolve. The more we use such systems, the larger ark 
broader the user community will become, and the more rapidly th. 
requirements will grow. 

A significant number of large systems in the future will, by thei 
nature, continually evolve. Changes will expand from componen 
changes to architectural changes, from manual changes to auto 
mated changes, and from off-line changes to on-line change 
(where the change occurs while the system is running). 

How do we systematically develop principles of construction and 
software process appropriate to the needs of evolving systems? 

3. Process~product relationships. Finally, we need to expand th 
no-surprise envelope by developing principles and processes fc 
producing software that has specified characteristics. That is, give 
a particular set of system characteristics, how do we systematicali 
determine the principles of construction and the software eng 
neering process to build a system with those characteristics? As i 
most disciplines, we need to understand the cause-effect relatio[ 
ship between various processes and how they affect or make po,, 
sible various product characteristics. Even though human facto1 
play a large role in the software discipline, it is still important 1 
understand how issues like risk and predictability are effected b 
how we choose to build the system. 

We currently have trouble answering such questions as: What a] 
the most appropriate processes, techniques, and tools for effe~ 
tively constructing or analyzing particular classes of suftwm 
products? What are the levels of specificity for defining such pro~ 
esses so they support, but do not constrain, the development c 
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evolution of a system? How do we predict such aspects as the cost, 
delivery time, and reliability of large systems given certain vari- 
ables known or estimable in advance? How do we balance people 
factors: individual vs. group incentives; autonomy and 
empewerment vs. disciplined, uniform processes? 

We need to build models of cost, reliability, and effectiveness 
based on observations of real projects. Creating these models will 
require empirical investigation as well as model building tech- 
niques that are sensitive to the needs of the software discipline. 

4.b. Building a software discipline. 
Why do we need a so#ware discipline? Classical engineering dis- 
ciplines produce reli~)le artifacts under schedule, budget, 
workforce, legal, and other real-world constraints because they 
have a consistent framework--their scientific foundations---for 
developing and conmaanicating standard practice and for analyz- 
ing and correcting faui~ practice. Within this framework, aca- 
demic departments educate the next generation of practitioners, 
who can then provide important information on real-world prob- 
lems using the same framework. Properly educated engineers are 
also capable of profiting from new engineering research. By con- 
trast, few among the hundreds of thousands of working software 
engineers have an acadernic background in the design of complex 
systems. Thus, few engage in a dialogue with the research com- 
manity. 

Without question, a coherent scientific framework has proven to 
have great value for classical engineering. Bringing to maturity the 
scientific foundations of software would, therefore, appear to be 
highly desirable, although some worry that trying to impose engi- 
neering discipline on the field would risk losing the flexibility that 
has made software one of the driving forces of our economy. They 
are concerned about dampening the creativity that has produced 
some of the most impressive technology of the Twentieth Century. 

We should keep in mind, however, that adherence to a rigorous 
development process has not prevented classical engineering from 
undertaking high-risk, high-payoff projects. Further, the validity of 
Moore's Law for electrical engineering over three decades demon- 
strates that a field can be both rapidly developing and economi- 
cally significant while operating under engineering constraints. 
Even if some software will always be built without a rigorous en- 
gineering approach---because of market forces, for example---it 
will be important to nmximize the no-surprise core of such systems 
and to quantify the risks of going outside the no-surprise envelope. 
This knowledge of where you are in the no-surprise-to-high-risk 
continuum is characteristic of classical engineering but not of 
software engineering as currently practiced. 

Without a scientific basis for the software discipline, we cannot 
build no-surprise system~; of the next magnitude. We will remain 
prisoners of fads, rather lhan participants in the engineering enter- 
prise, if we lack a sufficient basis for carefully choosing the right 
construction principles mad engineering processes. Good solutions 
for systems that should fall within the no-surprise envelope will 
continue to be derivable only by an ever-decreasing number of 
gifted designers, who should, instead, reserve their efforts for the 
most difficult and advanc~l systems. Each success will itself be a 
non-repeatable surprise, and there will many more failures than 
Successes .  

We agree strongly with the P1TAC recommendation for significant 

new investment in basic software research. Given the large number 
of no-surprise systems from which researchers can now draw im- 
portant general principles and the demand for extraordinarily com- 
plex and dynamically evolving new systems, the time is right for 
creating better scientific foundations for the field. 

Recommendations for software research. Understanding a disci- 
pline involves observation, reflection, encapsulation of knowledge, 
the creation of evolving models (of both application domains and 
problem-solving processes), and experimentation. This paradigm 
has been used in many fields--e.g., physics, medicine, and manu- 
facturing. The differences among the fields are reflected in how 
models are built and analyzed and how experimentation is per- 
formed. 

Currently, there is an insufficient set of models to support reason- 
ing about the software discipline, a lack of understanding of their 
limitations, and insufficient analysis and experimentation within a 
model-driven framework. Thus, the software discipline needs to 
bring appropriate research methods to maturity and evolve them as 
we learn and grow as a discipline. In particular, we need to study 
and classify past development successes and failures relative to the 
parameters that limit our progress. We also need to build bodies of 
knowledge by classifying and integrating research results. 

Too often, promising software research goes unevaluated. Lacking 
a proper understanding of the usability of an idea, overloaded, 
risk-averse applications organizations rarely pay attention to re- 
search results. This lack of engagement means that the research 
community does not receive feedback on the viability of new ap- 
proaches. 

If we focus on research to produce no-surprise software, one thing 
we would want is no-surprise research papers. These are papers in 
which the research results are accompanied by the author's best 
effort to determine the region of successful applicability of the 
results. For example, a research paper on a static code analysis 
technique would not just furnish the technique and an example of 
how well the technique worked on a toy program. In addition, it 
would include an analysis of how well the technique worked on 
various classes of code (e.g., very efficient for single modules; 
very inefficient for multiple modules with multiple threads of 
control). The effort required for such analyses should be enabled 
by, and expected from, the award of larger research grants. 

This information makes it much more likely that applications or- 
ganizatious will experiment with them. It also provides a context 
for the experimental results to refine the assessment (e.g.: strong 
for 2G-statement modules; weak for 2000-satement modules). 

Not only do these assessment results help other applications or- 
ganizations benefit from the capabilities, but they also help 
sharpen the future research agenda, as researchers discover which 
capabilities are weakly covered and in high demand. 

This feedback-and-improvement loop can be both strengthened 
and accelerated ff the applications organizations arc motivated to 
collaborate with the researchers in performing the evaluations. For 
example, ff a P1TAC software initiative provided matching funds 
for university-industry collaborations to evaluate and strengthen 
the research results, the assessments would provide timely benefits 
to the adopter, stronger results for the researcher, and better re- 
search and technology status information for the remainder of both 
the research and the application communities. 
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As we have pointed out, the software community has achieved 
greater and greater success in support of other disciplines at the 
cost of not investing in and evolving the scientific and engineering 
basis for the software discipline. Putting so much effort into appli- 
cations for others explains, in part, why we have rarely studied 
even those systems that represent our successes. We have not de- 
veloped a significant understanding of how we have bound a 
problem space (for example, by concentrating on a particular ap- 
plicalion domain or by minimizing the degrees of freedom of the 
requirements) or constrained a solution space (for example, by 
using standard development methods or running on a well- 
understood computer system). We do not have a careful approach 
to analyzing the effect of changing a few parameters in system 
requirements. For example, we will not be able to systematically 
extend the no-surprise envelope until we can precisely describe 
why an organization that has been building order-entry systems for 
10,000 orders encounters high risk when trying to construct the 
same kind of system for 2-million orders. 

A national investment in developing, evolving, and maturing the 
software discipline will, therefore, benefit all information technol- 
ogy areas and most other application areas, as well as the related 
systems and products. 

Findings: 
* Basic and applied research in the software discipline should 

derive its motivation from real software problems, whether 
those problems are domain-specific or eross-domain. 

• A field as young and dynamic as software still needs to put 
effort into establishing the principles and components of the 
discipline. For example, we have to ask such questions as: 
How do we obtain observable facts? What are the fundamen- 
tal variables? 

• Basic research problems involve issues of scalability, system 
evolution, and engineering process as well as developing tools 
and formalisms. 

Recommendations: 
• A significant research investment is required if we are to 

study real software problems. To increase our general under- 
standing of software development, discover new principles 
that will help us build "no-surprise software," and validate 
theories of software construction, both new and long pro- 
posed, will require much time, effort, and funding support. 

5. Mechanisms and Follow-Through. 
Clearly, various government agencies will articulate high-level 
goals for research programs. However, it is important for the evo- 
lution of the discipline that these serve only as guidelines and mo- 
tivations for research problems. Such guidelines should not be the 
final arbiter of what is good research. It is important that the re- 
searchers in the discipline should propose the research. Basic re- 
search proposals need to have the freedom to follow the best ideas 
and not focus on the short term. Quality control by the research 
community is important, and research proposals should be as- 
sessed for the quality of the ideas, how well they contribute to the 
evolution of the software discipline, how well they address im- 
portant basic research problems, and how well they address the 
need for evaluating the work according to sound scientific princi- 
ples. 

Research review systems relying on peer review--the system used 
by the NSF, for example--generally manage well. They avoid 
wasting money on low-quality research. However, they may still 
miss some high-quality research because peer review can discour- 
age risk, controversy, and preliminary ideas in favor of predictable 
progress. Thus, although peer review should be the basis for qual- 
ity control, there should be some support for investing in risky, 
new ideas from researchers with excellent track records. 

In administering investment in riskier programs, we may need to 
consider new mechanisms. An approach that bears investigation is 
the NIH "study section" model. In this system, a small group of 
senior researchers helps in making decisions for a large number of 
proposals, spanning a broad spectrum of areas. The system has the 
advantages of continuity (the same people do this work for several 
years) and the perspective and good judgment of the very best re- 
searchers. Study sections could be more likely than the one-shot 
small NSF panels to recognize high-quality, new, and risky ideas 
as worth investment.. 

We also believe that a wide variety of software research should be 
funded. By "variety" we mean over research areas (mathematical 
foundations, tool development, empirical studies, languages, oper- 
ating systems, and human-computer interfaces, for example), as 
well as project styles (large and small, single and multiple-PI, and 
single and multiple-institutions). Research proposals should foster 
collaboration with other disciplines and with industry. 

Since it is clear that software is pervasive, that it should adapt and 
adopt time-proven engineering techniques, that some of its major 
problems are project and business management, many research 
projects should be interdisciplinary, including not only computer 
scientists but also, as appropriate, engineers, and researchers from 
business schools. At the same time choices of research subjects 
should be discussed with reputable industry representatives who, 
contrary to often-heard prejudice, do care about the longer term 
prospects and health of their industry. 

Of particular importance is the ability to facilitate and accelerate 
the transition of research across the chasm between software re- 
search and large-scale development in industry and government. 
There are many reasons for the problem, only some of which are 
technical. A major problem is the lack of incentives for academic 
software researchers and industry practitioners to collaborate and 
understand each other's objectives, constraints, and capabilities. 
There are many incentives for these groups to avoid each other. 
For example, academic research based on scaled-down compute1 
science problems and simplifying assumptions--what Fred Brooks 
has called "tractable abstractions ' ' w  is much easier to generate 
and publish than research that tries to understand and address criti. 
cal success factors for practitioners. On the industry side, applying 
yesterday's familiar solutions to today's problems is easier to de 
and defend than trying out risky new technology. Given this situa. 
tion, creating incentives for understanding and collaboration be. 
tween academic researchers and industry researchers an( 
practitioners should be a high priority. However, care must b~ 
taken to avoid over-bureaucratic or artificial collaboration pro. 
grams. Some examples of viable programs that could be scaled uI 
or applied to software research are: 

• Stimulating industrial collaboration in an expanded NSF Ex- 
perimental Software Systems Program. 
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• The NSF Software Engineering Research Centers Program, 
which could have Centers oriented more towards software~ 
with appropriate industry participation as a success criterion. 

• The State of Califorrda's Micro program, which provides 
matching funds for industry-supported university research. 

• Establishing and coordinating counterpart initiatives for ex- 
perimentation with advanced research concepts and capabili- 
ties in Federal missicm-oriented agencies (DoD, DoT, NASA, 
DoE, NIH, DoC, etc.) via HPCC-like mechanisms. 

The major benefits derived from such initiatives would be: 

• input from large projects to help guide the directions of the 
scientific research (keeping the science on the fight track); 

• avenues for technology transfer from the scientific research 
community to the development projects. 

The software research projects discussed in this report require 
large grants sustained over many years. In parfiodar, many ex- 
perimental projects i:a software research involve several faculty 
members and numerous graduate students, in addition to post- 
docs, visitors, and staff programmers. We emphasize, however, 
that long-term grants require regular checkpoints for accountabil- 
ity. In fact, mechanisms tbr accountability can also serve as media 
for feedback and improvement. 

Recommendations: 
Funding agencies should sponsor software research programs that 
include: 

• validation of concepts; 
• indications o:f rel.evance; 
• feedback mechanisms; 

And meaningfully encourage 
• academic/ind,us~ial collaboration; 
• empirical investigation. 

These research programs require large grants and should be sus- 
tained over several years. 

E d i t o r ' s  F i l l e r  

R e a d y  for some no-,,mrprise sof tware? 

I'll t ake  some - e>~ia cr ispy please! 

O b v i o u s l y  t he  original rec ipe  isn ' t  

enough[  

g o o d  
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Executive Summary 
This is a report of a workshop held in June 1998 to discuss the 
issue of empirical research in software engineering. The Universi- 
ties of Virginia and Maryland organized the workshop, and it was 
funded by the National Science Foundation (NSF). The workshop 
was attended by representatives from academia, funding agencies, 
and industrial software development organizations. 

Empirical research in software engineering is the observation of 
some aspect of software development in an experimental sense. 
The observation might be of an existing activity employing ac- 
cepted techniques or of the application of new techniques. Clearly, 
this type of research is best performed on real development proj- 
ects with professional developers although much of value has been 
learned by doing experiments with student developers. To ensure 
adequate input from professional developors, several representa- 
fives from industly attended the workshop who both understand 
research and have experience with development. 

Empirical research is important to the soi~are engineering field 
because the results of such research both help to characterize the 
technical problems with which the field is concerned and evaluate 
new techniques in a relevant context. In the view of the workshop 
organizers, insufficient empirical research in soft, care engineering 
is being conducted despite the need and commendable efforts by 
funding agencies such as the NSF. The reason for holding this 
workshop was to review the situation and seek ways of enabling 
more empirical research. 

The conclusions of the workshop are quite detailed. Many of the 
conclusions are suggestions to researchers of ways to make em- 
pirical research more successful. There are also ideas for industrial 
organizations and funding agencies. Beyond the detailed conclu- 
sions, several general and important observations came from the 
workshop discussions. Specifically: 

1) There is a significant need for empirical research in software 
engineering. Many important issues faced by the community 
can only be addressed by experimentation. 

2) Experimental work is complex and expensive to perform, 
3) Although there are exceptions, in many cases industry does 

not perceive a significant benefit from working with academic 
researchers in joint activities of an experimental nature. 


