Technical Report
Reading Techniques for OO Design Inspections

Guilherme H. Travassos* Forrest Shull 2 Jeffrey Carver® Victor Basili *°
ght@cos.ufrj.br fshull@fc-md.umd.edu carver@cs.umd.edu basili@cs.umd.edu
! Systems Engineering and ? Fraunhofer Center - Maryland ® Experimental Software
Computer Science Department University of Maryland Engineering Group
COPPE 4321 Hartwick Road Department of Computer
Federal University of Rio de Suite 500 Science
Janeiro College Park, MD 20742 University of Maryland
C.P. 68511 - llha do Fundao USA A.V. Williams Building
Rio de Janeiro, RJ 21945-180 College Park, MD 20742
Brazil USA
ABSTRACT

Inspections can be used to identify defects in software artifacts. In this way, inspection methods help to
improve software quality, especially when used early in software devel opment. | nspections of software design
can be especidly crucial since design defects (problems of correctness and completeness with respect to the
requirements, internal consistency, or other quality attributes) can directly affect the quality of, and effort
required for, the implementation. We have created a new family of “reading techniques’ (so called because
they help a reviewer to “read” a design artifact for the purpose of finding relevant information) that gives
specific and practical guidance for identifying defects in Object-Oriented designs. Each reading technique in
the family focuses the reviewer on some aspect of the design, with the goa that an inspection team applying
the entire family should achieve a high degree of coverage of the design defects. In this paper, we present an
overview of this new set of reading techniques. We discuss how these techniques were developed and suggest
how readers can use them to detect defects in high level object oriented design UML diagrams.

General Terms
Measurement, Design, Experimentation, Verification

Keywords
Empirica studies, OO design inspections, software process, experimenta process, software quality

1. INTRODUCTION

A software inspection aims to guarantee that a particular software artifact is complete, consistent,
unambiguous, and contains as less defects as possible to effectively support further system
development. For instance, inspections have been used to improve the quality of a system’s design
and code [5].

Because they rely on human understanding to detect defects, inspections have the advantage that they
can be performed as soon as a software work artifact is written and can be used with of different
artifacts and notations. Typically, inspections require individuals to review a particular artifact, and
then meet as a team to discuss and record defects, which are then sent to the document’ s author to be
corrected. Because inspections are typicaly performed by teams, they are a useful way of sharing
technical expertise about the quality of the software artifacts among the participants. And, because
developers become familiar with the idea of reading each other’s artifacts, they can lead to more
readabl e artifacts being produced over time.

On the other hand, the dependence on human effort causes non-technical issues to become a factor:
reviewers can have different levels of relevant expertise, can get bored if asked to review large
artifacts, can have their own feelings about what is or is not important, or can be affected by political
or personal issues. For this reason, there has been an emphasis on defining processes that people can
use for performing effective inspections.

Technical Report

Most publications concerning software inspections have concentrated on improving the inspection
meetings while assuming that individual reviewers are able to effectively detect defects in software
documents on their own. Fagan [6] and Gilb and Graham [9] emphasize the inspection method®,
identifying multiple phases involving planning, defect detection, defect collection, and correction. As
the basis for many of the review processes now in place (e.g., at NASA [12]), they have inspired the
direction of much of the research in this area, which has tended to concentrate on improving the
review method. However, they do not give any guidelines to the reviewer as to how defects should be
found in the detection phase; bah assume that the individua review of these documents can aready
be done effectively.

Proposed improvements to Fagan’s method often center on the importance and cost of the meeting.
However, empirical evidence has questioned the importance of team meetings by showing that
meetings do not contribute to finding a significant number of new defects that were not aready
found by individual reviewers [24][13]. This line of research suggests that efforts to improve the
review technique that is, the process used by each reviewer to find defects in the first place, could be
of benefit.

One approach to doing this is provided by software reading techniques A reading technique is a
series of steps for the individual analysis of a software product to achieve the understanding needed
for a particular task [2]. Reading techniques attempt to increase the effectiveness of inspections by
providing procedural guidelines that can be used by individual reviewers to examine (or “read”) a
given software artifact and identify defects. Rather than leave reviewers to their own devices, reading
techniques attempt to capture knowledge about best practices for defect detection into a procedure
that can be followed. Families of reading techniques have been tailored to defect inspections of
requirements (for requirements expressed in English or SCR, a forma notation) and to usability
inspections of user interfaces. There is empirical evidence that software reading increases the
effectiveness of inspections on different types of software artifacts, not just limited to source code
[13][1][2][8][14][25].

In this work, we describe a family of software reading techniques for the purpose of defect detection
of high-level Object-Oriented (OO) designs diagrams represented using Unified Modeling Language
(UML) [7]. A high level design is a set of artifacts concerned with the representation of real world
concepts. As a consequence of using the object-oriented paradigm these concepts are represented as a
collection of discrete objects that incorporate both data structure and behavior. The Object-Oriented
Reading Techniques (OORTS) consist of 7 different techniques that support the reading of different
design diagrams. More specificaly, the reading techniques described in this work are tailored ©
inspections of high-level design artifacts that capture the static and dynamic views of the problem
using UML notation: class, sequence, and state diagrams. Usually, these are the main UML diagrams
that developers build for high-level OO design. To compare design contents against requirements, we
expect that there will be a textua description of the functional requirements that may also describe
certain behaviors using more specialized representations such as use-cases [10].

The development of these techniques has been supported by a series of empirical studies [22], which
addresses questions aiming to identify the feasibility, technical soundness, usability and applicability
of such techniques. The results we have so far provide evidence that the OORTs are feasible and can
support readers in identifying different types of design defects [19][16][20].

Section 2 briefly describes objectoriented design in terms of the information that is important to be
checked during software inspections, showing an outline of the whole set of techniques and the
different types of defects such techniques are intended to identify. Section 3 discusses how the
techniques were developed and validated. Section 4 introduces the reading techniques and discusses

L In this text we disti nguish a “technique”’ from a“method” as follows: A technique is a series of steps, at some level of detail, which
can be followed in sequence to complete a particular task. We use the term “method” as defined in [1], “a management-level
description of when and how to apply techniques, which explains not only how to apply a technique, but also under what conditions
the technique's application is appropriate.”

Technical Report

the process inspectors can use to apply them. Finally, some suggestions for future work are discussed
in the conclusions.

2. READING TECHNIQUESFOR HIGH LEVEL DESIGN

Each reading technique can be thought of as a set of procedural guidelines that reviewers can follow,
step by-step, to examine a set of diagrams and detect defects. The types of defects on which our
techniques are focused, as listed in Table 1, are based on earlier work with requirements inspections
[17]. The defect taxonomy is important because it helps focus the kinds of questions reviewers
should answer during an inspection.

Table1 - Types of software defects, and their specific definitionsfor OO designs

Type of Defect | Description

Omisson One or more design diagrams that should contain some concept from
the genera requirements or from the requirements document do not
contain a representation for that concept.

Incorrect Fact | A designdiagram contains a misrepresentation of a concept described
in the general requirements or requirements document.

Inconsistency | A representation of a concept in one design diagram disagrees with a
representation of the same concept in either the same or another design
diagram.

Ambiguity A representation of a concept in the design is unclear, and could cause
a user of the document (developer, low-level designer, etc.) to
misinterpret or misunderstand the meaning of the concept.

Extraneous The design includes information that, while perhaps true, does not
Information apply to this domain and should not be included in the design.

We defined one reading technique for each pair or group of diagrams that could usefully be
compared against each other. For example, use cases needed to be compared to interaction dia grams
to detect whether the functionality described by the use case was captured and al the concepts and
expected behaviors regarding this functionality were represented. The full set of our reading
techniques is defined as illustrated in Figure 2, which differentiates horizontal® (comparisons of
documents within a single lifecycle phase) from vertical® (comparisons of documents between
phases) reading.

While horizontal reading aims to identify whether all of the design artifacts are describing the same
system, vertical reading tries to verify whether those design artifacts represent the right system,
which is described by the requirements and use-cases. So, the goal is that when al the techniques are
used together, then al the qudity issues in the design are covered. If the development team is not
using the full set of UML design artifacts, then the corresponding review techniques need not be
applied, without impact to the design inspection process”.

The horizontal techniques should be performed before the vertical techniques, however, a subset or
reordering of the techniques may be chosen based on important attributes of the design to be
reviewed. This is particularly interesting when developers are dealing with specialized application
domains. For example, consider a system whose functionality is based mainly on its reaction to
stimuli where state machine diagrams are common. In this situation, it could be beneficia to use the
reading techniques that focus on state machine diagrams before using the reading techniques that

2 Consistency among documents is the most important feature here.

3 Traceability between the phasesis the most important feature here.

4 However, this situation is not true for the software process as a whole. Some artifacts are important, such as a class diagram if
missing implies that the design didn't capture the static view of the problem.

Technical Report

focus on the other design diagrams. For conventional systems, such as database systems, the
semantic model of the information and the flow of the transactions seem to be the important
information. Therefore, a subset of the techniques could be picked that focus on this information. In
this situation, first reading the class diagram against the sequence diagrams seems to be a good idea
then continuing with the rest of the techniques.

Further description about the process of applying the reading techniques can be found in Section 4
and in more detail in [21] and [23]. Information about the techniques and a complete definition for
al the terms and definitions used in the context of this paper can be found in [16], which is
accessible via the web.

Requirements
Specification

Requirements Use-Cases
Descriptions

High Level -
Design CI_ass Class State Machine Interaction
Diagrams Descriptions || Diagrams Diagrams
[T | 1
(sequencediagrams)

¢ Techniques for vertical reading
—— Techniques for horizontal reading

Figure 2 —Set of OO Reading Techniques

3. THEDEVELOPMENT OF OORTSs

Since the first version, produced in 1998, the OO reading techniques have been modified and
improved based on the results of a series of empirical studies. The sequence of studies and evolution
of goals are illustrated in [18]; the results are summarized in the following sections. For the sake of
clarity, we define the different types of studies run as follows:

Feasibility study: Data is collected according to some experimental design, but full control over al
possible variables is not achieved. Such studies attempt to test the effectiveness of a process but are
not able to rule out al rival hypotheses that may till exist at the end of the study. For example, we
may observe changes in subject effectiveness but cannot completely rule out the possibility that they
were caused by something other than the new process. The goa here is to provide the researcher
with enough information to justify continued work.

Observational study: We use the term “observationa” to define a setting in which an experimental
subject performs some task while being observed by an experimenter. The purpose of the
observation is to collect data about how the particular task is accomplished. Observational
techniques can be used to understand current work practices that can be incorporated into the new

process. They are aso useful for getting a fine-grained understanding of how a new process is
applied.

Case study: Case studies examine a particular process in the context of a larger software lifecycle.
Case studies are usually not suitable vehicles for understanding a completely new process. They are
expensive — subjects must be trained and must overcome the learning curve, and their time is
potentialy costly.

Technical Report
3.1 Evaluating Feasibility

Based on lessons learned from studying requirements inspections, and different types of OO design
defects, an initial set of techniques was created. We chose to run afeasibility study, with feedback on
form and content as a secondary goal, before expending effort to perfect the techniques. This initial
validation was accomplished by means of a study [19] during the Fall 1998 semester at the
University of Maryland (UMCP) that evaluated the feasibility of applying reading techniques to an
OO design.

Subjects: The subjects came from a senior-level undergraduate software engineering course. Of the
44 students in the class, 32% had some previous industry experience in software design while 59%
had classroom experience with design but had not used it on area system (9% had no prior
experience at al in software design). All students were trained in OO development, UML and OO
software design activities as a part of the course. The subjects were randomly assigned into 15 teams
(14 teams with 3 students each and 1 team with 2 students) for the experiment.

Materials. An initid version of the reading techniques was applied to the design of a “Loan
Arranger” system responsible for organizing the loans held by a financial consolidating organization,
and for bundling them for resale to investors. It was a small system (11 classes in high-level design),
but contained some design complexity due to nornfunctional performance requirements.

Procedure: Prior to this study, subjects performed an inspection of the requirements for the system,
to detect defects and to better acquaint themselves with the given system and the domain. Subjects
were then given the “corrected” requirements (based on the aggregate inspection results of the class)
and use cases and asked to design the system. The “best” design, as chosen by course instructors,
was distributed to the class and subjects were asked to perform a design inspection of it. Inspection
activities consisted of an individual review followed by a team meeting (the main foc us of which was
to agree on a consensus list of defects). There was no control group. Therefore, we could not
compare the OORTS effectiveness to that of another OO inspection method. There were two
reasons for this decision. The first was that we are aware of no other published methods for reading
OO designs. Secondly, in a classroom environment, it was not possible to provide instruction on a
topic to only a portion of the class. Each team applied all seven of the reading techniques, but
divided them o to reduce workload: One member performed the vertical reading, while the other
two divided the horizontal techniques between them. After performing their individua reviews, the
team members met to compile their individual defect lists into a fina list that reflected the group
CONSENsus.

Data Collection: Questionnaires and interviews were used to collect qualitative data that addressed
the question of feasibility directly, while analysis of artifacts was used as a control on the data
quality and process conformance. Using both questionnaires and interviews allowed us to collect

qualitative data at different times, under different conditions; evaluating the consistency of answers
provided afirst level check on data quality. The qualitative data concerned

Opinion of effectiveness of technique (measured by what percentage of the defects in the
document subjects thought they had found)

Subjective usefulness of different perspectives (opertended question)

How closely subjects followed the technique (collected qualitatively and quantitatively, for
consistency)

Practicality of the techniques, would subjects use some or all of them again (operended
question)

The questionnaires were also used to capture limited quantitative data, namely the time required for
individual review. Anaysis of the subjects defect lists yielded quantitative data concerning the
number and type of defects detected by the techniques. (Because this was mainly a feasibility study,

Technical Report

we made the assumption in our counting of defects that all defects reported were real problems with
the document.)

Results and Lessons Learned: The guantitative data from this experiment showed some positive
results:

Using the techniques did allow teams to detect defects (11 were reported, on average).
A mgjority of the subjects agreed that the techniques were helpful.
Vertical techniques tended to find more defects of omitted and incorrect functionality.

Horizontal techniques tended to find more defects of ambiguities and inconsistencies between
design documents, lending some credence to the idea that the distinction between horizontal and
vertical techniquesisreal and useful.

Thus, the data supported the conclusion that the techniques were feasible: they could really be used
to detect defects, and moreover cauld be used to target particular types of defects.

At the same time, the gualitative data also indicated that the techniques were not as well specified as
they could be. From the qualitative data we were able to learn three globa lessons on how to
improve the techniques for the second version:

OO reading techniques should concentrate on semantic, not syntactic, issues.

Reading techniques need to include not only instructions for the reader, but some motivation as
to why those instructions are necessary.

The level of granularity of the instructions needs to be precisely described. For instance,
discussing functionality is a difficult but necessary part of the reading techniques. The difficulty
comes from the many different levels of granularity at which system behavior can be described,
and just assuming that subjects will intuitively grasp the correct level of granularity is naive and
causes frustration for the reviewer.

These results were at a global, non-specific level of detail. We found that the high level goa of the
techniques, to find defects, was accomplished. In addion, global issues (that is, issues requiring
changes to the general substance of the techniques rather than individual steps) about the process
were uncovered such asincluding more semantic checking and better motivating the readers.

These results led us to produce a second version of the techniques that incorporated several global
changes, such as a greater focus on semantic checking, more explanation of the goals of the process
geps, and a new terminology to help discuss system functionality in more detail.

3.2 Observing the Technical Soundness

Because we were still interested in studying the techniques in isolation, rather than applied as part of
a full software lifecycle, the nrew version was studied during the Fall 1999 semester at UMCP. The
reason for this type of study was primarily that we wanted some indication about the problem
domains, and the background of inspectors, for which the techniques could be most useful. The risk
of introducing the techniques on an unsuitable project, with time and budget constraints, when their
ease of use had not been tested also implied that another feasibility study could be useful.

To get the level of detail about the techniques that we wanted, we used an observationa approach
(i.e., using experimental methods suitable for understanding the process by which subjects apply the
techniques) [16]. Because this observational approach was a somewhat unusua approach, we first
performed a pilot study to debug the observationa approach and get it to work in our setting. Only

after that did we perform a full-scale observationa study, reported below. The observational
approach was necessary to understand what improvements might be necessary at the level of

individual steps, for example, whether subjects experience difficulties or misunderstandings while

6

Technical Report

applying the technique (and how these problems may be corrected), whether each step of the
technique contributes to achieving the overall goal, and whether the steps of the technique should be
reordered to better correspond to subjects own working styles.

Subjects: The 28 subjects were members of a graduate-level Software Engineering class. The
subjects were grouped in pairs for this study, with one member of the team acting as the executor
(responsible for applying the procedure) and the other as the observer (responsible for recording
observations about how the procedure was executed). Of the 14 that actually performed the OO
inspection, 86% had previous industry experience with OO design and the other 14% had classroom
experience. All students received training on the OO reading techniques and the observation process.

Materials: The new version of the OO reading techniques was applied to two designs: one for the
Loan Arranger (LA) system, described in the last section, and one for an automated parking garage
control system (PGCS). The Loan Arranger design used in this study was a simpler version of the
same system described in the feasibility study (7 classes in the high level design, 4 interaction
diagrams and 3 state diagrams). The PGCS was responsible for allowing drivers to enter and leave a
parking garage and keeping track of monthly parking tickets as well as the number of available

gpaces for genera parking. The PGCS was a relatively small system (6 classes in the high level
design, 5 interaction diagrams and 2 state diagrams). The LA problem domain was selected due to its
unfamiliarity to reviewers, while the PGCS domain was familiar.

Procedure: A quasi-experimental, factoria design was used in which half of the class reviewed the
LA design, and the other half the PGCS. Unlike the previous study, this experiment consisted of
individual review only; inspectors did not meet as teams. In each of these groups, roughly half the
subjects had previously inspected the requirements document for the same system. In this scheme,
we could look for any differences in performance due to the reviewers past familiarity with the
system requirements or with the problem domain.

Before the study, subjects received training in the reading techniques to be applied and the
observational methods. Training in observational methods was accomplished by presenting the roles
of executor and observer and defining their specific responsibilities. Subjects were asked to come up
with their own questions for dliciting information about the overall effectiveness of the techniques

and the way in which the process was applied (e.g. if the procedure was too detailed or missing key
information). After the execution of the techniques, each team wrote an evaluation report discussing

their experience and the results of the observation.

Data Collection: Anaysis of artifacts was again used for collecting some quantitative data, namely
the time required for executing the techniques and the number and type of defects detected.
However, observational techniques were the most important method used in this study. A rich array
of qualitative data was collected through their use. As mentioned earlier, the teams produced an
evaluation report, which included both a summary of the notes taken during observation as well as
retrospective data determined after the execution of the process. Some of the metrics collected from
the observations include:

Executor’s opinion of effectiveness of technique
Problems encountered with specific steps of procedure

How closely executors followed the techniques
The retrospective data (collected via operrended questions) provided the following information:

Usefulness of different perspectives
Practicality of the techniques; would they use some or al of them again

The problems encountered using the techniques

Technical Report

As can be noticed, the retrospective data are better suited to global issues, rather than the critiquing
of individua steps. Also, some of the metrics collected here were the same as in the previous
feasibility study, allowing a comparison of results across the two versions of the techniques.

Results/L essons L ear ned: The guantitative data from this experiment alowed us to:

Verify the difference between types of defects found by horizontal and vertical techniques.
Show that having expertise in the domain was not helpful for subjects in the design inspection.

Show that being a participant in a requirements inspection for the same system did not improve a
subject’s performance in the design inspection.

But, the qualitative data provided us with some potential ways of improving the techniques:

Order of dedling with information must match the subjects own way of thinking about the
problem.

Amount and type of training necessary needed to be modified.
Differences in design approaches could affect design inspection.

In contrast to the global results that were obtained from the feasibility studies, the results from this
study are more detailed. We began to understand the impact of the individua steps and their
ordering on the performance of the inspectors. Also, we were able to get a better understanding
about how domain expertise might or might not have an impact on the inspection.

This led us to produce a third version of the techniques, using the data from the observations about
the way that readers applied the techniques. This version of the techniques aso focused more on the
semantics behind the design models and less on the syntax. We aso changed terminology, from
“defects’ to “discrepancies’, reflecting the fact that inspectors and designers may have different
ideas about the design. Additional improvements were made regarding training and discrepancy
report forms. The details of the process evolution up to this point (along with the third version of the
techniques) are presented in a technical report [16]. This technical report shows excerpts from the
third version of horizontal and vertical reading technigues. These techniques can be compared with
the previous ones presented in [20] to observe the evolution based on these study results.

3.3 Identifying Usability in the Context of a Software Life Cycle

Previous studies had convinced us that the tecmiques were feasible, in that their use could detect
defects and that their individual steps and ordering seemed reasonable. However, we still had no
evidence that they could be used as part of a software development project, i.e. that they did not
require a prohibitive amount of effort, that what they required was available in atypical development
environment, and that their effects were useful for continuing the development of a system. For this
understanding, we performed two case studies to evaluate the techniques inside of a software
development process in a classroom environment. The first, described in Section 3.3.1, was done at
UMCP during the Spring 2000 semester. Here the OORTs were used in awaterfall lifecycle method.
The second one, described in Section 3.3.2, was done at the University of Southern California (USC)
during the Spring 2001 semester. Here the OORTs were used in a Spira lifecycle model in the
context of a Fagan-style inspection process [6].

3.3.1 Lifecycle Case Study 1: UMCP

Subjects: The subjects came from a senior level undergraduate software-engineering course. Of the
42 students in the class, 14% had some previous experience with OO design in industry while 45%
had classroom experience with OO design but had not used it an a real system (40% had no prior
experience in OO design). All the students were trained in OO development, OO software design

Technical Report

activities, UML, and OO design inspections as part of the course. The subjects were grouped into
high, medium, and low expertise categories, and one person from each group was randomly assigned
to each of the 14 3-person teams.

Material: An evolved version of the techniques based on the results from the previous study was
applied in the evolution of the PGCS system, described in the previous section. The students were

required to add functionality to that system that allowed customers to reserve tickets and pay bills
over the Internet.

Procedure: The subjects used a waterfall development process, to create an enhanced version of an
existing system. Prior to the study discussed here, the subjects had created and inspected the
reguirements document for the complete PGCS system. After correcting the defects found during the
requirements inspection, each team created a design for the system.

Once the initial design had been created, all teams used the horizontal reading to inspect their own
designs to ensure that they were consistent. They corrected any defects that they found. After the
designs had been corrected, the teams traded designs. Each team then performed the vertical reading
techniques on a design for ancther team. The list of discrepancies found by the reviewers was then
returned to the authors of the design for correction. In both of these inspections, team meetings
followed individual review.

In the overall scope of the software development process there was no control group here. This
occurred for two reasons: first, the design inspection was one small part of a larger experiment, and
the overall experimental design did not allow for a control group. Secondly, in a classroom
environment, it was not possible to provide instruction on a topic to only a portion of the class.

Data Collection: Questionnaires and an analysis of the defect lists were used to evaluate the
effectiveness of the techniques in the development process. The questionnaires were used throughout
the development cycle to collect both qualitative and quantitative data. The quantitative data
collected include both background information, used to classify the subjects as having high, medium,
or low expertise, and the amount of time taken to use the techniques, used to evaluate feasibility of
use. The qualitative data collected by the questionnaires concerned:

Opinions of the helpfulness of the techniques.

Problems encountered using the techniques, or extra knowledge that was needed to use the
techniques.

Opinions of effectiveness of training.

Analysis of the defect lists provided quantitative data about the number and types of defects found by
theteams. The data was useful in determining if the output of the reading process uncovered defects
and was useful for continuing the devel opment process.

Results/L essons L ear ned: Here our results continued to get even more specific, since the qualitative
data from this, our first case study, provided us with some lessons about the techniques and how they
fit with other development processes. First, we found that not only were the subjects able to apply
the techniques, but also there was no difficulty in their nteraction with the lifecycle and other
processes (specification, design, implementation, and testing) used in this development environment.
Second, whereas in earlier studies we found that the techniques were useful for finding defects, here
we verified that the defects being reported were of sufficient importance that their correction did lead
to improved system quality (i.e. the issues reported did represent real and nontrivial problems with
system quality). In addition they turned out to have another use: The vertical techniques helped
students to gain a better understanding of the system functionality and how it should be represented
in the design. Third, not only were the techniques feasible to use, but the effort required was not
prohibitive compared to other system tasks; the design inspections required on average 20 hours per
team, or 24% of the overal effort spent on design. Fourth, outside of the training in the techniques,

Technical Report

the subjects required no special knowledge that was not previously gained during the development of
the system.

Finally, we found the techniques to be useful for teaching OO design. Specifically, we were able to
use the horizontal techniques to improve the OO training. While we expected the subjects to use the
techniques to look for defects in the designs, they found that what they were instructed to look for in
terms of defects gave them a good idea of things that would not appear in a quality design.

3.3.2 Lifecycle Case Study 2: USC

Subjects. The subjects were members of agraduate level software engineering class. More than
50% of the students had industrial experience developing software, while only one student had no
experience a al. Only 25% of the subjects had industrial experience with OO design, with 45%
more having classroom experience. The students were trained in OO design and OO design
inspections as part of the course.

Material: Based on discussions with a local expert in the Spira lifecycle model and the MBASE
documentation standard [3][4] used on the projects, the OORTs were tailored. The subjects used this
tailored version of the OORTSs on their projects. Each team was working on a different project with

real customers, mainly in the domain of digital library applications. Most of the designs ranged from
10 to 20 classes in the class diagram. Because this was a two-semester project, these projects were
larger than the projects in the case study from Section 3.3.1.

Procedure: The subjects were using the Spiral development model to create their software. The
OORTs were used in one development iteration to aid in the inspection of the designs.

The subjects used Fagan-style inspections in their projects. Unlike the other studies, the goa of the
individual review was to prepare the individual reviewers for the main defect detection effort, which
occurred at the team meeting. So, the individual inspectors used the OORTSs in the preparation phase
to help them make alist of potential defects, which they wanted to discuss during the team meeting.

Asin previous experiments, there was no control group. It was not possible, based on constraints of
the class, to divide the class into a control and an experimental group. Also, pedagogically we could
not teach the OORTSsto only part of the class.

Data Collection: Questionnaires and defect lists were used to evaluate the effectiveness of the

techniques. The questionnaires were used to collect both qualitative and quantitative data. The
guantitative data included the background and experience of the subjects, as well as the defects they

reported. The qualitative data included:

Opinions of effectiveness and usefulness of the techniques in the spiral lifecycle model and with
the MBASE guidelines.

Opinions of effectiveness of the training

Results: The data from this study showed us that the subjects were able to find defects using the
OORTSs. Correction of these defects helped the subjects in their projects. The subjects also reported
that they found the techniques useful and that the time required was not prohibitive in the context of

the whole project. Most subjects thought the techniques were useful enough to recommend that they
be used again.

3.4 Usingin Industrial Environments

The series of classroom studies had provided a body of evidence that, first, yielded aproof-df -
concept of the usefulness of the process and second, identified a set of issues that are important for
tailoring this process for effective industrial use. For example, we have some experience with

10

Technical Report

modifying the techniques for use in different development methodologies (e.g. spira vs. waterfal)
and different inspection models (e.g. Fagan inspections).

To demonstrate the feasibility of using OORT’s in industrial environment, Melo et al. [11] describe a
case study that applied the techniques to guide inspections in a professional environment. The
application domain is control of tax collection (for a Brazilian state government). The system’s aim
isto alow commercial tax declarations for merchants and services to be submitted using the Internet.
Subjects: A team of 5 people from different development departments performed the inspection. The
inspectors al had some UML knowledge, although with varying levels of expertise. They also
received a tutorial about inspections.

Material: The version of the techniques described in Section 3.2 was used. The project artifacts (use
cases, class description, class and sequence diagrams) were prepared by the client. The independent
inspectors received these artifacts along with other material for accomplishing the inspection
(inspection forms and discrepancy report forms).

Procedure: One reviewer, with a better understanding of the OORTS, was present in al reviews so
that the other inspectors had a resource to answer any questions that came up about the process.

Data Collection: The inspectors collected any issues they noticed during the review on the defect
report forms. After the inspection, they met to discuss the possible problems in the project artifacts
and to produce a final list of defects.

Results: Asreported by Melo et a [11], inspectors were able to find (on average) 35 defects. The
inspector with the highest expertise with inspections and the OORTs found 57 defects. The inspector
who was least familiar with the techniques was able to find 12 defects. Across al inspectors, the
number of false positives was low. The inspectors suggested this was due to the participation of a
very effective moderator. The average time spent during the inspection (individual review plus
meeting) of the artifacts was 5.8 hours, and the average time per defect reported was 15 minutes.

At this point in time, having run a case study in a classroom environment and a case study in an
industrial environment, our next step is to run another industrial case study to make sure these ideas
can be tailored and transferred in additional, different industrial environments. For this we are
currently seeking an industrial partner who would be interested in receiving training in the
techniques and alow us to assist in, and study, their use on a project.

4. OORTs Usage

In this section, we describe the design issues relevant to horizontal and vertical reading, and provide
some guidelines for the practical use of the OORTS, based on observations on their use over the
series of evaluative studies.

The main idea in applying horizontal reading is to understand whether all the high-level design
artifacts are representing the same system. We must keep in mind that the artifacts should model the
same system information but from different perspectives. UML organizes the artifacts and different
types of information based on the type of system information they contain. There are specific
artifacts to capture essentially static information (basically, the structure assumed by the domain's
objects while playing specific roles in the problem domain) and specific artifacts to capture
essentially dynamic information (basically, the consequences when objects are asked to behave in
order to accomplish system functionalities). These different views allow devel opers to understand the
objects from complementary points of view. However, these differences among the diagrams make
the inspection process a bit more complicated. For instance, when comparing sequence diagrams
against state machine diagrams two different perspectives must be combined to interpret and identify
possible defects Each one of the sequence diagrams represents some system objects and the
messages exchanged between them that implement some functionality required by the user while, on
the other hand, the state machine diagram is a picture of what happens to one object when it is

11

Technical Report

influenced by the events occurring in multiple sequence diagrams. Sequence diagrams show the
specific messages exchanged by objects, while state diagrams show how the system responds to
events, which can be messages, services, or functionality. Both diagrams must convey information
about conditions and constraints on the functionality. So, the horizontal reading techniques explore
these types of differences and help reduce the semantic gap between the documents. See A ppendix
B.1 to get the complete version 3 horizontal reading techniques descriptions in English and Appendix
C.1 for the equivalent set in Portuguese.

To apply vertical reading readers should be aware of the differences between the two lifecycle phases
in which the documents were created and how the traceability between these two different phases
could be explored. The levels of abstraction and information representation between these phases are
quite different. Requirements and use cases should precisely describe the problem and thus use a
totally different representation than the design artifacts. There is no direct mapping from one phase
(specification) to another (design). Vertical reading techniques explore such ideas and provide some
guidance to help the reader identify the information s’he needs. For example, the requirements
descriptions and use cases capture the functionality of the entire system and in some cases the
services, but not the messages. Designers using these requirements and use cases decide about the
messages based on the viewpoint (abstraction) used to classify and organize the classes. Sequence
diagrams are organized based on messages that work together in some way to provide the services,
which compose the required functionality. Requirements and use cases describe constraints and
conditions in genera terms; on a sequence diagram such information must be made explicit and
associated with the appropriate messages. So, vertical reading techniques explore these types of
differences by defining some guidelines for tracing the right information between these two lifecycle
phases. See Appendix B.2 to get the complete version 3 vertical reading techniques descriptions in
English and Appendix C.2 for the equivalent set in Portuguese.

To support these two types of reading (horizontal and vertical) we have introduced some new
terminology to describe the actions of the system. First, because the level of abstraction and
granularity of the infamation in the requirements and use-cases is different from the abstraction and
information in the design artifacts, the concept of system functionality was broken down into three
complementary concepts (messages, services, and functionality). Messages are the very lowest-level
behaviors out of which system services and, in turn, functionalities are composed. They represent the
communication between objects that work together to implement system behavior. Messages may be
shown on sequence diagrams and must be associated with class behaviors. Services are combinations
of one or more messages and usually capture some basic activity necessary to accomplish a
functionality. They can be considered low-level actions performed by the system. They are the
“atomic units’ out of which system functionalities are composed. A service could be used as a part of
one or more functionalities. We use the term “functionality” to describe the behavior of the system
from the user’s point of view, in other words, the functionality that the user expects to be visible. A
functionality is composed of one or more services. Users do not typically consider services an end in
themselves; rather, services are the steps by which some larger goal or functionality is achieved. For
example, highlighting a block of text in a document would be considered a service. That service
could be used in conjunction with various other services to accomplish different functionalities. To
accomplish the functionality of making a section of text bold, the ‘highlight’ service would be
combined with the service of making selected text bold. On the other hand, the ‘highlight text’

service could be combined with the ‘cut’ service to accomplish the functionality of removing an
entire section of text.

A second important piece of terminology is that of conditions and constraints. A condition describes
what must be true for one or another functionality to be executed. A constraint constrains system
functionality. It must always be satisfied for system functionality accomplishment. This information
is important to readers comparing different diagrams since it describeshow the functionality must be
implemented; this information is important to maintain with the functionality it describes.

12

Technical Report

To organize the reading process, reading responsibilities can de distributed among the members of
the inspection team, reducing the reading effort per team member and improving the reading process.
In this way, each one of the readers can apply a reduced number of reading techniques, or even deal
with a reduced number of artifacts at the same time. After individual review, it is important to
organize a mesting in order to review each one of the individua defect lists and to create a fina list
that reflected a group consensus of the defects in the documents. It is not necessary to apply the
techniques in a particular order, but it seems to be reasonable to apply first horizontal reading for all
existing design artifacts and then vertical reading, to ensure that a consistent system description is

checked against the requirements. In Figure 3 is an example of how the techniques could be
organized among a team of three reviewers.

%'j L ooking for consistency Looking for traceability
Horizontal reading :} ! t Vertical reading

Reader 1 / 9
Reader 2 Meet as ateam to discuss a /\
comprehensive defect list. Reader 3
Each reader isan “expert” in
adifferent aspect

ﬂ

Final list of all defects sent
to the designer for repairing

Figure 3— Organizing reading with 3 readers

5. ONGOING WORK

The Object Oriented reading techniques (OORTS) have been, and till are, evolving since their first
definition. New issues and improvements have been included based on the feedback of readers and
volunteers. Throughout this process, we have been trying to capture new features and to understand
whether the latest version of the reading techniques keeps its feasibility and interest. We have found
observational techniques useful, because they have allowed us to follow the reading process as it
occurred, rather than trying to interpret the readers’ post-hoc answers as we have done in the past.
Observing how readers normally try to read diagrams challenged many of our assumptions about
how our techniques were actually being applied.

However, one question is still open in this area. It regards the level of automated support that should
be provided for such techniques. The observational studies have alowed us to understand which
steps of the techniques can feel especialy repetitive and mechanical to the reader. So, the clerical
activities regarding the reading process using OORTSs must be precisely defined and identified. For
this dtuation, further observationa studies play an important role and they should be executed
aiming to collect suggestions on how to automate the clerical activities concerned with OORTSs.

So far, the techniques have been used in different contexts and by more than 150 different
developers, at different levels of expertise from academia and industry. Additionally, replications by
independent researchers have begun to take place in different companies and research groups. We
have made arrangements for our conclusions, future technical publications, and some data from
different environments to be available through the national Center for Empirically- Based Software
Engineering (CeBASE), at www.cebase.org.

The results we have so far have shown that the techniques are ready to be used in real projects. Still,
we are interested in the application of the techniques in various development environments, using
reviewers with different levels of experience and with different development paradigms (e.g.

13

Technical Report

waterfall, spiral, etc.). We are not advocating the techniques as a “one size fits all” process, but
understand that tailoring needs to be done for various different environments. We are continuing to
work in this area to enhance the practicality and feasibility of the techniques for industry. The
feedback from users and the observation of their effectiveness are playing an important role as we
work towards a useful and feasible set of reading techniques for OO design.

6. ACKNOWLEDGEMENTS

This work was partialy supported by UMIACS and by NSF grant CCR9706151.

Our specid thanks to Dr. Walcélio Melo, who applied the techniques in the context of an industria
project. We recognize the support, management and dedication of Prof. Victor R. Basili for this
research work. Dr. Travassos also recognizes the partial support from CAPES- Brazil while joined to
the Experimental Software Engineering Group at the University of Maryland/College Park.

7. REFERENCES

[1] Basili, V. R.; Green, S,; Laitenberger, O.; Lanubile, F.; Shull, F.; Sorumgard, S. and Zelkowitz, M. V.
(1996) The Empiricd Investigation of Perspective-Based Reading, Empirica Software Engineering
Journal, I, 133-164.

[2] Basili, V.; Cddiera, G.; Lanubile, F. and Shull, F. (1996b). Studies on reading techniques. In Proc. of the
Twenty-First Annual Software Engineering Workshop SEL-96-002, pages 59-65, Greenbelt, MD,
December.

[3] Boehm, B. A Spira Model of Software Development and Enhancement, |EEE Computer, May 1988, pp.
61-72.

[4] Boehm, B., Port, D., AbiAntoun, M., and Egyed, A. Guidelines for the Life Cycle Objectives (LCO) and
the Life Cycle Architecture (LCA) deliverables for Model-Based Architecting and Software Engineering

(MBASE). USC Technical Report USG CSE-98-519, University of Southern California, Los Angeles,
CA, 90089, February 1999.

[5] Fagan, M. E. (1976). "Design and Code Inspections to Reduce Errors in Program Development.” IBM
Systems Journal, 15(3):182-211.

[6] Fagan, M. (1986). "Advances in Software Inspections.” |EEE Transactions on Software Engineering,
12(7): 744-751, dly.

[7] Fowller, M.; Scott, K. (2000). UML Distilled: Applying the Standard Object Modeling Language, Second
edition, Addison Wesley. ISBN 0-201-65783-X

[8] Fusaro, P.; Lanubile, F. and Visaggio, G. (1997). A replicated experiment to assess requirements
ingpections techniques, Empirical Software Engineering Journal, vol.2, no.1, pp.39-57.

[9 Gilb, T. and Graham, D. (1993). Software Inspection. Addison-Wesley, reading, MA.

[10] Jacobson, |.; Christerson, M.; Jonsson, P. and Overgaard, G. (1995). Object-Oriented Software
Engineering: A Use Case Driven Approach, AddisonWedey, revised printing.

[11] Medo, W.; Shull, F. and Travassos, G.H. (2001). Software Review Guidelines. Technica Report ES-
556/01. Systems Engineering and Computer Science
Program. COPPE. Federal University of Rio de Janeiro. September.

[12] NASA. (1993). Nationa Aeronautics and Space Administration, Office of Safety and Mission
Assurance. " Software Formal Inspections Guidebook”. Report NASA-GB-A302, August 1993.

[13] Porter, A.; Votta Jr., L. and Basli, V. (1995). Comparing Detection Methods for Software
Requirements Inspections: A Replicated Experiment. IEEE Transactions on Software Engineering, 21(6):
563-575, June.

14

Technical Report

[14] Shull, F. (1998). Developing Techniques for Using Software Documents. A Series of Empirical
Sudies. Ph.D. thesis, University of Maryland, College Park, December 1998.

[15] Shull, F.; Travassos, G. and Basili, V. (1999). Towards Techniques for Improved OO Design
Ingpections. Workshop on Quantitative Approaches in Object-Oriented Software Engineering (in
association with the 13th European Conf. on Object Oriented Programming), Lisbon, Portugal. On line at
http://www.cs.umd.edu/proj ects SoftEng/ESEG/papers/postscript/ecoop99.ps.

[16] Shull, F.; Travassos, G. H.; Carver, J. and Basili, V. R. (1999h). Evolving a Set of Techniques for OO
Inspections. Technica Report CS-TR-4070, UMIACS-TR-99-63, University of Maryland, October.
http://www.cs.umd.edu/Dienst/UI1/2.0/Describe/ncstrl.umcp/CS-T R-4070

[17] Shull, F; Rus, I. and Basili, V. (2000). How Perspective Based Reading can Improve Requirements
Reading. IEEE Computer, July.

[18] Shull, F.; Carver, J; and Travassos, G.H. (2001). An Emperical Methodology for Introducing
Software Processes. In Proceedings of European Software Engineering Conference Vienna, Austria,
Sept. 10-14,2001. p. 288-296.

[19] Travassos, G.; Shull, F.; Fredericks, M., and Basili, V. (1999). Detecting Defects in Object-Oriented
Designs: Using Reading Techniques to Improve Software Quality. In the Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), Denver, Colorado.

[20] Travassos, G. H.; Shull, F. and Carver, J. (1999b). Evolving a Process for Inspecting OO Designs.
XIlI Brazilian Symposium on Software Engineering: Workshop on Software Quality. Floriandpalis,
Curitiba, Brazil, October.

[21] Travassos, G. H.; Shull, F.; Carver, J. and Basili, V. R. (1999c¢). Reading Techniques for OO Design
Inspections, 24" Annual Software Engineering Workshop, NASA/SEL, Greenbelt, USA, December. On
line at http://sel.gsfc.nasa.gov/website/sew/1999/topics/travassos SEW99paper.pdf.

[22] Travassos, G. H.; Shull, F. and Carver, J. (2000). A Family of Reading Techniques for OO Design
Inspection. XIV Brazilian Symposium on Software Engineering: Workshop on Software Quality. Jo&o
Pessoa, Paraiba, Brazil, October.

[23] Travassos, G.H.; Shull, F. and Carver, J. (2001). Working with UML: A Software Design Process
Based on Inspections for the Unified Modeling Language, Advances in Computers, 54(35-97), Academic
Press.

[24] Votta J., L. G. (1993). "Does Every Inspection Need a Meeting?' ACM SIGSOFT Software
Engineering Notes, 18(5): 107114, December.

[25] Zhang, Z.; Badili, V. and Shneiderman, B. (1998). An empirica study of perspective based usability
inspection. Human Factors and Ergonomics Society Annual Meeting, Chicago, October.

15

OORTs— Object Oriented Reading Techniques Version 3.0

APPENDIX A — DEFINITIONSAND DIAGRAM EXAMPLES

Throughout the description of the techniques, the following terms are constantly used:

1. Functionality: Functionality describes the behavior of the system. Typically, functionality is
described from the user’s point of view. That is, a description of system functionality should
answer the question: What can a user use the system to do? In the case of a word processor, an
example of system functionality is formatting text.

2. Service: Like “functiondity”, a service of the system is an action performed by the system.
However, services are much more low -level; they are the “aomic units’ out of which system
functionalities are composed. Users do not typically consider services an end in themselves;
rather, services are the steps by which some larger goal or functionality is achieved. In the case of
a word processor, typical services include selecting text, using pull-down menus, and changing
the font of a selection.

3. Message: Messages are the very lowest-level behaviors out of which system servicesand, in turn,
functionalities are composed. They represent the communication between objects that work
together to implement system behavior. Messages may be shown on sequence diagrams and must
have associated class behaviors.

For example, consider the example diagrams provided in the appendix D. In example 2, the sequence
diagram describes how classes collaborate to provide some functionality: the ability to lease a
parking spot. This functionality is meant to describe a use of the system from the user’s point of
view; athough the user may have to perform severa steps in his interaction with the system, we
expect that his or her fina goal is the lease of a spot to park his car.

Two services are marked on the diagram, represented by the heavy dashed and solid lines, which
group together a collection of messages. These services represent particular steps that must be
accomplished for the user to achieve the task of purchasing the parking spot. The dashed grouping
may be thought of as the service of “getting an open spot” while the grouping circled by the solid
line accomplishes the step of “paying for the spot at the time of leasing.” To the user, neither step
makes sense as a god in and of itsalf; e.g. it is of little use to the customer to find an open spot but
not pay for it.

It should be noted that there may be multiple ways to group messages together into services. The
messages lease_parking_spot, add_to_bill, and new_purchase may be grouped to compose a service
that can be thought of as “paying for a spot via monthly bill.” Each of these services represents a
different execution path the system will follow under different conditions, and thus all are necessary
to describe the full range of system functionality. In some cases, the designer may choose to use a
number of similar sequence diagrams, with each diagram showing one such execution path, in order
to avoid the complexity of many services being represented on the same diagram, as is the case in
Example 2.

Example 1: A use case for an automated system at a gas station, describing how a customer
purchases a parking spot. Note that “time of payment is the same as purchase time” is a condition; it
describes what must be true for the functionality to be executed. “ The Customer can only wait for 30
seconds for the authorization process’ imposes aconstraint that must be aways be true for system
functionality.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 16

OORTs— Object Oriented Reading Techniques Version 3.0

SR

Customer Credit_Card
billing services System
parking

Gas Station Owner

A customer, giving his account_number, asks the Gas Station Owner for an available parking spot to
park his car.

To get an availalde parking spot Gas Station Owner searches for the next parking place available.
With this information the customer can confirm the lease of the parking place. The time of payment
(time of purchase or a monthly paper bill) and how the service should be pad (by cash, personal
check or credit card).

If the time of payment is the same as the purchase time and Customer decides to pay by Credit Card
then Credit Card system should be used. The Customer can only wait for 30 seconds for the
authorization process otherwise this payment should be made by cash or persona check to avoid
other Customers waiting on the lane. The Gas Station Owner should ask the Customer for a new
payment type.

It allows the Gas Station Owner to mark a new service purchase for this Customer at this date.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 17

OORTs— Object Oriented Reading Techniques Version 3.0

Example 2: A sequence diagram for the automated gas station system, capturing how classes
collaborate to perform the functionality described in Example 1. Combinations of messages that form
system services have been marked. Conditions and constraints are included as annotations on the
diagram. “Response time < 30 secs’ represents a nonfunctional constraint on the way certain
functionality has to be implemented. “Payment time = monthly” is an example of a condition that
must be true for a particular message to be executed; in this case, the system variable “payment time’
must have the value “monthly.”

r_CEsErFeT:j I Gas Station Owner} i_P_arﬁn_ggg_ot_ﬂ I credit Card System | Customer Bill :| | Purchase: |
L Customer | ! Gas Station Quned ing_Sooi ! L Creq T L Puchase |
I parking_spot_request(account_number) I I I
next_available() _ |
.) U |
where_to_park(available parking_spot) "I‘ |
I !
[Payment type = Credit Card and payment time = nov»})xl
1 I '
| lease_parking_spot(parking_spot, payment time, payment type) | // i
- 2 1
: - | [payment time = monthly] S
new_payment_type_requ est() authorize_payment(custdmer, amount, date) !_‘ _}
I
\\ [response time < 30 secs] Bi _-
-
[response time => 30 secs &A | -

credit card not authorized andl| add_to_bill(customef, amount, date)
payment time = now] | T

>

ew_purchase(customer, parking_spot, date)

Example 3: The class diagram for the classes described in Example 2. Note that constraints on
system functionality are represented as annotations on classes.

Bill
Purchase Issue_Date : Date
Purchase_Date : Date N Payment_Date : Date
Tax : number 1 L.
<> price()
price() taxes()
taxes() customer()
new_purchase(customer, parking_spot)() purchases()
add_to_bill(customer, amount, date)()
1 1
Credit_Card System
(from External Systems)
0.*
+ authorize_payment(customer, amount, date)()
Customer
(from Customers) 1 \\\
Jpame e o 2 [oo b B T
- address : text - response time should be less than
- SSN : number 1 GasiStatoniownen secs for all Credit Card Systems | Ij
- Birthday : Date 0.* ;
- Account_number : number parking_spot_request(
+ opname() 1>
+ new_payment_type_request()()
1
Parking_Spot
Place : text
is_available()
next_available()

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 18

OORTs— Object Oriented Reading Techniques

Version 3.0

Example 4: Requirements descriptions and Class descriptions used to show how conditions and
constraints should be considered while reading both documents. Observe the relationship between

both documents shown by the underlined information.

Requirement Description

1- A customer has the option to be billed automatically at the time of purchase (of gas, car maintenance or
parking spots) or to be sent a monthly paper hill. Customers can pay via cash, credit card or personal cheek.
Gas Station services have afixed price (gas: US$ 1.09 gdlon, car maintenance: US$ 150.00 and parking spot:
US$ 5.00 per day). The tax is 5% added to the fina price of the purchase Sometimes, the Gas Station owner

can define discounts to those prices.

Class Decription

Classname: Purchase
Category: Customers
External Documents:

Export Control: Public
Cardinality: n
Hierarchy:
Superclasses: none
Public Interface:
Operations:
price
taxes
Private Interface:
Attributes:
Purchase Date: Date
Tax : number
Service: Services
Implementation:
Attributes:
Purchase Date: Date
Tax : number = 0.05
Operation name: price
Public member of: Purchase
Concurrency: Sequential
Return (1 + tax) * service->price
Operation name: taxes
Public member of: Purchase
Concurrency: Sequential
Return tax * service>price

Classname: Services
Category: Services
External Documents:

Export Control: Public
Cardindlity: n

Hierarchy:
Superclasses. none
Public Interface:

Operations:
price
Private Interface:
Attributes:
Discount_Rate : number
Price : number
Implementation:
Attributes:
Discount_Rate : number
Price: number
Operation name; price

Public member of: Services
Concurrency: Sequential
Return (1 - discount rate) * price

Classname: Car_Maintenance
Category: Services
Externa Documents:

Export Control: ~ Public
Cardinality: n
Hierarchy:
Superclasses. Services
Public Interface:
Operations:
price
Private Interface:
Attributes:
Price : number
I mplementation:
Attributes:
Price : number = 150.00

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 19

OORTs— Object Oriented Reading Techniques Version 3.0

Example5: A state diagram for the
“gas station owner” class from the
automated gas station system. An
associated sequence diagram is shown

[time <=7]
Authorizing

Authorized

[payment not OK]

[payment oK]

~———

)
Purchased

in Example 2.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland

20

OORTs— Object Oriented Reading Techniques Version 3.0

APPENDIX B.1-0OORT’'s3.0— Horizontal Reading—English Version
Reading 1 -- Sequence x Class Diagrams

Goal: To verify that the class diagram for the system describes classes and their relationships in such a way that the
behaviors specified in the sequence diagrams are correctly captured. To do this, you will first check that the classes and
objects specified in the sequence diagram appear in the class diagram. Then you will check that the class diagram
describes relationships, behaviors, and conditions that capture the dynamic services as described on the sequence
diagram.

Inputs to process:

1. A classdiagram (possibly divided into packages) that describes the classes of a system and how
they are associated.

2. Sequence diagrams that describe the classes, objects, and possibly actors of a system and how
they collaborate to capture services of the system.

. Take a sequence diagram and read it to under stand the system services described and how the
system should implement those services.

INPUTS: Sequence diagram (SD).

OUTPUTS: System objects (marked in blue on SD);

Services of the system (marked in green on SD);
Conditions on the services (marked in yellow on SD).

A. For each sequence diagram, underline the system objects and classes, and any actors, with a blue pen.

B. Underline the information exchanged between objects (the horizontal arrows) with a green pen. Consider
whether this information represents messages or services of the system. If theinformation exchanged is
very detailed, at the level of messages, you should abstract several messages together to understand the
services they work to provide. Example 2 provides an illustration of messages being abstracted into
services. Annotate the sequence diagram by writing down these services, and underline them in green also.

C. Circleany of the following constraints on the messages and services with ayellow pen: restrictions on the
number of classes/objects to which a message can be sent, restrictions on the global values of an attribute,
dependencies between data, or time constraints that can affect the state of the object. Also circle any
conditions that determine under what circumstances a message will be sent. The sequence diagram in
Example 2 contains several examples of constraints and conditions on messages. The conditions concerning
payment type and payment time determine when messages authorize_payment and
new_payment_type_request will be sent , while the restrictions on response_time for message
authorize_payment represent time constraints.

Il. I dentify and inspect the related class diagrams, to identify if the corresponding system objects
are described accurately.

INPUTS: Sequence diagrams, with objects, services, and constraints marked;

Class diagrams.

OUTPUTS: Discrepancy reports.

A. Veify that every object, class, and actor used in the sequence diagram is represented by a concrete class in
aclass diagram. For classes and actors, simply find the name on the class diagram. For objects, find the
name of the class from which the object isinstantiated. Check for the following discrepancies and mark on
the discrepancy report form :

1) If aclassor object cannot be found on the class diagram, it meansthat the information is
inconsistent between both documents, it is present in one and absent in the other.

2) If an actor cannot be found, determine whether that actor needsto be represented as a
classto perform the necessary behavior. If it does, then information that is present in the
sequence diagram is missing from the class diagram.

B. Verify that for every green-marked service or message on the sequence diagram, there is a corresponding
behavior on the class diagram. Verify that there are class behaviors in the class diagram that encapsul ate the
higher-level services provided by the sequence diagram. To do this, make sure that the class or object that
receives the message on the sequence diagram, or should be responsible for the service, possesses an
associated behavior on the class diagram. Also make sure that there exists some kind of association (on the
class diagram) between the two classes that the message connects (on the sequence diagram). Remember
that in both cases, you may need to trace upwards through any inheritance trees in which the class belongs

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 21

OORTs— Object Oriented Reading Techniques Version 3.0

to find the necessary features. Finally, verify that for each service, the messages described by the sequence
diagram are sufficient to achieve that service. Check for the following discrepancies, and mark on the
discrepancy report form:

D

2)
3

4)

Make surethat for each message on the sequence diagram the receiving class contains an
appropriate behavior on the class diagram. If not, it meansthat thereisan inconsistency
between the diagrams. A behavior is present in the sequence diagram, but missing on the
class diagram.

Make surethat there are appropriate behaviorsfor the system services? If not, thereisa
service present on the sequence diagram that is not represented on the class diagram.
Make surethereis an association on the class diagram betweenthe two classes between
which the message is sent. If not, an association is present in the sequence diagram,
because of the message exchange, but not present in the class diagram.

Make surethat there are not any behaviors missing, which would prevent the service from
being achieved. If thereare, it meansthat something is missing from the sequence
diagram.

C. Veify that the constraints identified in the sequence diagram can be fulfilled according to the class
diagram. Check for the following discrepandes, if any of the following statements are not true then
information on the sequence diagram has not been represented in the class diagram. Mark this on the
discrepancy report form.

D

2)
3

4)

If the sequence diagram places restrictions on the number of objects that can receive a
message, make sure that constraint appears as cardinality information for the appropriate
association in the class diagram.

If the sequence diagram specifies a range of per missible values for data, make sure that
constraint appears as a value range on an attribute in the class diagram.

If the sequence diagram contains information concer ning the dependencies between data
or objects (e.g. “a ‘Bill’ object cannot exist unless at least one ‘Purchase’ object exists’)
make surethisinformation isincluded on the class diagram. (It may be as a constraint on
aclass or relation on the class diagram or by cardinality constraints on relationships.)

If the sequence diagram contains timing constraints that could affect the state of an object
(e.g. “if noinput isreceived within 5 minutes then the window should be closed”) make
surethisinformation isincluded as a constraint on a class or relation on the class
diagram? (For example, the class diagram in Example 3 contains a timing constraint for
the class “ Credit_Card_System” sinceit appliesto all instantiations of this class. The
conditional expressions from Example 2 should not appear in the class diagram because
they do not affect the state of a class.)

D. Finally, for each class, message, and daaidentified above, think about whether, based on your previous
experience, it results in a reasonable design. For example, think about quality attributes of the design such
as cohesion (do all the behaviors and attributes of a class really belong togethe?) and coupling (are the
relations between classes appropriate?). Check for the following discrepancies:

D
2)
3
4)
5

6)
7)

Make surethat it islogical for the classto receive this message with these data.

Make sure you can verify that the constraints are feasible.

Make sure all of the necessary attributes are defined. If not, the diagrams may contain
incorrect facts.

For the classes specified in the sequence diagram, make sure the behaviors and attributes
specified for them on the class diagram make sense.

Make surethe nameof the classisappropriate for the domain, and for itsattributesand
behaviors.

Make suretherelationships with other classes are appropriate.

Make suretherelationshipsareof theright type. a(For example, has a composition

relationship been used wher e an association makes sense?) If not, you have found an
incorrect fact because something in the design contradicts your knowledge of the domain.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 22

OORTs— Object Oriented Reading Techniques Version 3.0

Reading 2 -- State diagrams x Class description
Goal: To verify that the classes are defined in away that can capture the functionality specified by the state diagrams.

Inputs to Process:
1. A set of class descriptions that lists the classes of a system along with their attributes and behaviors

2. State diagrams that describes the internal statesin which an object may exist, and the possible transitions between
States.

For each state diagram, perform the following steps:

Il Read the state diagram to under stand the possible states of the object and the actions that
trigger transitions between them.

INPUTS: Stat e diagram (SD).

OUTPUTS: Object States (marked in blue on SD);
Transition Actions (marked in green on SD);
Discrepancy reports.

A. Determine which classis being modeled by this state diagram.

1) If you can’t determinethe classthat is being modeled, then something has been omitted or
isambiguous. Indicate thison a discrepancy report form.

B. Trace the sequence of states and the transition actions (system changes during the lifetime of the object,
which trigger atransition from one state to another) throughthe state diagram. Begin at the start state (filled
circle) and follow the transitions until you reach an end state (double circle). Make sure you have covered
all transitions.

C. Underline the name of each state, as you come to it, with a bluepen.

D. Highlight transition actions (represented by arrows) as you come to them using a green pen. For example,
the state diagram provided in Example 5 contains seven transition actions. The arrow leading from the state
labeled “authorizing” back to itself represents an action that does not actually change the state of the object.

E. Think about the states and actions you have just identified, and how they fit together.

1) Makesurethat you can understand and describe what is going on with the object just by
reading the state machine. If you cannot, then the state machine is ambiguous. Indicate
this on the discrepancy report form.

Il. Find the class or class hierarchy, attributes, and behaviorson the class description that
correspond to the concepts on the state diagram.
INPUTS: Class description (CD);

Object States (marked in blue on SD);
Transition Actions (marked in green on SD).
OUTPUTS: Relevant object attributes (marked in blue on CD);

Relevant object behaviors (marked in green on CD);
Discrepancy reports.

A. Use the class desaiption to find the class or class hierarchy that corresponds to this state diagram.

1) If you can’t find the corresponding class fill out a discrepancy report form because you
have found an inconsistency. The state machine describes a class that has not been
described on the class description.

B. Find how the responsible class encapsul ates the blue-underlined states described on the state diagram.
States may be encapsul ated:

- lattribute explicitly. (An attribute exists whose possible values correspond to systemstates, e.g.
attribute “mode” with possible values“on”, “ off”.)

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 23

OORTs— Object Oriented Reading Techniques Version 3.0

C.

- 1attributeimplicitly. (An object is considered to be in a specific state depending on the value of some
attribute, but the state is not recorded explicitly. E.g. if a5 the object behaves oneway, for other
values of a another behavior is appropriate, but nothing explicitly records the current state.)

- acombination of attributes.

- classtype. (E.g. subclasses “fixed rate loan” and “variable rate loan” can be considered states of parent
class“loan”.) Remember to check the corresponding class and all parents in its inheritance hierarchy.
Mark each blue-underlined state with a star (*) when it is found.

1) If thereareany unstarred statesthen something is missing from the class description. |f
you can determine from your semantic knowledge of the domain, that the extra state does
not make sense, then indicate this on the discrepancy report form, otherwise just indicate
that the two diagrams are inconsistent.

For each green-highlighted transition action on the state diagram, verify that there are class behaviors
capable of achieving that transition. Remember to look both in the currently selected class and any classes
higher in the inheritance hierarchy.

(Keep in mind the following possible exceptions: 1) The transition depends on a global attribute, outside of
the class hierarchy. 2) In instances of poor design, i.e. high coupling and public class attributes, behaviorsin
associated classes can modify the value of a variable in the class directly.)

If the transition action is an event(i.e. a transition occurs when something happens) look for a behavior or
set of class behaviors that achieve that event.

If the transition action is a constraint (i.e. atransition occurs when some expression becomes t rue or false)
look for behaviors that can change the value of the constraint expression. For example, note the constraints
“[payment ok]” and “[payment not ok]” in example 5. These describe when the actions they describe can
happen, based on the status of payment.

Check for the following discrepancies, and fill out a discrepancy report form if you find any:

1) Makesurethat all actions are encapsulated by the class description. If they are not, then
something isrepresented in the state diagram, but not in the class description.

2) Makesurethat all of the constraints are encapsulated by the class description. If they are
not, then something isrepresented on the state diagram, but not in the class description.

3) Makesureall of the data need to verify a constraint is present in the class description. If it
isnot all there, then you have found information in the state diagram that isnot in the class
description.

Comparethe class description to the state diagram to make sure that the class, as described, can
capturethe appropriate functionality.

INPUTS: Object States (marked in blue on SD);

Transition Actions (marked in green on SD).

OUTPUTS: Discrepancy reports.

A.

Consider the system functionality in which this class participates, as described by the class description, and
the states in which it may exist, as described by the state diagram.

1) Using your semantic knowledge of this class and the behaviorsit should encapsulate, make
surethat all states aredescribed. If not, something is missing and the class asdescribed
cannot behave, asit should. Indicatethison a discrepancy report form.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 24

OORTs— Object Oriented Reading Techniques Version 3.0

Reading 3 -- Sequence x State diagrams

Goal : To verify that every state transition for an object can be achieved by the messages sent and
received by that object.

Inputs to Process:

1

Sequence diagrams that describe the classes, objects, and possibly actors of a system and how they collaborate to
capture services of the system.

State diagrams that describe the internal states in which an object may exist, and the possibl e transitions between
states.

For each state diagram, perform the following steps:

Read the state diagram to under stand the possible states of the object and the actions that
trigger transitions between them.
INPUTS: State diagram (SD).

OUTPUTS: Transition Actions (marked and labeled in green on SD);
Discrepancy reports.

A. Determine which classis being modeled by this state diagram.

1) If you can’t determinethe classthat is being modeled, then something has been omitted or
isambiguous. Indicate thison a dscrepancy report form.

B. Trace the sequence of states and the transition actions (system changes during the lifetime of the object,
which trigger atransition from one state to another) through the state diagram. Begin at the start state and
follow the transitions until you reach the end state. Make sure you have covered al transitions.

C. Highlight transition actions (represented by arrows) as you come to them using a green pen. For example,
the state diagram provided in Example 5 contains seven transition actions. The arrow leading from the state
labeled “authorizing” back to itself represents an action that does not actually change the state of the object.
Give each action a unique label [Al, A2, ...].

D. Think about the states and actions you have just identified, and how they fit together.

1) Makesurethat you can understand and describe what is going on with the object just by
reading the state machine. If you cannot, then the state machine is ambiguous. Indicate
this on the discrepancy report form.

Read the sequence diagrams to under stand how the transition actions are achieved by messages
that are sent and received by the relevant object.
INPUTS: State diagram (SD);
Transition Actions (marked and labeled in green on SD);
Sequence diagrams (SgD).
OUTPUTS: Object messages (marked and labeled in green on SqD);
Discrepancy reports.
A. Take the sequence diagrams and choose the ones that use the object modeled by the state diagram; use only
this subset of the sequence diagrams in the remainder of this step.

1) If thereareno sequence diagramsthat have this classin them, then fill out a discrepancy
report because thereisinformation in a state diagram that does not appear on the
sequence diagrams.

For each sequence diagram identified in the previous step:

B. Read the diagram to identify the system service being described and the messages that this object receives.

C. Think about which object states on the state diagram are semantically related to the system service.
Highlight the state transitions leading to and from these states, and use this subset for the remainder of this
step.

D. Map the object messages on the sequence diagram to the state transitions on the state diagram. Each
transition action may map to one message, or a sequence of messages. To do this, you will need to think
about the semantics behind the system messages. Are they contributing to achieving some larger system
service or functionality? Do they have something to do with the types of states this object should be in?
When you have made a mapping, mark the rel ated messages and transition actions with a star (*). Label the
messages with the same label given to their associated action on the state diagram.

1) Make sure, semantically, that you could do this mapping. If you cannot, then there are
messages needed for a state transition that are not in the sequence diagram. Fill out a

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 25

OORTs— Object Oriented Reading Techniques Version 3.0

discrepancy report form, because infor mation included in one diagram is not included in
theother one.

E. Look for constraints and conditions on the messages you just mapped to state transitions. An example
constraint might be “t>0", that is, whether or not a message is sent depends on the value of some attribute t.
Look to see that any constraints/conditions found are captured somehow on the state diagram. This
information might be captured by: 1) state information (i.e. the fact that t>0 corresponds to a particular state
of the system; 2) transition information (i.e. some state transition occurs when t>0 becomes true or false; 3)
nothing (i.e. thisinformation is not relevant or important for the state diagram). If any of the following
occur, then fill out a discrepancy report form:

1) Makesurethat you can find a correspondence between the conditions and constraints on
the state and sequence diagrams. If not, then one diagram has information that isnot on
theother.

2) For theinformation that appearson both diagrams, make surethat it isconsistent. If itis
not, then you have found the same infor mation represented on two different diagramsin
an inconsistent way.

I1. Review themarked up diagrams to make sure that all transition actions are accounted for.

INPUTS: Transition Actions (marked and labeled in green on SD);
Object messages (marked and labeled in green on SgD);.

OUTPUTS: Discrepancy reports.
A. Review the state diagram looking for unstared transition actions that could not be associated with object
messages.

1) If thetransition action was labeled with a constraint, see if you can find a message or
sequence of messages capable of satisfying the constraint. If not, you have found
information represented in one diagram but not in the other. The state diagram requires
system services that are not described on any sequence diagram. Fill out a discrepancy
report.

2) If thetransition action was labeled with an event, seeif you can find a message, a sequence
of messages, or some event performed by an actor that achievesthetransition action. If
not, you have found information represented in one diagram but not in the other. The state
diagram requires system servicesthat are not described on any sequence diagram. Fill out
a discrepancy report.

B. If the starred messages and transition actions identified in the previous step appear on the same segquence
diagram, make sure they appear in alogical order. That is, suppose the messages that achieve actionA 1l
appear before the messages that achieve action A2 on one sequence diagram. This means that A1 must take
place chronologically before A2. Then you should make sure that A1 could be reached before A2 on the
state diagram as well.

1) |If theorder doesnot match, thefill out a discrepancy report form, information is
represented on two diagrams, but in an inconsistent way.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 26

OORTs— Object Oriented Reading Techniques Version 3.0

Reading 4 -- Class diagrams x Class descriptions

Goal: To verify that the detailed descriptions of classes contain all the information necessary according to the class
diagram, and that the description of classes make semantic sense.

Inputs to Process:

3. A classdiagram (possibly divided into packages) that describes the classes of a system and how they are associated.

4. A set of class descriptions that lists the classes of a system along with their attributes and behaviors.

I Read the class diagram to under stand the necessary properties of the classesin the system.

INPUTS:

OUTPUTS:

Class diagram;
Class description.

Discrepancy reports.

For each class on the class diagram, perform the following steps:

A. Find the relevant class description. Mark the class on the class description with a blue symbol (*) when

found.
1)

If you can’t find the description, fill out a discrepancy report form, because a class present
on the class diagram is not present in the class description.

B. Check the name and textual description of the class to ensure that they provide a meaningful description of
the class that you are considering at this time. Also check that the description is using an adequate
abstraction level.

1)

Using your knowledge, make sure you can understand the purpose of this class from the
high-level description. If not, the description may be too ambiguousto be used for the
design model. Fill out a discrepancy report reporting a discrepancy because: outside
knowledge.

C. Veify that all the attributes are described along with basic types.

1)

2)

Make surethat the same set of attributesis present in both the class description and the
classdiagram. If not, fill out a discrepancy report form because information is present in
one document but not present in the other.

Make surethisclass can meaningfully encapsulate all these attributes, that is, doesit make
sense to have these attributesin the class description, and that the basic types assigned to
the attributes feasible according to the description of the attribute. If not, fill out a
discrepancy report form indicating a discrepancy because: outside knowledge

D. Verify that all the behaviors and constraints are described.

1)

2)

3)

4)

M ake sure the same set of behaviors and constraintsis present in both the class description
and the class diagram, and that they use the same style or level of granularity (e.g.
pseudocode) to describe the behaviors. If not, then information on one diagram is not
present on the other, or it isinconsistent between the two.

Make surethisclass can meaningfully encapsulate all these behaviors. Make surethe
constraints make sense for thisclass. Make surethat behaviors can accomplish their tasks
using the attributesthat have been defined (for thisor some other class). If not, fill in a
discrepancy report indicating a discr epancy because: outside knowledge.

Make sure the constraints ar e satisfiable using the attributes and behaviors that have been
defined. If not, you have found a situation wher e the behaviors and constraints as defined
cannot be satisfied using the attributes and behaviors that have been defined. Indicate this
on a discrepancy report form as a discrepancy because: outside knowledge. Describe the
situation.

Make surethat the behaviorsfor this class do not rely excessively on the attributes of other
classes to accomplish their functionality. (Note that you must make a value judgement
about what is meant by “excessivereliance.” You should compare the number of
references to other classes for this class with the rest of the system, and consider the type of

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 27

OORTs— Object Oriented Reading Techniques Version 3.0

functionality addressed to determine if such reliance isreally necessary.) If they do, then
you have found a possibly poor desgn situation. Fill out a discrepancy report form
indicating this situation.

E. If the class diagram specifies any inheritance mechanisms for this class, verify that they are correctly

described.

1)

2)

Make suretheinheritance relationship isincluded on the class description. If it is not, fill
out a discrepancy report form. Information on the class diagram isnot on the class
description.

Use the class hierarchy to find the parents of thisclass. Make surethat, semantically, a
<class name> isatype of <parent name>, and that it makes sense to have this class at this
point of the hierarchy. If not, you have uncovered a potential style issue: the hierarchy
should not be defined in thisway. Fill in a discrepancy report describing the problem:
outside informati on.

F. Verify that all the class relationships (association, aggregation and composition) are correctly described
with respect to multiplicity indications.

1)

2)

3)

4)

5)

Make sure that the object roles are captured on the class description, and that the correct
graphical notation isused on the class diagram. If you find a problem, fill out a
discrepancy report form indicating if information is omitted in one diagram, or if the
notation isincorrect.

Semantically, make sur e the relationships make sense given therole and the objectsrelated.
For example, if a composition relationship isinvolved, do the connected objectsreally seem
like a “whole-part” relationship? If they don’t make sense then you have uncovered a
potential styleissue: therelationships should not be defined in thisway. Fill in a
discrepancy report describing the problem: outside information.

If cardinalities are important, make surethey are described in the class description. Given
your under standing of the relationship, make sure the quantities of objects used are
enough. If not, fill in a discrepancy report because information in one diagram is not
present in the other.

Make surethat thereis some attribute representing therelationship. If not, fill in a
discrepancy report indicating that information in one diagram is not present in the other.

Make surethat therelationship uses a feasible basic type or structure of basic types (if
multiple cardinality isinvolved). If not, fill in a discrepancy report form indicating a
discrepancy because: outsideinformation.

Review the classdescriptionsfor extraneousinfor mation.

INPUTS:
OUTPUTS:

Class description.

Discrepancy reports.

A. Review the class descriptions to make sure that all classes described actually appear in the class diagram.

1)

Make surethere are no unstarred classes on the class description. If thereare any, fill out
a discrepancy report form because a class on the class description is not present on the
class diagram.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 28

OORTs— Object Oriented Reading Techniques Version 3.0

Discrepancy Report Form for Horizontal Reading

Name of the project: Team: Horizonta reading technique:
Inspection starts: (time) Date: (date)
Documents that are been read [fill in name and type]:
Document 1: Document 2:
Type of Concept:
(AC) ector (AT) attribute (BE) behavior (CA) cardindity
(CO) condition (CR) Constraint (DA) data (IN) inheritance
(ME) message (OB) object/Class (RE) relationship (RO) role
Discrepancy type (Disc. Type): Severity (Sev.):
(2) present in Document 1 but not Document 2 (NS) Not serious. But needs to check this document.
(2) present in Document 2 but not Document 1 (IN) This discrepancy invalidates this part of the
(3) present in both documents but inconsistent or document. Check both documents.
ambiguous (SE) Serious. It's not possible to continue the reading of

(4) present in both documents but using an incorrect | this document. It should be redesigned.
representation or notation

(5) present in both documents but extraneous
(6) missing in both documents [explain below]

Fill in the table with the discrepancies found:

Disc.# | Type of Name Disc. | Sev. Comments
concept type
0L
V4
3
4
(03]
6
07
8
[02)
10
11
12
13
14
15

(Use backside if necessary)
I nspection end: (time)

Use the following template to detail some found discrepancy (all the serious, 5 and 6 type discrepancies must
be explained) that you consider be necessary to be explained:

Discrepancy number (the same number used in the table): xx

Description:

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 29

OORTs— Object Oriented Reading Techniques

Version 3.0

Disc.#

Typeof
concept

Name

Disc. Sev.
type

Comments

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

&IR|&IS

46

47

49

50

51

52

53

55

(Use additional tables if necessary)

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland

OORTs— Object Oriented Reading Techniques Version 3.0

APPENDIX B.2—-OO0ORTs3.0—Vertical Reading - English Version

Reading 5 -- Class Descriptions x Requirements Description

Goal: To verify that the concepts and services that are described by the functiona requirements are
captured appropriately by the class descriptions.

Inputs to Process:

1
2.

A set of functional requirements that describes the concepts and services that is necessary in the final system.

A set of class descriptions that lists the classes of a system aong with their attributes and behaviors.

Read the requirements description to understand the functionality described.
INPUTS: Set of functional requirements (FR).
OUTPUTS: Candidate classes/objectg/attributes (marked in blue in FRs);

Candidate services (marked in green in FRs);
Constraints or conditions on services (marked in yellow in FRs).

Read over the each functional requirement to understand the functionality that it describes.

Find the nouns in the requirement; they are candidates to become classes, objects, or attributes in the system
design. Underline the nouns with a blue pen.

Find the verbs, or descriptions of actions, which are candidates to be services or behaviors in the system.
Underline the verbs or action descriptionswith a greenpen.

Look for descriptions of constraints or conditions on the nouns and verbs you identified in the preceding
two steps. Especially pay attention to non-functional requirements, which typically contain restrictions and
conditions on system functionality. For example, examine whether relationships between the concepts have
been identified. Ask whether there are explicit constraints or limitations on the way actions are performed.
Try to notice if definite quantities have been specified at any point in the requirement (see Example 4).
Underline these conditions and constraints with a yellow pen.

Compar ethe class descriptionsto the requirementsto verify if the requirements wer e captured
appropriately.
INPUTS: Set of functional requirements (FR);

Class description (CD).

OUTPUTS: Corresponding concepts have been marked on the FR and CD;

Discrepancy reports.

A. For each green-underlined action description in the functional requirements, try to find an associated

behavior or combination of behaviors in the class description. Use syntactic clues (e.g. a behavior name that
issimilar or synonymous to an action description) to help your search, but make sure the semantic meaning
of the function in the requirements and high-level design is the same. When found, mark both the name of
the behavior(s) in the class description and the description of the activity in the requirements with a green
symbol (*).

1) Makesuretheclassesreceive the right information for accomplishing the required
behaviors. Make surefeasibleresults are produced. If not, the classes cannot implement
the functionality appropriately. Indicate this on the discrepancy report form and mark
whether it is because of omitted functionality or incorrect or ambiguousinformation.

For each blue-underlined noun in the functional requirements, try to find an associated class in the class
description. An associated class may be named after a concept from the requirements, may describe a
general class of which the concept is a particular instance (i.e. an object), or may contain the concept as an
attribute. Use syntactic clues (e.g. aclass name that is similar to the name of a concept) to help your search,
but make sure thesemantic meaning of the concepts in the requirements and design is the same.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 31

OORTs— Object Oriented Reading Techniques Version 3.0

C.

If the concept in the functiona reguirements corresponds to a class name in the class description, mark both
the name of the class in the class description and the concept in the requirements description with a blue
symbol (*).

1

2)

Make sur e the class descriptions contain sufficient information regarding the concepts that
play somerolein thisfunctionality and the class names have some connection to the nouns
you had marked. If not, or if the classes are using ambiguous information to describe the
concepts indicate this on the discrepancy report form.

Make sure these classes encapsulate (blue-marked) attributes concerned with the nouns
you marked and (green-marked) behaviors concerned with the verbs or actions
descriptionsyou had marked. Also make surethat all identified constraints and conditions
for these classes regarding this requirement are described. If not, you have found
important information from the requirements omitted from the design. Indicate thison
the discrepancy report form.

If the concept in the functional requirements corresponds to an attribute in the class description, mark both
the name of the attribute in the class description and the concept in the regquirements description with a blue
symbol (*).

1

Make surethe class description is using feasible types to represent information; given the
requirementsdescription and that the (yellow-underlined) constraints and conditions on
the attributes were observed in their definition. If not, you have found incorrect
information in thedesign. Indicatethison the discrepancy report form.

Review the class description and functional requirementsto make surethat all appropriate
concepts correspond between the documents.

INPUTS:

OUTPUTS:

A. Look for descriptions of functionality in the requirements that have been omitted from the design.

Set of functiona regquirements (FR);
Class description (CD).

Discrepancy reports.

1) Makesurethat there areno unstarred nounsor verbsin therequirements. If thereisone,

make sure that it should have been included in the design, and was not there merely for
clarification. If it should have been in the design, then information has been omitted from
the design. Indicate thison the discrepancy report form.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 32

OORTs— Object Oriented Reading Techniques Version 3.0

Reading 6 -- Sequence Diagramsx Use-cases

Goal: To verify that sequence diagrams describe an appropriate combination of objects and messages that work to
capture the functionality described by the use case.

Inputs to process:
1. A use case that describes important concepts of the system (which may eventually be represented

2.

as objects, classes, or attributes) and the services it provides.

One or more sequence diagrams that describe the objects of a system and the services it provides.
There may be multiple sequence diagrams for a given use case since a use case will typically
describe multiple “execution paths’ through the system functionality. The correct set of sequence
diagrams for a use case must be selected by using traceability information, or by someone with
semantic knowledge about the system. Finding the correct set of sequence diagrams without
traceability information or knowledge of the system will be hard.

3. Theclass descriptions of all classes in the sequence diagram.

I dentify the functionality described by a use case, and important concepts of the system that are
necessary to achieve that functionality.

INPUTS: Use case (UC)

OUTPUTS: System concepts (marked in blue on UC);
Services provided by system (marked in green on UC);
Data necessary for achieving services (marked in yellow on UC).

A. Read over the use case to understand the functionality that it describes.

B. Findthe nounsincluded in the use case; they describe concepts of the system. Underline and number each
unigque noun with a bluepen as itis found. (That is, if a particular noun appears several times, label the
noun wit h the same number each time.)

C. For each noun identify the verbs that describe actions applied to or by the nouns. Underline the identified
services and number them (in the order they must be performed) with a green pen. Look for the constraints
and conditions that are necessary in order for this set of actions to be performed. As an example, consider
Example 1, in which constraints and conditions have been highlighted. In this use case, there is an example
of both a constraint (“The Customer can only wait for 30 seconds for the authorization process’) and a
condition (“time of payment is the same as the purchase time”).

D. Also identify any information or datathat is required to be sent or received in order to perform the actions.
Label the data in yellow as“Di,j” where subscriptsi and j are the numbers given to the nouns between
which the information is exchanged.

Identify and inspect the related sequence diagrams, to identify if the corresponding
functionality is described accurately and whether behaviorsand data arerepresented in the
right order.

INPUTS: Use case, with concepts, services, and data marked;

Seguence diagram (SD).

OUTPUTS: System concepts (marked in blue on SD);

Services provided by system (marked in green on SD);
Data exchanged between objeds (marked in yellow on SD).

A. For each sequence diagram, underline the system objects with a blue pen. Number them with the
corresponding number from the use case.

B. Identify the services described by the sequence diagrams. To do this, you will need to examire the
information exchanged between objects and classes on the sequence diagrams (the horizontal arrows). If the
information exchanged is very detailed, at the level of messages, you may need to abstract several messages
together to understand the services they work to provide. Underline the identified services and number them
(in the order they occur in the diagram) with a green pen. Look for the condition that activates the actions.

C. ldentify theinformation (or data) that is exchanged between system classes. Label the datain yellow as
“Di,j” where subscriptsi and j are the numbers given to the objects between which the information is
exchanged.

Compar e the marked-up diagramsto determine whether they represent the same domain

concepts.

INPUTS: Use case, with concepts, services, and data marked;

Sequence diagram, with objects, services, and data marked.

OUTPUTS: Discrepancy reports.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 33

OORTs— Object Oriented Reading Techniques Version 3.0

A. For each of the blue-marked nouns on the use case, search the sequence diagram to see if the same noun is
represented. Mark t he noun on the use case and the sequence diagram with a blue star (*) if it can be found
on the sequence diagram.

1)

2)

If there are any unstarred nouns on the use case, it means that a concept was used to
describe functionality on the use case but it was not represented on the sequence diagram.
For each of the nouns on the sequence diagram, find the corresponding class on the class
description and check whether the unstarred noun isan attribute. If the unstarred noun
does not appear as an attribute of any of these classes, you have found an omission.(Isthis
correct? Wearereferring to the Class Description here, but that isnot part of this
technique) A concept was described on the use case but has not appeared in the system
design. Fill in a discrepancy report because necessary functionality has been omitted.

If there are any unstarred nouns on the sequence diagram you have found an extraneous
noun, or a noun describing a lower-level concept, on the sequence diagram. Think about
whether the concept isnecessary for the high -level design, and whether it represents a level
of detail that isappropriate at thistime. If it does not, fill in a discrepancy report because
thisinformation isextraneous.

B. ldentify the services described by the sequence diagram, and compare them with the description used on the
use case. Are the classes/objects exchanging messages in the same order specified on the use case? Were
the data that appear on messages on the sequence diagram correctly described on the use case? Isit possible
for you to understand the expected functionality just by reading the sequence diagram?

1

2)

Make surethat the classes exchange messagesin the same specified order. If not think
about whether this represents a defect. Usually, switching the order of messages may have
an effect on the functionality. But sometimes messages can be switched without affecting
the outcome; other times, messages can be performed in parallel, or conditions may ensure
that only one or the other message is executed anyway. If changing the order will change
the functionality, fill in a discrepancy report because the information on the design is
incorrect.

Make sure that the data exchanged are all in the correct message and that the messages go
between the correct classes (i.e. do the labels “ Di,j” for the data match between diagrams).
Make sure the messages make sense for the objects sending and receiving them, and for
achieving therelevant services. If not, it meansthat the sequence diagram isusing
information incorrectly. Fill i n a discrepancy report describing the problem.

C. Areadl the constraints and conditions from the use case being observed in this sequence diagram? Is some
detail from the use case missing here?

1

Make surethat the constraints are observed. Make sure all of the behavior and data on
the sequence diagram are directly concerned with the use-case. If not, it meansthat the
sequence diagram is using information incorrectly. Fill in a discrepancy report describing
the problem.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 34

OORTs— Object Oriented Reading Techniques Version 3.0

Reading 7 -- State Diagrams x Requirements Description and Use-cases

Goal: To verify that the state diagrams describe appropriate states of objects and events that trigger state changes as
described by the requirements and use cases.

Inputs to process:
1. Theset of al state diagrams, each o which describes an object in the system.

2. A set of functional reguirements that describes the concepts and services that is necessary in the
final system.
3. The set of use cases that describe the important concepts of the system

For each state diagram, do the following steps:

. Read the state diagram to basically under stand the object it is modeling.

Il. Read the requirements description to deter mine the possible states of the object, which states
are adjacent to each other, and eventsthat cause the state changes.

INPUTS: State Diagrams (SD)
Requirements Description (RD)

OUTPUTS: Object States (marked in blue on SD)

Adjacency Matrix

A. Put away the state diagram and erase any (*) from that are in the requirements from previous iterations of
this step. Now, read through the requirements looking for places where the concept is described or for any
functional requirements in which the concept participates or is affected. When you locate one of these,
mark it in pencil with a (*) so that it will be easier to use for the remainder of the step. Focus on these parts
of the RD for therest of the step.

B. Locate descriptions of all of the different states that this object can bein. To locate a state, ook for
attribute vales or combinations of attribute values that cancause the object to behave in a different way.
When you locate a state underline it with a blue pen and give it a number.

C. Now identify which one of the numbered states is the Initial state. Using ablue pen, mark it with an “I”.
Likewise mark the end gate withan “E”.

D. When you have found all of the states, on a separate sheet of paper, create a matrix with 1..N across the top
and 1..N down the |eft side, where 1..N represents the numbers that you gave to the statesin the previous
step.

E. For each pair of states, if the object can change from the state represented by the number on the left hand
side to the state represented by the number on the top row, then mark the box at the intersection of the row
and column. If you can determine the event(s) that cause the state change put that in the box, if not just put
acheck mark (the event will be determined in alater step). If you can determine that it is not possible for
the transition to happen then place an X in the box. If you cannot make a definite det ermination then leave
the box blank for now.

F. For any event that you have identified above, if there are any constraints described in the requirements, then
write those by the event in the matrix.

I1. Read the Use cases and determine the eventsthat can cause state changes.
INPUT: Use Cases

OUTPUT : Completed Adjacency Matrix

A. Read through the use cases and find the ones in which the object participates. Focus on these for the rest of
the step.

B. For each box in the adjacency matrix that has a check mark in it, look through the use cases and determine
what event(s) can cause that transition. These events may not be obvious and may require you to abstract
the use cases and think about what is actually going on with each object. Erase the check mark and write
this event(s) in its place.

C. For each box that is blank in the adjacency matrix, see if any event that can cause that transition is described
inthe use cases. If itis, then write that event in the box; if not then place an X in the box.

V. Read the state diagram to determine if the states described are consistent with the requirements
and if the transitions are consistent with the requirements and use cases.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 35

OORTs— Object Oriented Reading Techniques Version 3.0

INPUT: Requirements Description;
State Diagram (SD);
Adjacency Matrix (AM).
OUTPUT : Discrepancy Reports
A. For each state that is marked and numbered in the requirements description, find the corresponding state on
the state diagram and using a blue pen, mark it with the same number used in the requirements. Be careful,
because the same state may have adifferent namein the requirements than it has on the state diagram. To
determine if two different names are talking about the same state, you must use your understanding of the
requirement’ s description of the state and the information contained in tre state diagram. This may be an
iterative process where if states appear to be missing, you must go back and look again at what you have
identified and make sure that it is correct. If you find any problems, fill out a discrepancy report.

1) Makesureyou can find all of the states. If a stateismissing, look to see if two or more
states that you marked in the requirements wer e combined into one state on the state
diagram. If not, then information has been omitted from the design. If so, then make sure
this combination makes sense. If it does not, then the design hasincorrect information in
it.

2) Makesurethat thereare no extrastatesin the state diagram. Look to seeif one statethat
you marked in the requirements has been split into two or more statesin the state diagram.
If not, then information in the design isextraneous. |f so, make surethat thissplit makes
sense. If it does not then the design hasincorrect information.

B. Onceyou haveall of the states labeled with numbers, using the AM, compare the transition events marked

on the matrix to the ones on the SD. For any box on the AM that is marked with an event, check the
corresponding states on the SD to make sure they have an event to transition between them, and check to
ensure that theevent is the same.
1) Makesureall of theeventson the AM appear on the SD. If not, information has been
omitted from the design. If thereare extra eventson the state diagram, then the design has
extraneousinformation in it.

C. For each constraint that was marked on the AM, find it on the SD.

1) Makesureyou can find all of the constraintsthat are on the AM. If you cannot, then
information has been omitted from the design. If there are extra constraints on the state
diagram, then the design has extraneousinfor mation.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 36

OORTs— Object Oriented Reading Techniques Version 3.0

Discrepancy Report Form for Vertical Reading
Name of the project: Team: Verticd reading technique:
I nspections starts: (time) Date: (date)

Documents that are been read [fill in name and type. Fill in Document 2 only if using reading 7]:

Document 1: Document 2:
Type of Concept:
(AC) ector (AT) attribute (BE) behavior (CA) cardindity
(CO) condition (CR) Condtraint (DA) data (IN) inheritance
(ME) message (OB) object/Class (RE) relationship (RO) role
Discrepancy type (Disc. Type): Severity (Sev.):
(1) necessary functionality or concept was omitted. (NS) Not serious. But needs to check this document.
(2) the design is incorrect with respect to the requirements. (IN) This discrepancy invalidates this part of the
(3) how the design implements these requirementsis document. Check both documents.
ambiguous or under -specified. (SE) Serious. It's not possible to continue the reading

(4) the design information is extraneous, i.e. not cdled for by | of this document. It should be redesigned.
the requirements.
(5) other design problem [explain below]

Fill in the table with the discrepancies found. Describe the functionality from the requirements, using
requirement numbers and page numbersif possible:

Disc. | Typeof Name Disc. Requirement | Sev. Comments
concept type I dentification
0l
02
03
04
05
06
07
08
09
10
11
12
13
14
15

(Usebacksideif necessary)
I nspection end: (time)
Use the following template to detail some found discrepancy (al the serious and 5 discrepancies might be
explained):
Discrepancy number (the same number used in the table): xx
Description:

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 37

OORTs— Object Oriented Reading Techniques

Version 3.0

Disc.

Typeof
concept

Name

Disc.
type

Requirement
Identification

Comments

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

41

&|R|5|6|R[B|8

49

50

51

52

53

55

56

57

(Use additional tables if necessary)

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland

OORTs— Object Oriented Reading Techniques Version 3.0

APPENDIX C.1 — OORTs 3.0 — Horizontal Reading — Portuguese
Version

Leitura 1—Diagramasde Seqiiéncia x Classes

Objetivo: Verificar se um diagrama de classes para um sistema descreve as classes e seus relacionamentos de forma que
0s comportamentos especificados nos diagramas de sequéncia estdo capturados corretamente. Para fazer isto, vocé
verificara primeiro que as classes e objetos especificados no diagrama de segiiéncia aparecem no diagrama de classes.

Ent8o, vocé verificard que o diagrama de classe descreve os relacionamentos, comportamentos e condi¢des que capturam
a dindmica dos servigos como estdo descritos no diagrama de sequiéncia.

Entradas para o processo:

3.

4

Um diagrama de classes (possivelmente dividido em pacotes) que descreve as classes de um
sistema e como elas estéo associadas.

Diagramas de sequiéncia que descrevem as classes, objetos, e possivelmente atores de um sistema
e como eles colaboram para capturar 0s servigos do sistema.

Pegue um diagrama de seqliéncia e lela-0 para entender que servigos do sistema estao descritos

e como o sstema deveriaimplementar estes servicos.

ENTRADAS: Diagramade Seqiuéncia(DS).

SAIDAS: Objetos do Sistema (marcados em azul no DS);

Servigos do Sistema (marcados em verde no DS);
Condicdes nos servicos (marcadas em amarelo no DS).

A. Para cada diagrama de seqiiéncia, sublinhe os objetos do sistema e classes, e quaisquer atores, com uma
caneta azul.

B. Sublinhe a informag&o trocada entre objetos (as setas horizontais) com uma caneta verde. Considere se esta
informac8o representa mensagens ou servicos do sistema. Se a informagdo trocada estid muito detalhada,
para um nivel de mensagens, vocé deverd abstrair varias mensagens juntas para entender que servicos elas
estdo fornecendo em conjunto. O exemplo 2 fornece uma ilustracdo de mensagens sendo abstraidas como
servigos. Anote no diagrama de sequiéncia descrevendo estes servigos, e sublinhe-os também em verde.

C. Circule qualquer das seguintes restrigdes nas mensagens e Servigos com uma caneta amarela: restricdes no
nimero de classes/objetos que uma mensagem poderia enviar, restricdes nos valores globais de um
atributo, dependéncias entre dados, ou restricdes de tempo que podem afetar 0 estado de um objeto. Circule
também quaisquer condicles que determinam sob que circunstancias uma mensagem pode ser enviada. O
diagrama de seqgiiéncia no exemplo 2 mostra vérias restricdes econdi¢cdes em mensagens. As condicdes
relativas ao tipo de pagamento e tempo do pagamento determinam quando as mensagens
authorize_payment e new_payment_type request serdo enviadas, enquanto as restricdes de response_time
para a mensagem authorize payment representam restri¢fes temporais.

Identifique e ingpecione o diagrama de classes relacionado, para identificar se os objetos

correspondentes do sistema estéo precisamente descritos.

ENTRADAS: Diagramasde Seqliéncia com objetos, servicos e restri¢Bes marcadas,

Diagrama de Classes.

SAIDAS: Relatério de Discrepancias.

A. Veifique que todo objeto, classe e ator usado no diagrama de seqiiéncia esta representado por uma classe
concreta no diagrama de classes. Para classes e atores, simplesmente encontre o nome no diagrama de
classes. Para objetos, encontre o nome da classe da qual o objeto foi instanciado. Verifique as seguintes
discrepancias e marque-as no Formuléario de Relato de Discrepancias:

1) Seuma classe ou objeto ndo pode ser encontrada no diagrama de classes, isto significa que
a informacdo esta inconsistente entre os dois diagramas, esta presente em um e ausente em
outro.

2) Se um ator n&o pode ser encontrado, determine se 0 ator precisa ser representado como
uma classe para executar algum comportamento necessario. Se sim, entdo informacdo que
esta presente nos diagramas deseqiiéncia esta faltando no diagrama de classes.

B. Verifique se paratodo servico ou mensagem marcado em verde no diagrama de seqiiéncia, existe um
comportamento correspondente no diagrama de classes. Verifique se existem comportamentos de classes no
diagrama de classes que encapsulam os servicos de mais ato nivel fornecidos pelo diagrama de seqiiéncia
Para fazer isto, esteja certo que a classe ou objeto querecebe a mensagem no diagrama desequiéncia, ou
que deveria ser responsavel pelo servigo, possui um comportamento associado no diagrama de classes.
Esteja certo também que existe algum tipo de associagdo (no diagrama de classes) entre as duas classes que

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 39

OORTs— Object Oriented Reading Techniques Version 3.0

amensagem conecta (no diagrama de seqiiéncia). Lembre que em ambos 0s casos, vocé pode precisar
procurar na arvore de heranga a qual a classe pertence para encontrar as caracteristicas necessarias.
Finalmente, verifique que para cada servico, as mensagens descritas pelo diagrama de seqiiénciasdo
suficientes para executar aquele servigo. Verifigue as seguintes discrepancias, e marque-as no Formulario
de Relato de Discrepancia

l) Esteja certo que para cada mensagem no diagrama deseqiiéncia a classe recebedora
contém um compor tamento apropriado no diagrama de classes. Caso contrario isto
significa que existe uma inconsisténcia entre os diagramas. Um comportamento esta
presente no diagrama desegiiéncia, mas faltando no diagrama de classes.

2) Estejacerto que existem comportamentos apr opriados par a os servigos do sistema. Se n&o,
existe um servico presente no diagrama de seqiiéncia que néo esta representado no
diagrama de classes.

3) Estejacerto que existe uma associagio no diagrama de classes entre duas classes as quais
trocam mensagens. Caso contrario, uma associacdo esta presente no diagrama de
seqiiéncig por causa da troca de mensagem, mas nao esta presente no diagrama de classes.

4) Esteja certo que ndo estédo faltando comportamentos, os quais poderiam evitar que algum
servico sgja executado. Se existem, isto significa que algo esta faltando no diagrama de
sequéncia

. Verifique que as restricdes identificadas no diagrama de seqiiéncia podem ser atendidas de acordo no
diagrama de classes. Verifique as seguintes discrepancias, se quaisquer das declaragdes seguintes ndo sdo
verdadeiras entdo informagdo no diagrama de seqUéncia ndo foi representada no diagrama de classes.
Margue-as no Formulério de Relato de Discrepancia

l) Se o diagrama de seqiiéncia descreve restrigdes no nimero de objetos que podem receber
uma mensagem, estgja certo que a restricdo aparece como uma informacdo de
cardinalidade na associagéo apropriada do diagrama de classe.

2) Se o diagrama de seqiiéncia especifica uma faixa de valores permitidos para os dados,
estgja certo que uma restrigao aparece como uma faixa de valores no atributo do diagrama
de classes.

3) Se o diagrama de seqiiéncia contém informagdo relacionada as dependéncias entre os
dados ou objetos (eg. “um objeto ‘conta’ ndo pode existir a menos que um objeto
‘compra’ exista’) esteja certo que esta informagcéo esta incluida no diagrama de classes.
(pode ser como uma restricdo na classe ou relagdo no diagrama de classes ou pelas
restricdes de cardinalidade nos r elacionamentos)

4) Se o diagrama deseqiiéncias contém restrigdes de tempo que poderiam afetar o estado de
um objeto (e.g. “ se nenhuma entrada é recebida dentro de 5minutos entdo a janela deveria
ser fechada”) esteja certo que esta informacao esta incluida como umarestricdo numa
classe ou relacéo do diagrama de classes (Por exemplo, o diagrama de classes do Exemplo 3
contém umarestricdo de tempo para a classe “ Credit_Card_System” desde que aplica para
todas as instancias desta classe. As expressdes condicionais do Exemplo 2 ndo deveriam
apar ecer no diagrama de classes por que elas nao afetam o estado da classe.)

D. Finalmente, para cada classe, mensagem e dado identificado acima, pense se, baseado em sua experiéncia

prévia isto resulta num projeto vidvel. Por exemplo, pense sobre os atributos de qualidade do projeto tais
como coesdo (todos os comportamentos e atributos de uma classe realmente pertencem a ela?) e
acoplamento (os relacionamentos entre as classes sdo apropriados?). Verifique as seguintes discrepancias:
1) Estejacerto que éldgico para a classe receber esta mensagem com estes dados.
2) Estejacerto que vocé pode verificar que as restrigdes sio viaveis.
3) Estejacerto que todos os atributos necessrios est&o definidos. Se n&o, os diagramas podem
conter fatosincorretos.
4) Para as classes especificadas no diagrama deseqiiéncia, esteja certo que comportamentos e
atributos especificados para ela no diagrama de classes fazem sentido.
5) Esteja certo que o nome da classe é apropriado para o dominio, e para seus atributos e
compor tamentos.
6) Estgja certo que osrelacionamentos com outras classes sfo apropriados.
7) Estgja certo que osrelacionamentos sio do tipo correto. (Por exemplo, um relacionamento
de composicdo vem sendo utilizado quando uma associagao faz sentido?) Se n&o, vocé

encontrou um fato incorreto porque alguma coisa no projeto contradiz seu conhecimento
do dominio.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 40

OORTs— Object Oriented Reading Techniques Version 3.0

Leitura 2— Diagramas de Estado x Descricéo de Classes
Objetivo: Veificar se as classes est@o descritas de forma a capturar a funcionaidade especificada pelo
diagrama de estados.

Entradas para o Processo:
3. Um conjunto de descri¢Bes de classes que lista as classes de um sistema juntamente com seus atributos e

comportamentos.

4. Diagramas de estados que descrevem os estados internos que os objetos podem assumir e as possivels

transi¢des entre estes estados.

Para cada diagrama de estado, execute 0s seguintes passos:

V.

Leia o diagrama de estados para entender os possiveis estados de um objeto e as agdes que
disparam as transicdes entre eles.

ENTRADAS: Diagrama de Estados (SD).
SAIDAS: Estados do Objeto (marcados em azul no SD);

Ac0es de Transic¢do (marcadas em verde no SD);
Relatérios de Discrepancia

Identifique que classe esta sendo modelada por este diagrama de estado.

1) Se vocé ndo pode identificar a classe que esta sendo modelada, entdo alguma coisa foi
omitida ou esta ambigua. Indique esta situagdo no Formulério de Relato de Discrepéncia

Acompanhe a seqiiéncia de estados e as ag¢fes de transicdo (trocas do sistema durante o tempo de vida do
objeto que provocam uma transi¢cdo de um estado para outro) através do diagrama de estado. Comece pelo
estado inicial (circulo cheio) e siga as transi¢fes ate que vocé encontre um estado final (circulo dobrado).
Esteja certo que vocé passou por todas as transi ¢oes.

Sublinhe 0 nome de cada estado, a medida que vocé o alcance, com uma caneta azul.

Destaque as agdes de transicao (representadas pelas setas) a medida que vocé passe por elas utilizando uma
caneta verde. Por exemplo, o diagrama de estado fornecido no exemplo 5 contem sete acBes de transi¢do. A
seta saindo do estado “authorizing” e voltando para este mesmo estado representa uma agdo que ndo
modificaoficialmente o estado do objeto.

Pense sobre os estados e a¢des que vocé identificou, e como podem estar representados em conjunto.

1) Estga certo que vocé pode entender e descrever o que esta acontecendo com o objeto
apenas lendo a maquina de estado. Se vocé ndo pode, entdo a maquina de estado é
ambigua. Indiqueisto no Formulario de Relato de Discrepancia.

Encontre a classe ou hierarquia de classes, atributos e comportamentos na descricdo de classes
gue correspondem aos conceitos do diagrama de estado.

ENTRADAS: Descricdo de Classes (CD);

Estados do Objeto (marcados em azul no SD);

Acdes de Transicdo (marcados em verde no SD).

SAIDAS: Atributos relevantes do objeto (marcado em azul no CD);

Comportamentos relevantes do objeto (marcado em verde no CD);

Relatério de Discrepéancias.
Utilize a descricéo de classes para encontrar a classe ou hierarquia de classes que corresponde ao diagrama
de estado.

1) Se vocé nao pode encontrar a classe correspondente preencha um relato de discrepancia
por que vocé encontrou uma inconsisténcia. A maquina de estado especifica uma classe que
néo esta descrita nas descricdes de classes.

Encontre como a classe responsavel encapsula os estados marcados em azul descritos no diagrama de
estados. Estados podem estar encapsulados por:

- 1 atiibuto explicitamente. (Um atributo existe e seus possiveis valores correspondem aos estados do
sistema, por exemplo, atributo “modo” com estados “ligado” e “desligado”).

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 41

OORTs— Object Oriented Reading Techniques Version 3.0

VI.

- 1 atributo implicitamente. (Um objeto é considerado estar num estado especifico dependendo do valor

de algum atributo, mas o estado ndo é explicitamente gravado. Por exemplo, se a5 o0 objeto se
comporta de uma forma, para outros valores um outro comportamento € apropriado, mas nada
explicitamente registra o estado corrente).

- Umacombinacdo de atributos.

- Tipo classe (Por exemplo, subclasses “fixed rate loan” e “variablerate loan” podem ser consideradas
estados da classe pai “loan”) Lembrese de verificar a classe correspondente e todos os parentes na
hierarquia de heranca.

Marque cada estado sublinhado em azul com um asterisco (*) quando ele for encontrado.

1) Se existem estados ndo marcados com asterisco entdo alguma coisa esta faltando na
descricdo da classe. Se vocé pode identificar, a partir de seu conhecimento semantico do
dominio, que estados extras ndo fazem sentido, entéo indique isto no Formulério de Relato
de Discrepéancia, sendo apenas indique que os dois diagramas estdo inconsistentes.

C. Paracada acéo de transicdo marcada em verde no diagrama de estado, verifigue se existem comport amentos

de classe capazes de ativar aguela transicdo. Lembre-se de verificar na classe correntemente selecionada ou
entdo nas classes mais atas na hierarquia de heranca.

(Tenha em mente as seguintes excegdes: 1) A transicdo depender de um atributo global, fora da hierarquia
de classes. 2) Em instancias de projeto de baixa qualidade, i.e. alto acoplamento e atributos publicos de
classes, comportamentos em classes associadas podem modificar o valor de uma varidvel na classe
diretamente)

Se a a¢do de transicdo é um evento (i.e. uma transi¢do ocorre quando alguma coisa acontece) procure por
um comportamento ou conjunto de comportamentos da classe que tratam este evento.

Se a agdo de transicdo € uma restricdo (i.e. uma transicdo ocorre quando alguma expressdo se torna
verdadeira ou falsa) procure por comportamento que podem trocar o valor de uma expressdo de restricao.
Por exemplo, observe as restricdes “[payment ok]” e “[payment not ok]” no exemplo 5. Elas indicam
guando as agdes que elas descrevem podem acontecer, baseado na situagdo do pagamento.

Verifique as seguintes situagdes, e preencha o formulério de relato de discrepancia se vocé encontrar
aguma

1) Estga certo que todas as agles sdo encapsuladas pela descrigdo da classe. Se elas néo sdo,
entao alguma coisa esta representada no diagrama de classes, mas nao esta na descricdo de
classes.

2) Tenhacerteza quetodas as restrices sdo encapsuladas pela descricédo da classe. Se elas ndo
sdo, entdo alguma coisa estd representada no diagrama de estados, mas néo esta na
descricao da classe.

3) Tenha certeza que os dados necessérios para verificar uma restricdo estdo presentes na
descricao da classe. Se eles nao estdo todos |4, entdo vocé encontrou uma informagéo no
diagrama de estados que ndo esta na descricédo da classe.

Compare a descricdo da classe com o diagrama de estados para ter certeza que a classe, como
descrita, pode capturar a funcionalidade apropriada.

ENTRADAS: Estados do Objeto (marcados em azul no SD);

Acdes de Transi¢do (marcados em verde no SD).

SAIDAS: Relatério de Discrepancias

A. Considere a funcionalidade do sistema na qual a classe participa, como descrito pela descri¢éo da classe, e

0s estados nos quais €la pode existir, como descrito pelo diagrama de estados.

1) Utilizando seu conhecimento seméntico sobre esta classe e os comportamentos que ela
deveria encapsular, tenha certeza que todos os estados estdo descritos. Se ndo, alguma
coisa esta faltando e a classe como descrita ndo pode se comportar como deveria. Indique
isto no Formulério de Relato de Discrepancia.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 42

OORTs— Object Oriented Reading Techniques Version 3.0

Leitura 3— Diagramas de Sequiéncia x Estados

Objetivo: Verificar se toda transicdo de estado para um objeto pode ser realizada pelas mensagens enviadas e

recebidas pelo objeto.

Entradas para o Processo:

5. Diagramas de Sequiéncia que descrevemas classes, objetos, e possivels atores de um sistema e como eles
colaboram para capturar 0s servigos do sistema.

6. Diagramas de Estados que descrevem os estados internos nos quais um objeto deve existir, e as possivels
transi¢des entre estes estados.

Paracada diagrama de estado, execute 0s seguintes passos:

V. Leia o diagrama de estados para entender os possiveis estados de um objeto e as agdes que
disparam transicbes entre eles.

ENTRADAS: Diagrama de Estados (SD).

SAIDAS: Acdes de Transic¢éo (marcadas e nomedas em verde no SD);
Relatérios de Discrepancia.

A. Determine qual classe esti sendo modelada pelo diagrama de estado.

1) Se vocé ndo pode identificar a classe que estd sendo modelada, entdo alguma coisa esta
sendo omitida ou esta ambigua. Indique isto no formuléario de relato de discrepancia.

B. Acompanhe a sequiéncia de estados e as agdes de transicéo (trocas do sistema durante o tempo de vida do
objeto que provocam uma transi¢cdo de um estado para outro) através do diagrama de estado. Comece pelo
estado inicial (circulo cheio) e siga as transi¢des ate que vocé encontre um estado final (circulo dobrado).
Esteja certo que vocé passou por todas as transi ¢des.

C. Marque as agdes de transicdo (representada pelas setas) a medida que vocé as encontre usando uma caneta
verde Por exemplo, o diagrama de estado fornecido no exemplo 5 contem sete acBes de transicdo. A seta
saindo do estado “authorizing” e voltando para este mesmo estado representa uma acgdo que nao modifica
oficialmente o estado do objeto. Dé a cada agdo um Unicolabel [A1, A2, ...]

D. Pense sobre os estados e ages que vocé identificou e como eles podem estar representados em conjunto.

1) Estgja certo que vocé pode entender e descrever o que esta acontecendo com o objeto
apenas lendo a maquina de estado. Se vocé ndo pode, entdo a maquina de estado é
ambigua. Indiqueisto no Formulario de Relato de Discrepancia.

V. Leia os diagramas de sequéncia para entender como as agdes de transicdo sdo realizadas por
mensagens que estao sendo enviadas e recebidas pelo objeto relevante.
ENTRADAS: Diagrama de Estados (SD);
Acdes de transi¢ao (marcadas e nomeadas em verde no SD);
Diagramas de Sequéncia (SgD).

SAIDAS: Mensagens dos Objetos (marcadas e nomeadas em verde no SgD);
Relatério de Discrepancias.

A. Pegue os diagramas de seqliéncia e scolha aqueles que utilizam o objeto modelado pelo diagrama de
estados; utilize este subconjunto de diagramas de seqiiéncia para o restante desta atividade.

1) Sendo existem diagramas de seqliéncia que utilizem esta classe, entdo preencha um relato
de discrepancia porque existe informacgdo num diagrama de estado que ndo aparece nos
diagramas de sequiéncia.

Para cada diagrama de seqiiénciaidentificado previamente faca:

B. Leia o diagrama para identificar os servicos do sistema sendo descrito e as mensagens que este objeto
recebe.

C. Pense sobre quais estados de objeto no diagrama de estado estdo semanticamenterelacionados aos servigos
do sistema. Marque as transi¢cOes de estado que levam a estes estados, e utilize este subconjunto para o
restante desta atividade.

D. Mapeie as mensagens de objeto nos diagramas de seqiiéncia para as transi¢cies de estado no diagrama de
estado. Cada agéo de transicdo deve mapear para uma mensagem ou uma seqiéncia de mensagens. Para
fazer isto, vocé precisara pensar sobre a seméntica associada as mensagens do sistema Elas estéo
contribuindo para acancar algum servigo maior do sistema ou entdo uma funcionalidade? Elas tém alguma
relacdo com os tipos de estado que este objeto deveria estar? Quando vocé tiver feito o mapeamento,
margue as mensagens relacionadas e as agles de transicdo com um asterisco (*). Nomeie as mensagens com
0 mesmo label dado para suas a¢des associadas do diagrama de estados.

1) Tenha semanticamente certeza que vocé pode fazer este mapeamento. Se ndo, entdo
existem mensagens necessarias para a transicao de estado que ndo estdo no diagrama de

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 43

OORTs— Object Oriented Reading Techniques Version 3.0

VI.

seqiiéncia. Preencha um relato de discrepancia, porque informacdo incluida em um

diagrama néo esta incluida em outro.
Procure por restri¢es e condi¢des nas mensagens que vocé acabou de mapear para as transi¢des de estado.
Um exemplo de restricdo pode ser “t>0", isto & se uma mensagem pode ou ndo ser enviada depende do
valor de algum atributo t. Certifique que quaisquer restri¢do/condicdo encontrada seja capturada em algum
lugar do diagrama de estados. Esta informacdo deveria ser capturada por: 1) informacgdo de estado (i.e. o
fato que t>0 corresponde a um estado particular do sistema), 2) informacdo de transicdo (i.e. alguma
transicdo de estado ocorre quando t>0 tornase verdadeira ou falsa) 3) nada (i.e. esta informagdo ndo é
relevante ou importante para o diagrama de estados). Se qualquer um dos seguintes ocorrer, entdo preencha
um relato de discrepancia:

1) Esteacerto que vocé pode encontrar uma correspondéncia entre condicdes e restricdes nos
diagramas de seqiiéncia e estados. Se nao, entdo um diagrama possui informacéo que nao
esta no outro.

2) Para ainformagdo que aparece em ambos os diagramas, certifique que esta consistente. Se
néo esta, entdo vocé encontrou que uma mesma informacdo esta representada em dois
diagramas diferentes de for ma inconsistente.

Revga os diagramas marcados para estar certo que todas acfes de transigdes estdo sendo
levadas em consider acéo.

ENTRADAS: Acdes de Transi¢do (marcadas e nomeadas em verde no SD);

Mensagens de Objetos (marcadas e nomeadas em verde no SqD);.

SAIDAS: Relatérios de Discrepancia.
A. Revega o diagrama de estados procurando por acfes de transicbes ndo marcadas com asterisco e que

poderiam ndo estar associada a mensagens de objetos.

1) Sea acdo de trandc¢éo foi nomeada como uma restricdo, veja se vocé pode encontrar uma
mensagem ou sequéncia de mensagens capaz de satisfazer a restricdo. Se ndo, vocé
encontrou informacao representada em um diagrama, mas nao representada em outro. O
diagrama de estados requer servigos do sistema que nao estdo sendo descritos em nenhum
dos diagramas de seqiiéncia. Preencha um relato de discrepancia.

2) Se a acdo de transicdo foi marcada como um evento, veja se vocé pode encontrar uma
mensagem, seqliéncia de mensagens, ou algum evento executado por um ator que provoca
a acdo de transicdo. Se ndo, vocé encontrou informacao representada em um diagrama que
nao esta representada em outro. O diagrama de estados necessita de servicos que ndo estao
representados em nenhum dos diagramas de seqliéncia. Preencha um relato de
discrepancia.

Se as mensagens marcadas com asterisco e acles de transicdo identificadas no passo anterior aparecem no
mesmo diagrama de seqiiéncia, tenha certeza elas aparecem numa ordem légica. Isto €, suponha que
mensagens que tratam a agdo A1l aparecem antes de mensagens que tratam a acdo A2 em um diagrama de
seqiiéncia. Isto significa que A1l deve cronologicamente vir antes que A2. Entdo vocé deveria estar certo
que A1 pode ser alcangado antes do que A2 também no diagrama de estados.
1) Seaordem nao é compativel, entdo preencha um relato de discrepancia, pois a infor magéo
esta representada em dois diagramas, mas de forma inconsistente.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 44

OORTs— Object Oriented Reading Techniques Version 3.0

L eitura 4— Diagrama de Classes x Descricdes de Classes

Objetivo: Verificar se as descricOes detalhadas das classes contém toda a informaco necessaria e de acordo
com o diagrama de classes, e se a descricdo das classes possuem sentido semantico.

Entradas para o processo:

7. Um diagrama de classes (possivelmente dividido em pacotes) descrevendo as classes do sistema e como
€las estdo associadas.

8. Um conjunto de descricdes de classes que lista as classes de um sistema juntamente com seus atributos e
comportamentos.

I1. Leia o diagrama de classes para entender as propriedades necessérias das clases do sistema.

ENTRADAS: Diagramade Classes
Descricao de Classes.

SAIDAS: Relatdrio de Discrepancias.
Para cada classe no diagrama de classes execute 0s seguintes passos:

A. Encontre a descricéo da classe correspondente. Marque a classe na descricdo de classes com um asterisco
azul quando a encontrar.

1) Sevocé ndo pode encontrar a descricéo, preencha o Formulario de Relato de Discrepancia,
porque uma classe presente no diagrama de classes ndo estd presente nas descrigdes de
classes.

B. Verifique 0 nome e a desxicdo textual da classe para assegurar que elas fornecem uma descricdo
significativada classe que vocé estd considerando neste momento. Verifique também se a descricdo esta
utilizando o nivel adequado de abstracgéo.

1) Utilizando seu conhecimento, certifique que vocé pode entender o propdsito desta classe na
descricdo de alto nivel. Se ndo, a descri¢do deve estar muito ambigua para ser utilizada
neste modelo de projeto. Preencha um relato de discrepancia relatando este problema:
Conhecimento adicional necessaiio para compreensao.

C. Verifique que todos os atributos estdo descritos em conjunto com seus tipos bésicos.

1) Tenha certeza que o mesmo conjunto de atributos esta presente em ambos os documentos,
ou sga, na descricdo de classes e no diagrama de classes. Se ndo, preencha um relato de
discrepancia porque informagéo esta presente num documento mas ndo estd presente em
outro.

2) Certifique que esta classe pode significativamente encapsular todos estes atributos, isto €,
faz sentido existir estes atributos na descricdo da classe e que os tipos basicos associados
aos atributos sdo viaveis de acordo com a descricdo do atributo. Se ndo, preencha o
formulério de relato de discrepancia indicando esta questdo: Conhecimento adicional
Necessario para compreensao.

D. Verifique que todos os comportamentos e restrigdes estdo descritos.

1) Tenha certeza que 0 mesmo conjunto de comportamentos e restrigdes esta presente em
ambos os documentos, ou sgja, da descri¢ao da classe e do diagrama de classes, e que eles
utilizam o mesmo estilo ou nivel de granularidade (por exemplo, pseudocddigo) para
descrever os comportamentos. Se ndo, entdo informagdo em um diagrama ndo esta
presente em outro, ou esta inconsistente entre os dois.

2) Tenha certeza que esta classe pode significativamente encapsular todos estes
comportamentos. Certifique que as restricdes fazem sentido para esta classe. Certifique
gue os comportamentos podem executar suas tarefas utilizando os atributos que foram
definidos (para esta ou alguma outra classe). Se néo, preencha um relato de discrepancia
indicando: Conhecimento adicional necessario para compreensio.

3) Tenha certeza que as restrigdes sio satisfeitas utilizando os atributos e comportamentos
gue foram definidos. Se ndo, vocé encontrou uma situacdo onde os comportamentos e
restricbes como definidos ndo podem ser satisfeitos utilizando os atributos e
comportamentos que foram definidos. Indique isto no formulério de relato de discrepancia
como um problema: Conhecimento adicional necessario para compreensdo. Explique o que
ocorreu.
Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 45

OORTs— Object Oriented Reading Techniques Version 3.0

4)

Tenha certeza que os comportamentos para esta classe ndo dependem excessivamente dos
atributos de outras classes para executar suas funcionalidades. (Observe que vocé deve
fazer um julgamento de valor sobre o que significa “dependéncia excessiva’. Vocé deve
comparar o numero de referéncias existentes de outras classes para esta classe com 0 o que
existe no resto do sistema, e considerar o tipo de funcionalidade enderecada para
determinar se esta dependéncia é realmente necessaria). Se eles dependem, entdo vocé
possivelmente encontrou uma situagdo inadequada projeto. Preencha um relato de
discrepancia indicando esta situagao.

E. Se o diagrama de classes especifica algum mecanismo de heranca para esta classe, verifique que eles estdo
corretamente descritos.

1)

2)

Esteja certo que o relacionamento de heranca esta incluido na descrigdo da classe. Se néo
estd, preencha um formulario de relato de discrepancia. Informacdo no diagrama de
classes ndo esta na descricdo da classe.

Utilize a hierarquia de classes para encontrar os pais desta classe. Verifique que,
semanticamente um <nome de classe> € do tipo <classe pai>, e que faz sentido ter esta
classe neste ponto da hierarquia. Se ndo, vocé descobriu uma questdo de estilo em
potencial: a hierarquia ndo deveria ser definida desta maneira. Preencha um relato de
discrepancia descrevendo: |nformacéo adicional utilizada no projeto.

F. Verifigue que todos os relacionamentos das classes (associagdo, agregacdo e composicdo) estdo
corretamente descritos com respeito as indicagdes de multiplicidade.

1)

2)

3)

4)

5)

Esteja certo que os papéis dos objetos estdo capturados na descri¢do da classe, e que a
notacdo gréfica correta e utilizada no diagrama de classes. Se vocé encontrar um
problema, preencha um relato de discrepancia indicando que informacéoesta omitida em
um diagrama, ou se a notacdo esta incorreta.

Semanticamente, certifique que os relacionamentos fazem sentido dado o papel e os objetos
relacionados. Por exemplo, se um relacionamento de composicédo esti envolvido, os objetos
conectados redmente se parecem como uma estrutura “todo-parte’? Se eles ndo fazem
sentido entdo vocé descobriu uma questdo potencial de estilo: os relacionamentos nédo
deveriam estar definidos desta maneira. Preencha um relato de discrepancia descrevendo:
I nformacéo adicional utilizada no projeta

Se as cardinalidades sdo importantes, certifique que elas estdo descritas na descrigdo da
classe. Dado que vocé entendeu o relacionamento, tenha certeza que as quantidades
utilizadas para os objetos sdo suficientes. Se néo, preencha um relato de discrepancia
porque informagdo em um diagrama n&o esta presente em outro.

Certifique que existe algum atributo representando o relacionamento. Se ndo, preencha
um relato de discrepancia indicando que informacdo em um diagrama nao esta presente
em outro.

Certifique que o relacionamento utiliza um tipo basico viadvel, ou estrutura de tipos bésicos
(se multipla cardinalidade esta envolvida). Se ndo, preencha um relato de discrepancia
indicando: Informacéo adicional utilizada no projeta

Reveja as descrigdes de classes quanto a informagao extra.

ENTRADAS:

SAIDAS:

Descricao da Classe.

Relatos de Discrepancia

A. Revea as descrigbes de classes para ter certeza que todas as classes descritas oficialmente aparecem no
diagrama de classes.

1

Certifique que ndo existem classes sem asterisco na descri¢do de classes. Se existe alguma,
preencha um relato de discrepancia porque uma classe na descricdo de classes ndo esta
presente no diagrama de classes.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 46

OORTs— Object Oriented Reading Techniques Version 3.0

Formulario de Relato de Discrepancia para Leitura Horizontal

Nome do Projeto: Equipe: Técnica de Leitura Horizontal:

Inicio da I nspegéo: (hora) Data: ___ (data)

Documentos que estdo sendo lidos [preencha o nome e o tipo]:
Documento 1: Documento 2:

Tipo de Conceito:

(AC) aor (AT) atributo (BE) comportamento (CA) cardinalidade
(CO) condicéo (CR) restricdo (DA) dado (IN) heranca
(ME) mensagem (OB) objeto/classe (RE) relacionamento (RO) papel
Tipo ce Discrepancia (Tipo Disc.): Severidade (Sev.):
(1) presente no Documento 1 mas ndo no Documento 2 (NS) Nao é sério. Mas precisa verificar este
(2) presente no Documento 2 mas ndo no Documento 1 documento.
(3) presente em ambos os documentos, mas inconsistente | (IN) Esta discrepancia invalida esta parte do
ou ambiguo documento. Verifigue ambos os documentos.
(4) presente em ambos os documentos, mas usando uma (SE) Sério. N&o é possivel continuar a leitura deste
representacdo ou notagdo incorreta documento. Ele deveria ser reorganizado.
(5) presente em ambos 0s documentos, mas representa
informagdo estranha
(6) faltando em ambos os documentos [expligque abaixo]

Preencha a tabela com as discrepancias que encontrou:

Disc.# | Tipo de Nome Tipo | Sev. Comentarios
Conceito Disc.
(01
(074
(0]
o
®
06
o7
08
(0]
10
n
12
13
14
15

(Useoutro lado se necessario)
Fim da I nspegéo: (hora)

Utilize a estrutura seguinte para detalhar algumas das discrepancias encontradas que vocé considera importante descrever
(todas as discrepancias sérias e dos tipos 5 e 6 devem ser explicadas):

NuUmero da Discrepancia (o mesmo nimero usado na tabela): xx

Descricéo:

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 47

OORTs— Object Oriented Reading Techniques

Version 3.0

Disc.#

Tipo do
Conceito

Nome

Tipo | Sev.
Disc.

Comentarios

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43
A4
45

46

a7
48

49

50

51

52

53

54

55

(Utilize

tabelas

adicionais

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland

necessario)

OORTs— Object Oriented Reading Techniques Version 3.0

APPENDIX C.2—-0O0ORTs 3.0 —Vertical Reading - Portuguese Version

Leitura 5— Descrigdes de Classes x Descricéo de Requisitos

Objetivo: Verificar se os conceitos e servigos descritos pelos requisitos funcionais estéo capturados
apropriadamente pela descricdo das classes.

Entradas para o Processo:

3.

Um conjunto de requisitos funcionais que descrevem os conceitos e servigos que so necessarios no sistema final .

4. Um conjunto de descricbes de classes que lista as classes de um sistema juntamente com seus atributos e

comportamentos.

L eia a descricdo de requisitos para entender a funcionalidade descrita.
ENTRADAS: Conjunto de Requisitos Funcionais (FR).
SAIDAS: Classes/Atributos candidatos (marcados em azul nos FRS);

Servicgos candidatos (marcados em verde nos FRs);
Restricoes e condi¢Bes para os servigos (marcados em amarelo nos FRS).

L eia totalmente cada um dos requisitos funcionais para entender a funcionalidade que ele escreve.

Encontre os substantivos na descricdo do requisito; eles sdo candidatos a se tornar classes, objetos, ou
atributos no projeto do sistema. Sublinhe os substantivos com uma caneta azul.

Encontre os verbos, ou descri¢gdes de agles, que sdo candidatos a serem servigos ou comportamentos no
sistema. Sublinhe os verbos ou descri¢des de agfes com uma caneta verde.

Procure por descrictes de restrigdes ou condigdes nos substantivos e verbos que vocé identificou nos dois
passos anteriores. Preste atencdo especialmente aos requisitos ndo funcionais, que tipicamente contem
restricbes e condi¢es relacionadas as funcionalidades do sistema. Por exemplo, examine se 0s
relacionamentos entre os conceitos foram identificados. Pergunte se existem restricbes explicitas ou
limitacbes na forma que as agBes sd0 executadas. Tente observar se quantidades definidas foram
especificadas em dguma parte do requisito (veja Exemplo 4). Sublinhe estas condi¢Bes e restrigdes com
uma caneta amarela.

Compar e as descricdes de classes aos requisitos para verificar se os requisitos foram capturados
apropriadamente.

ENTRADAS: Conjunto de Requisitos Funcionais (FR);

Descrigdo das Classes (CD).

SAIDAS: Conceitos relacionados que foram marcados no FR e CD;

Relatérios de Discrepancia.

A. Para cada descricdo de agdo sublinhada em verde nos requisitos funcionais, tente encontrar um

comportamento associado ou combinagdo de comportamentos na descricdo da classe. Utilize dicas
sintaticas (i.e. nome do comportamento que é similar ou sinbnimo para uma descri¢ao de agcdo) para ajudar
vocé na busca, mas certifique que o significado seméantico da fungdo nos requisitos e projeto de alto nivel é
0 mesmo. Quando encontrado, marque ambos 0 nome do comportamento(s) na descricdo da classe e a
descricdo da atividade nos requisitos com um simbolo (*) verde.

1) Estga certo que as classes recebem a informacdo correta para desempenhar os
compor tamentos requisitados. Certifique que resultados viaveis sdo produzidos. Se ndo, as
classes ndo podem implementar a funcionalidade de forma apropriada. Indique isto no
formulério de relato de discrepancia e marque se isto € provocado por funcionaidade
omitida ou incorreta ou entdo infor magéo ambigua.

Para cada substantivo sublinhado em azul nos requisitos funcionais, tente encontrar uma classe associada na
descricdo de classes. Uma classe associada pode estar nomeada depois de um conceito dos requisitos, pode
descrever uma classe geral dos quais 0 conceito e uma instancia particular (i.e. um objeto), ou pode conter o
conceito como um atributo. Utilize dicas sintéticas (e.g. um nome de classe que e similar ao nome de um
conceito) para gjudar vocé na pesquisa, mas esteja certo que o significado semantico dos conceitos nos
requisitos e projeto e 0 mesmo.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 49

OORTs— Object Oriented Reading Techniques Version 3.0

VI.

C. Se o conceito nos requisitos funcionais corresponde a um nome de classe na descricdo de classes, marque
ambos 0 nome da classe na descricdo de classe e o conceito na descri¢do de requisitos com um simbolo azul

().
1

2

Tenha certeza que as descrigdes de classes contem informacéo suficiente relacionada aos
conceitos que executam algum papel nesta funcionalidade e os nomes das classes tem
alguma conexdo @m o0s substantivos que vocé marcou. Se ndo, ou se as classes estdo
utilizando informacdo ambigua para descrever os conceitos indique isto no formulério de
relato de discrepancia.

Tenha certeza que estas classes encapsulam (marcada em azul) atributos referentes aos
substantivos que vocé marcou e os comportamentos (marcados em verde) relacionados
com os verbos ou descricdo de agles que vocé marcou. Certifique também que todas as
restricbes e condi¢des identificadas para esta classe e referente a este requisito estdo
descritas. Se ndo, vocé encontrou informagdo importante dos requisitos omitida do proj eto.
Indique isto no formulario de relato de discrepancia.

D. Se o conceito nos requisitos funcionais corresponde a um atributo na descricdo da classe, marque ambos o
nome do atributo na descri¢go da classe e o conceito na descrigao de requisitos com um simbolo azul (*).

1

Tenha certeza que a descricdo da classe esta utilizando tipos viaveis para representar a
informag&o, dado que a descrigdo dos requisitos e as restri¢des e condigdes (marcadas em
amarelo) sob os atributos foram observadas em sua definicdo. Se ndo, vocé encontrou
informacao incorreta no projeto. Indique isto no formulério de relato de discrepancia.

Reveja a descricdo da classe e os requisitos fundonais para certificar que todos os conceitos
apropriados possuem cor respondéncia entre os documentos.

ENTRADAS: Conjunto de Requisitos Funcionais (FR);

SAIDAS:

Descricdo das Classes (CD).
Relatério de Discrepancia.

A. Procure por descrigdes de funcionalidade nos requisitos que tenham sido omitidas do projeto.

1)

Certifiqgue que ndo existem substantivos ou verbos ndo marcados com asterisco (*) nos
requisitos Se existe pelo menos um, verifique se ele deveria ser incluido no projeto ou nao
esta descrito apenas para melhorar a legibilidade dos requisitos. Se ele deveria estar no
projeto, entdo informacéo foi omitida do projeto. Indique isto no formulario para relato de
discrepancia.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 50

OORTs— Object Oriented Reading Techniques Version 3.0

Leitura 6— Diagramas de Seqiiénciax Casos de Uso

Objetivo: Verificar que os dagramas de seqiiéncia descrevem uma combinacdo apropriada de objetos e
mensagens que trabalham em conjunto para capturar a funcionalidade descrita pelo caso de uso.

Entradas para o processo:

4.

5.

Um caso de uso que descreve conceitos importantes do sistema (0s quais podem eventualmente ser
representado como objetos, classes ou atributos) e os servicos que ele fornece.

Um ou mais diagramas de seqiéncia que descreve os objetos de um sistema e 0s servicos que ele fornece.
Podem exigtir mdltiplos diagramas de seqliéncia para um dado caso de uso desde que um caso de uso
tipicamente descrevera multiplos “caminhos de execucdo” através da funciondidade do sistema. O
conjunto correto de diagramas de seqiiéncia para um caso de uso deve ser selecionado utilizando
informagdo de rastreabilidade, ou por alguém que tenha conhecimento semantico sobre o sistema.
Encontrar 0 conjunto correto de diagramas de seqléncia sem informacéo de rastreabilidade ou
conhecimento sobre o sistema sera dificil.

As descricdes de classes de todas as classes do diagrama de seqliéncia.

I dentifique a funcionalidade descrita por um caso de uso, e 0s conceitos importantes do sissema
gue sio necessarios pararealizar a funcionalidade.

ENTRADAS: Caso de Uso (UC)
SAIDAS: Conceitos do Sistema (marcados em azul no UC);
Servigos fornecidos pelo sistema (marcados em verde no UC);
Dados necessarios para realizagdo dos servicos (marcados em amarelo no UC).

A. Leiao caso de uso para entender a funcionalidade que ele descreve.

B. Encontre os substantivos incluidos no @so de uso; eles descrevem os conceitos do sistema. Sublinhe e
numere cada substantivo Unico com uma caneta azul assim que ele for encontrado. (Isto é se um
substantivo em particular aparece varias vezes, marque com 0 mesmo nimero cada vez que o encontrar).

C. Para cada substantivo identifique os verbos que descrevem agdes aplicadas nos ou pelos substantivos.
Sublinhe os servicos identificados e os numere (na ordem em que devem ser executados) com uma caneta
verde. Procure por restricdes e condigdes que s30 recessarias para que este conjunto de agles sgja
executado. Como um exemplo, considere o Exemplo 1, no qual restricBes e condi¢Bes foram marcados.
Neste caso de uso, existe um exemplo de uma restricdo (“ The Customer can only wait for 30 seconds for
theauthorization process”) e uma condi¢go (“time of payment is the same as the purchase time’).

D. ldentifique também qualquer informac&o ou dado que € requisitado para ser enviado ou recebido de formaa
executar as agoes. Marque os dados em amarelo como “Di,j” onde os subscritos i e j sdo os nimeros
associados aos nomes entre os quais a informacado € trocada.

Identificar e inspecionar os diagramas de seqiéncia relacionados, para identificar se a
funcionalidade cor respondente esta precisamente descrita e se 0s comportamentos e dados estdo
representados na ordem corr eta.

ENTRADAS: Caso de Uso, com conceitos, servigos e dados marcados;
Diagrama de Seqiiéncia (SD).

SAIDAS: Conceitos do Sistema (marcados em azul no SD);

Servicos fornecidos pelo sistema (marcados em verde no SD);
Dados trocados entre objetos (marcados em amarelo no SD).

A. Para cada diagrama de seqiiéncia, sublinhe os objetos do sistema com uma caneta azul. Numere os com o0s
ndmeros correspondentes dos casos de uso.

B. Identifique os servicos descritos pelos diagramas de sequéncia. Para fazer isto, vocé precisard examinar a
informacdo trocada entre os objetos e classes nos diagramas de seqliéncia (as setas horizontais). Se a
informagdo trocada estd muito detalhada, no nivel de mensagens, vocé precisard abstrair varias mensagens
em conjunto para entender 0s servicos que elas fornecem. Sublinhe os servicos identificados e os numere
(na ordem em que ocorrem no diagrama) com uma caneta verde. Procure pelas condi¢des que permitem a
ativacdo das aces.

C. Identifique a informagdo (ou dado) que é trocado entre as classes do sistema. Marque o dado em amarelo
como “Di,j” onde os subscritos i e j sGo 0s nimeros associados aos objetos entre os quais a informagdo é
trocada.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 51

OORTs— Object Oriented Reading Techniques Version 3.0

V1.

Compar e os diagramas mar cados para determinar se elesrepresentam 0s mesmo conceitos do

dominio.

ENTRADAS:

SAIDAS:

Caso de Uso, com conceitos, servicos e dados marcados,
Diagrama de Seqguéncia, com objetos, servicos e dados marcados.

Relatorio de Discrepancias.

A. Para casa substantivo marcado em azul no caso @ uso, procure no diagrama de segquéncia para ver se o
mesmo substantivo esta representado. Marque o substantivo no caso de uso e no diagrama de seqiéncia
com um asterisco azul (*) se ele pode ser encontrado no diagrama de seqiiéncia.

1

2

Se existe algum substantivo sem asterisco no caso de uso, isto significa que um conceito foi
usado para descrever funcionalidade no caso de uso mas nao foi representado no diagrama
de sequiéncia. Para cada um dos substantivos no diagrama de seqiiéncia, encontre a classe
correspondente na descricdo de classes e verifiqgue se 0 substantivo ndo marcado com
asterisco € um atributo. Se o substantivo ndo marcado com asterisco néo aparece como um
atributo de nenhuma das classes, vocé encontrou uma omissdo. Um conceito foi descrito no
caso de uso, mas ndo apareceu no projeto do sistema. Preencha um relatério de
discrepancia por que funcionalidade necessaria foi omitida.

Se existem substantivos ndo marcados com asterisco no diagrama de seqUéncia vocé
encontrou um substantivo estranho, ou um substantivo descrevendo um conceito de baixo
nivel no diagrama de seqiiéncia. Pense se este conceito € necessario para o projeto de alto
nivel, e se ele representa um nivel de detalhe que é apropriado neste momento. Se ndo é
apropriado, preencha um relato de discrepancia por que esta infor magao € estranha.

B. Identifique os servigos descritos pelo diagrama de seqiiéncia, e compare 0s com a descri¢do usada no caso
de uso. As classes/objetos estéo trocando mensagens na mesma ordem especificada no caso de uso? Os
dados que aparecem nas mensagens dos diagramas de seqiiéncia foram corretamente descritos nos casos de
uso? E possivel paravocé entender a funcionalidade esperada apenas lendo o diagrama de seqiiéncia?

1

2)

Esteja certo que as classes trocam mensagens na mesma ordem especificada. Se néo, pense
se isto representa um defeito. Usualmente, trocando a ordem da mensagem tera efeito
sobre a funcionalidade. Mas algumas vezes mensagens podem ser trocadas sem afetar a
saida; outras vezes, mensagens podem ser executadas en paralelo, ou condices podem
assegurar que somente uma ou outra mensagem é executada de qualquer forma. Se
trocando a ordem trocara a funcionalidade, preencha um relatério de discrepancia porque
ainformacao do projeto estaincorreta.

Esteja certo que @ dados trocados estdo todos na mensagem correta e que as mensagens
vao para as classes corretas (i.e. as marcagfes “Di,j” para os dados sdo as mesmas entre
os diagramas) Esteja certo que as mensagens fazem sentido para os objetos que as recebem
e enviam, e para ativar o0s servicos relevantes. Se ndo, isto significa que o diagrama de
seqliéncia esta usando informacgéo incorretamente. Preencha um relatorio de discrepancia
descrevendo o problema.

C. Todas as restri¢des e condi¢fes do caso de uso podem ser observadas neste diagrama de seqiiéncia? Existe
algum detalhe do caso de uso faltando aqui?

1

Esteja certo que as restri¢es sdo observadas. Esteja certo que todos os comportamentos e
dados relativos ao diagrama de seqiiéncia sdo relacionados ao caso de uso. Se ndo, isto
significa que o diagrama de segiiéncia esta usando informacao incorretamente. Preencha
um relatério de discrepancia descrevendo o problema.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 52

OORTs— Object Oriented Reading Techniques Version 3.0

Leitura 7 — Diagramas de Estados x Descricéo de Requisitos e Casos de Uso

Objetivo: Verificar se os diagramas de estado descrevem apropriadamente os estados dos objetos e eventos
gue disparam as trocas de estado conforme descritos pelos requisitos e casos de uso.

Entradas para o processo:

4. O conjunto de todos os diagramas de estados, cada descrevendo um objeto do sistema.

5. O conjunto de requisitos funcionais que descreve 0s conceitos e servicos necessarios ao sistemafinal.
6. O conjunto de casos de uso descrevendo os conceitos importantes do sistema.

Para cada diagrama de estados, execute 0s seguintes passos.

V.
V1.

VII.

VIII.

Leia o diagrama de estados para entender basicamente o objeto que ele eta modelando.

Leia a descricdo de requisitos para determinar os possiveis estados do objeto, que estados sao

adjacentesentre g, e eventos que causam as trocas de estado.

ENTRADAS: Diagramas de Estados (SD)

Descricdo de Requisitos (RD)
SAIDAS: Estados dos Objetos (marcados em azul no SD)
Matriz de Adjacéncia

A. Pegue o diagrama de estados e apague qualquer asterisco (*) dagueles existentes e resultantes de interagdes
anteriores desta etapa. Agora, leia os requisitos procurando por locais onde o conceito esta descrito ou por
algum requisito funcional nos quais o conceito participa ou é afetado. Quando vocé localizar algum
requisito, marque a lapis, para facilitar sua utilizagdo pelo estante desta etapa, com um asterisco (*).
Mantenha o foco nestas partes da Descricéo de Requisitos (RD) pelo resto desta etapa.

B. Localize descrigdes para todos os estados diferentes que este objeto pode estar. Para localizar um estado,
procure por valores de atributos ou combinagdes de valores de atributos que possam modificar o
comportamento do objeto. Quando localizar um estado sublinhe-o com uma caneta azul e associe um
numero a ele.

C. Agoraidentifique qual destes estados numerados é o estado inicial. Utilizando uma caneta azul, marque-o
com um “1”. Da mesma forma, marque o estado final com um “E”.

D. Quando vocé tiver encontrado todos os estados e utilizando uma folha de papel separada, crie uma matriz
numerada de 1..N na primeira linha e 1..N na primeira coluna, onde 1..N representa os nimeros que vocé
associou aos estados identificados no passo anterior desta etapa.

E. Para cada par de estados, verifique se 0 objeto pode trocar do estado representado pelo nimero da esgquerda
para o estado representado pelo mimero da primeira linha. Entdo marque a célula na interse¢do da linha e da
coluna. Se vocé pode determinar 0 evento(s) que causa a troca de estado coloque 0 na célula, se ndo apenas
coloque uma marca na célula (o evento serd determinado em préxima iteragdo). Se vocé pode determinar
gue ndo é possivel acontecer a transicdo entdo coloque um X na célula. Se vocé ndo pode identificar
definitivamente ent&o deixe a célula em branco por enquanto.

F. Para qualquer evento que tenha identificado acima, se existem quaisauer restrigdes descritas nos requisitos,
entdo as escreva junto ao evento na matriz.

Lela os Casos de Uso e determine os eventos que podem causar trocas de estado.

ENTRADA: Casos de Uso

SAIDA: Matriz de Adjacéncia Completa

A. Leiaos dos casos de uso e encontre agueles nos quais o objeto participa. Mantenha o foco nestes casos de
uso pelo resto desta etapa.

B. Para cada célula marcada na matriz de adjacéncia, procure pelos casos de uso e determine que evento(s)
pode causar a transi¢cdo. Estes eventos podem ndo ser 6bvio e podem obrigar que vocé abstraia o caso de
uso para pensar sobre 0 que esta atualmente acontecendo com cada objeto. Apague a marca da célula e
escreva 0 nome deste evento(s) no seu lugar.

C. Para cada célula em branco na matriz de adjacéncias, veja se algum evento que pode causar a transicdo esta
descrito nos casos de uso. Se estiver, entdo escreva este evento na célula, se ndo entdo coloque um X na
célula

Lela o diagrama de estados para determinar se os estados descritos estédo consistentes com os
requisitos e se as transigdes estdo consistentes com os requisitos e casos de uso.
ENTRADA: Descricéo de Requisitos;

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 53

OORTs— Object Oriented Reading Techniques Version 3.0

Diagrama de Estados (SD);
Matriz de Adjacéncia (AM).
SAIDA: Relatérios de Discrepancia

A. Para cada estado marcado e numerado na descrigdo de requisitos, encontre o estado correspondente no
diagrama de estados e utilizando uma caneta azul, marque-0 com o mesmo numero utilizado nos requisitos.
Preste atencdo, pois 0 mesmo estado pode ter um nome diferente nos requisitos daquele que esta no
diagrama de estados. Para identificar se dois nomes diferentes representam o mesmo estado, vocé deve
utilizar sua compreensdo da descri¢do do estado oriunda dos requisitos e a informagdo contida no diagrama
de estado. Isto pode ser um processo interativo, pois se estados parecem estar faltando, vocé deve voltar e
procurar de novo no que vocé identificou e ter certeza que esta correto. Se vocé encontrou qual quer
problema, preencha um relato de discrepancia.

1) Estegja certo que vocé pode encontrar todos os estados. Se um estado esta faltando, procure
ver se dois ou mais estados que vocé marcou nos requisitos foram combinados em um
estado no diagrama de estados. Se ndo, entdo informacgéo foi omitida do projeto. Se sim,
entdo esteja certo que esta @mbinacdo faz sentido. Se nédo faz, entdo o projeto possui
informacéo incorreta.

2) Tenha certeza que ndo existem estados adicionais no diagrama de estados. Procure ver se
um estado que vocé marcou nos requisitos ndo foi dividido em dois ou mais estados no
d agrama de estados. Se ndo, ent&do informacé&o no projeto e estranha. Se sim, tenha certeza
gue esta divisdo faz sentido. Se nédo faz ent&o o projeto possui informacéo incorreta.

B. Uma vez que vocé tem todos os estados marcados com nimeros, utilizando a Matriz de Adjacéncia (AM),
compare os eventos de transi¢cdo na matriz com aqueles no SD. Para qualquer célula na AM marcada com
um evento, verifique os estados correspondentes no SD para ter certeza que eles tém um evento para a
transicdo entre eles, e assegure que 0 evento sgja 0 mesmo.

1) Certifique que todos os eventos na AM aparecem no SD. Se n8o, informagéo foi omitida do
projeto. Se existem eventos extras no diagrama de estados, entdo o0 projeto possui
informacao estranha.

C. Paracadarestricdo que foi marcada na AM, encontre-ano SD.
1) Tenha certeza que vocé pode encontrar todas as restrigdes que estdo no AM. Se vocé ndo

pode, entdo informacao foi omitida do projeto. Se existem restrigdes extras no diagrama de
estados, entéo o projeto possui infor magdes estranhas.

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 54

OORTs— Object Oriented Reading Techniques

Version 3.0

Formulério de Relato de Discrepancia para LeituraVertica

Nome do Projeto: Equipe:

Inicio da I nspegéo: (hora)

Técnica de Leitura Vertical:

Data: ___ (data)

Documentos que estéo sendo lidos [preencha o nome e otipo. Documento 2 somente executando leitura 7]:

Documento 1.

Tipo de Conceito:

(AC) aor (AT) atributo
(CO) condicéo (CR) restricéo
(ME) mensagem (OB) objeto/classe

Discrepancy type (Disc. Type):

(2) funcionalidade ou conceito necessario foi omitido
(2) o projeto esta incorreto em relagdo aos requisitos
(8) como o projeto implementa estes requisitos é
ambiguo ou ndo compl etamente especificado

(4) ainformacdo de projeto é estranha, i.e. ndo
mencionada pel os requisitos.

(5) outro problema de projeto [explique abaixo]

Documento 2:

(BE) comportamento
(DA) dado
(RE) relacionamento

(CA) cardinalidade
(IN) heranga
(RO) papel

Severidade (Sev.):

(NS) N&o é sério. Mas precisa verificar este
documento.

(IN) Esta discrepanciainvalida esta parte do
documento. Verifique ambos os documentos.

(SE) Sério. N&o é possivel continuar a leitura deste
documento. Ele deveria ser reorganizado.

Preencha a tabela com as discrepancias encontradas. Descrevaa funcionalidade dos requisitos, utilizando os nimeros dos

reguisitos e nimeros de pagina se possivel:

Disc. | Tipodo Nome

Conceito

Tipo
Disc.

Identificagdo | Sev. Comentarios

Requisito

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

(Utilize a parte de trés se necessario)

Fim da I nspegéo: (hora)

Utilize a estrutura seguinte para detalhar algumas das discrepancias encontradas que vocé considera importante descrever
(todas as discrepancias sériase do tipo 5 devem ser explicadas):
Numero da Discrepancia (o0 mesmo nimero usado na tabela): xx

Descrigéo:

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland 55

OORTs— Object Oriented Reading Techniques

Version 3.0

Disc.

Tipo do
Conceito

Nome Tpo Identificagcdo | Sev.

Disc. do Requisito

Comentarios

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

41

&|R|5|6|R[B|8

49

50

51

52

53

55

56

57

58

59

60

(Utilize Tabelas Adicionais se precisar)

Copyright & 2002 COPPE/UFRJ-Brazil, Fraunhofer Center-Maryland, University of Maryland

56

