
A preliminary empirical study to compare
MPI and OpenMP

ISI-TR-676

Lorin Hochstein, Victor R. Basili

December 2011

Abstract

Context: The rise of multicore is bringing shared-memory parallelism to the
masses. The community is struggling to identify which parallel models are
most productive.

Objective: Measure the effect of MPI and OpenMP models on programmer
productivity.

Design: One group of programmers solved the sharks and fishes problem
using MPI and a second group solved the same problem using OpenMP, then
each programmer switched models and solved the same problem again. The
participants were graduate students in an HPC course.

Measures: Development effort (hours), program correctness (grades), pro-
gram performance (speedup versus serial implementation).

Results: Mean OpenMP development time was 9.6 hours less than MPI (95%
CI, 0.37− 19 hours), a 43% reduction. No statistically significant difference was
observed in assignment grades. MPI performance was better than OpenMP
performance for 4 out of the 5 students that submitted correct implementations
for both models.

Conclusions: OpenMP solutions for this problem required less effort than
MPI, but insufficient power to measure the effect on correctness. The perfor-
mance data was insufficient to draw strong conclusions but suggests that unop-
timized MPI programs perform better than unoptimized OpenMP programs,
even with a similar parallelization strategy. Further studies are necessary to
examine different programming problems, models, and levels of programmer
experience.

Chapter 1

INTRODUCTION

In the high-performance computing community, the dominant parallel pro-
gramming model today is MPI, with OpenMP as a distant but clear second
place [1, 2]. MPI’s advantage over OpenMP on distributed memory systems is
well-known, and consequently MPI usage dominates in large-scale HPC sys-
tems.

By contrast, in shared-memory systems, there is no consensus within the
community about when a programmer should choose MPI or OpenMP. As
software engineering researchers who have studied software development from
HPC, we have heard statements along the lines of “Of course, OpenMP-style
shared-memory programming is easier than MPI-style message passing. This is the
reason why so much research effort has gone into the development of shared-memory
programming models.” We have also heard practitioners say that, “Anybody who
has actually worked in the field will tell you that it’s easier to get better program perfor-
mance using MPI, even on a shared memory system, because of data locality issues”.
These two elements of community folklore, while not explicitly contradictory,
are difficult to reconcile. The central question remains: When is it more pro-
ductive to for a scientist to use MPI vs. OpenMP when developing on a shared-
memory system?

With the recent ascension of multicore architectures, shared memory pro-
gramming has taken on a new level of importance [3]. The rise of multicore
has also put parallel computers within the reach of a much larger commu-
nity of computational scientists than ever before. These scientists could benefit
from parallelizing their codes, but are novices from a parallel programming
prospective.

While the HPC community collectively has a wealth of experience with
both technologies, the community lacks a body of knowledge based on system-
atic research through experimentation with human subjects. As a recent arti-
cle in Communications of the ACM article on parallel computing put it: “As
humans write programs, we wonder whether human psychology and human-subject
experiments shouldn’t be allowed to play a larger role in this revolution” [4].

However, given the challenge of designing and running such studies, and

1

the fact that the methodology involved is very different from the performance-
oriented studies of traditional HPC research, it is understandable that few
studies exist in the literature, with virtually none comparing the two most
widely used models.

In this paper, we describe a pilot human-subjects experiment to compare
the productivity of MPI and OpenMP, using students from a graduate-level
computer science course on high-performance. Because of the human subjects
involved, the methodology of the study derives from social-science research
methods [5]. In particular we use null hypothesis significance testing (NHST),
a method commonly used in psychology research to test hypotheses.

The purpose of this study is not to present a definitive evaluation of these
two languages. Rather, it represents a first step in the development of a body of
evidence about how the choice of MPI vs. OpenMP affects programmer effort
and program performance. In addition to the flaws associated with this par-
ticular study, no one study can ever be definitive given the enormous number
of context variables associated with software development. One of the major
goals of this paper is to inspire researchers to run their own studies, addressing
the flaws pointed out in this one.

2

Chapter 2

RELATED WORK

Because parallel programming has been confined largely to the scientific com-
puting community until recently, there has been relatively little empirical re-
search on parallel programming languages that directly involves human sub-
jects. Notable exceptions include a study by Szafron and Schaeffer to evaluate
the usability of a parallel programming environment compared to a message-
passing library [6], and a study by Browne et al. on the effect of a parallel
programming environment on defect rates [7]. In addition, there have been
some studies of parallel programming languages that use source code metrics
a proxy for programmer effort [8, 9, 10].

More recently, Pankratius et al. conducted a case study in a software engi-
neering course to compare OpenMP to POSIX threads on multicore [11]. As a
precursor to this study, the authors have previously performed some prelimi-
nary studies comparing MPI and OpenMP [12], as well as a controlled exper-
iment that compared MPI to the XMTC language [13]. Ebcioglu et al. ran a
study to compare MPI, UPC, and X10 [14], and Luff ran a study to compare
three different models: the Actor model, transactional memory, and traditional
shared-memory locking [15].

3

Chapter 3

BRIEF INTRODUCTION TO
NHST

Because some readers may not be familiar with the null hypothesis significance
testing (NHST) approach used in this paper, we provide a brief introduction
here. Readers familiar with NHST can skip to the next section. For a full treat-
ment, see any reference on experimental design for behavioral sciences (e.g.,
[16]).

3.1 Overview

The NHST approach to hypothesis testing is a kind of inductive version of
proof by contradiction. As an example consider that we we are interested in
knowing is whether it is easier to write parallel programs in MPI or OpenMP.
We pick a specific programming problem, and a population of programmers
of interest (in this case, graduate students), and we have them solve the prob-
lem and measure the amount of time it takes to solve the problem. Using this
method, we assume initially that solving the programming problem requires,
on average, the exact same amount of effort in MPI as it does in OpenMP. This
assumption is called the null hypothesis. We then calculate the likelihood of ob-
taining the observed data under this hypothesis. This likelihood is known as
the p-value.

If the p-value is below a certain predetermined threshold, then we say that
we reject the null hypothesis and, consequentially, observed a statistically signifi-
cant difference between the two groups. If the p-value is not below the thresh-
old, we say that we failed to reject the null hypothesis and therefore did not ob-
serve a statistically significant difference between the two groups.

4

3.2 Calculating the p-value

We model the effort required to solve the problem in MPI and effort required
to solve the problem in OpenMP as random variables (X, Y). Typically, we
assume that X and Y have the same probability distribution, and the same
(unknown variance). We have n samples from each x1 . . . xn, y1 . . . yn. Under
the null hypothesis, X and Y have the same means (µx = µy).

One common approach is to assume that the sample means x̄i and ȳi are
approximately Gaussian random variables by appealing to the central limit
theorem. In this case, we calculate what is known as a t-statistic, which is a
function of the difference between the sample means, the sample variances,
and the number of samples, n. The t-statistic is itself a random variable with a
t-distribution. Using this distribution, we can calculate the p-value: the likeli-
hood that we would have obtained the observed t-statistic

3.3 Errors and power

When performing an NHST experiment, two types of errors are possible

• Type I errors. Incorrectly rejecting the null hypothesis: The experimenter
concludes that there is a statistically significant difference between X and
Y, when in fact µx = µy.

• Type II errors. Incorrectly failing to reject the null hypothesis: When µx 6=
µy, but the experiment fails to detect a statistically significant difference
between X and Y.

By convention, the probability of a Type I error is referred to as α, and the
probability of a Type II error is referred to as β. The experimenter chooses a
likelihood threshold by setting a minimum value for α in advance of running
the experiment. Typical values are α = .05 or α = .01. The p-value must fall
below this threshold to reject the null hypothesis.

The power of the study refers to the probability of detecting a statistically
significant difference given that µx 6= µy, and is defined as 1 − β. Power is
a function of the α threshold, the true difference between the means, the true
variance, and the number of sample points. By convention, we generally desire
a power of at least 80%. If the difference between means and variance can
be estimated, then we can calculate the number of sample points needed to
obtain a desired power. Typically, pilot studies (such as the one described in
this paper) are used to obtain estimates for the difference between means and
the variance.

3.4 Uncertainty and effect sizes

The use of p-values have been criticized because they do not capture the un-
certainty in the result of the experiment or the estimated size of the effect [17].

5

To communicate the uncertainty, we can report a confidence interval. Instead
of reporting the likelihood that the null hypothesis is true, we report a range of
values that is likely to include the true difference between the means: µx − µy.
Testing that a p-value less than α = .05 is mathematically equivalent to testing
that a 95% confidence interval includes 0, and the size of the confidence interval
also captures the magnitude of the uncertainty in the experimental result.

Typically, we are also interested in the effect size; we don’t simply want to
know if OpenMP is easier to program in than MPI, we want to know how much
easier it is to program in. Several effect size measures have been proposed. One
popular effect size measure is the difference in means divided by the standard
deviation:

µx − µy

σ

Cohen’s d is a popular effect size measure which uses sample means and
an estimate of the standard deviation to estimate this effect size:

d =
x̂i − ŷi

σ̂

6

Chapter 4

DESCRIPTION OF THE
STUDY

In this section we describes the goals and hypotheses of the study, and describe
how it was carried out.

4.1 Goals

We use Basili’s Goal-Question-Metric (GQM) template to define the goals of
this study [18]:

The goal of this study is to analyze message-passing and shared-memory paral-
lel programming models for the purpose of evaluation with respect to:

• development effort

• correctness

• performance

from the viewpoint of the researcher in the context of

• graduate-level parallel programming classes

• solving small programming problems

4.2 Hypotheses

Proponents of OpenMP model claim that it is much simpler than the message-
passing model for implementing parallel algorithms, because of the additional
work involved in partitioning and exchanging data in a message-passing model.
We use development time and program correctness as outcome variables to
measure ease of use.

7

Table 4.1: Question: What is your major?

Computer science 7
Computer engineering 3
Electrical engineering 2
Unspecified 2

In terms of performance, the message-passing model should incur per-
formance overhead in communicating messages, which is not necessary in a
shared-memory model. Therefore, we expect the performance of OpenMP pro-
grams to better than MPI programs on shared memory machines.

Based on the above, we consider the following three hypotheses in our
study.

• H1: Writing OpenMP requires less development time than writing MPI pro-
grams.

• H2: OpenMP programs are more likely to be correct than MPI programs.

• H3: OpenMP programs are more likely to run faster than MPI programs.

4.3 Study Design

The study is a two-treatment, two-period crossover design: each participant
was exposed to both treatments (MPI, OpenMP). Half of the participants were
exposed to the treatments in one order (MPI first, then OpenMP), and half
were exposed to the treatment in the other order (OpenMP first, then MPI). In
all cases, we used the same parallel programming problem: sharks and fishes
(see Section 4.5).

4.4 Participants and groups

To conduct this study, we leveraged an existing graduate-level course on high-
performance computing in the Department of Computer Science at the Univer-
sity of Maryland. We gave them an initial questionnaire to collect information
about their relevant background experience. 14 of the students who consented
to participate responded to the questionnaire. As shown in Tables 4.4, 4.4 and
4.4, the students were a mix of computer science, computer engineering, and
electrical engineering majors, who were reasonably experienced in program-
ming. Almost all of them had experience programming in C in a Unix environ-
ment, which was the programming environment for the assignment. Most of
the students had not used MPI or OpenMP before, but almost all had at least
some exposure to programming with threads or synchronization.

8

Table 4.2: Question: Please rate your experience in the following activities

Professional Classroom only None
Parallel programming 1 5 8
Tuning code for performance 4 3 7
Tuning code for parallel performance 0 4 10
Using MPI 0 3 11
Using OpenMP 0 3 11
Developing software in C 8 5 1
Developing software in C++ 5 6 3
Programming with threads or synchronization 3 9 2
Developing software on a unix platform 6 7 1
Developing on a cluster 1 5 8
Experience using tools (e.g. debuggers, profilers, etc.) 6 6 2
Developing on a parallel shared-memory machine 0 4 10

Table 4.3: What is your previous experience with software development in
practice?

I have never developed software 0
I have developed software on my own, as part of a course as a hobby 0
I have developed software as part of a team, as part of a course 4
I have developed software as part of a team one time in industry 3
I have developed software as part of a team more than one time in industry 7

9

Figure 4.1: Example of a sharks and fishes board: a cellular automaton imple-
mentation of a simple predator-prey model

4.5 Study Task

The programming task of the study is a problem called sharks and fishes. It is an
example of a population dynamics model from computational ecology, which
simulates how the population of two species, predator (sharks) and prey (fish)
change over time. The simulation is performed on a square grid containing
cells. A cell may contain a shark, a fish, or be unoccupied, as shown in Fig-
ure 4.1. The model computes successive generations of the grid. In each time
step, sharks and fishes move, breed, and die as a function of the contents of
neighbor cells and how much time has elapsed. The original model, called Wa-
Tor, was first described by Dewdney1 [19]. A full description of the assignment
description appears in the appendix. Sharks and fishes is an appealing prob-
lem because many computational physics problems are simulated on a regular
grid and are amenable to similar strategies for parallelization.

1The interested reader can view an implementation by Leinweber at http://www.leinweb.
com/snackbar/wator

10

http://www.leinweb.com/snackbar/wator
http://www.leinweb.com/snackbar/wator

Table 4.4: Assignment schedule

Deliverables
Assignment released Assignment due Group A Group B

Assignment 1 Sep 27, 2005 Oct 11, 2005 serial, MPI serial, OpenMP
Assignment 2 Oct 11, 2005 Oct 20, 2005 OpenMP MPI

4.6 Procedure

The study participants were required to solve the sharks and fishes problem as
part of the high-performance computing course. All students in the class were
required to complete the assignment, but were not required to participate in
the study. The assignment schedule is shown in Table 4.6. For the first assign-
ment, students were required to submit a sequential version of the program
and either an MPI or OpenMP version (determined randomly by the profes-
sor), along with a report describing their parallelization strategy and perfor-
mance analysis. For the second assignment, students were required to submit
an MPI version if they had previously submitted OpenMP, or an OpenMP ver-
sion if they had previously submitted MPI, along with the report.

For MPI development, students were given accounts on a cluster with two
types of nodes:

• Dual Pentium II 450 MHz processors, 1 GB RAM, Gigabit ethernet inter-
face

• Dual Pentium III 550 MHZ processors, 1GB RAM, Gigabit ethernet inter-
face

Students had access to two MPI implementations, LAM[20] and MPICH[21],
and could use either one. For OpenMP development, students were given ac-
cess to a Solaris-based Sun Fire 6800 symmetric multiprocessor (SMP) server
with 24 UltraSparc III 750 MHz processors and 72GB RAM, installed with the
Sun Studio C OpenMP compiler.

In addition to the task description, students were given source code files
with utility functions for parsing the command-line arguments, makefiles for
building MPI and OpenMP programs on the provided hardware, and a sample
input and corresponding output file.

4.7 Apparatus

4.7.1 Effort

In software engineering, the term effort refers specifically to programmer labor,
and is typically measured in person-months. In the context of the study, since

11

the programming task took hours rather than months, and since individuals
worked alone on the programming tasks, we measured effort in hours.

We instrumented both the Linux cluster and the Sun server with UMDInst2

and Hackystat[22] sensors, which collect data from the MPI/OpenMP compil-
ers, emacs and vi editors, and the tcsh shell. The sensors captured timestamps
during compiles, shell command invocations, and edit events, which we used
to estimate programmer effort as described in previous work [23]. The pro-
cessing of the captured data to compute the resulting effort scores was done
by Mirhosseini-Zamani’s EffortTool[24], and we used the Experiment Manager
environment to manage the data captured from the study [25].

4.7.2 Correctness

Ascertaining the correctness of a particular software program is, in general, a
difficult task. Indeed, it is one of the central challenges of software engineering
research. Nevertheless, we need some (likely imperfect) measure of correctness
to run this kind of study.

We used expert judgment as our measure of the correctness of the software.
Specifically, we used the assignment grades determined by the professor of
the course. Note that these grades take into account the quality of the written
report in addition to program correctness.

4.7.3 Performance

To collect performance data, we compiled and ran all working implementa-
tions on a reference multicore machine, running all implementations against
the same input. We ran the programs on a dual-processor quad-core 2GHz
Intel Xeon, using only one of the quad-core processors for testing. We took a
reference board of 1000× 1000 and ran the sequential, MPI, and OpenMP ver-
sions. We used two MPI implementations: LAM/MPI 7.1.4 and MPICH2 1.0.8.
We used a single OpenMP implementation: gcc 4.3.2 with the CPU affinity
feature enabled so that each thread was bound to a particular core.

2http://hpcs.cs.umd.edu/index.php?id=18

12

Chapter 5

DATA ANALYSIS

All analysis was done with the R statistical package, version 2.8.0. For hypoth-
esis testing, we set α = .05 (or, equivalently, a a confidence interval of 95%).

Out of 18 students enrolled in the class, a total of 11 consented to partic-
ipate in the study and produced data that we could use in the analysis. The
other students either did not consent, failed to enable their instrumentation, or
worked on uninstrumented machines.

Unfortunately, because of the missing students, the resulting data set is not
fully counter-balanced: 8 students solved the problem first in OpenMP, and 3
students solved the problem first in MPI. This gives a potential advantage to
the MPI model in the study, an issue we discuss in Section 6.

Note that we did not count development time for the sequential imple-
mentation in our effort calculations. Counting the sequential implementation
would unfairly increase the measurement of the first assignment. In addition,
we knew that students were much more likely to do their sequential imple-
mentations on an uninstrumented machine. By contrast, the students largely
did not have access to other parallel computers at the time this study was run.

5.1 A note about boxplots

This paper makes extensive use of boxplots, a type of plot introduced by the
statistician John Tukey [26]. We use boxplots here to give the reader a sense
of the distribution of a set of data points, and to compare distributions. Fig-
ure 5.1 is an example of a boxplot, that shows the distribution of the size of the
different serial, MPI, and OpenMP programs submitted by the subjects for this
experiment.

The box in a boxplot contains half of the data points: the bottom of the
box is the first quartile (25th percentile), and the top of the box is the third
quartile (75th percentile). The width of the box is sometimes referred to as the
interquartile range (IQR). The dark line inside the box is the second quartile,
also known as the median (50th percentile).

13

●

●

serial MPI OpenMP

40
0

80
0

12
00

S
LO

C

Figure 5.1: Boxplot that illustrates the distribution of program sizes across sub-
jects, in source (non-commented, non-blank) lines of code, or SLOC

The “whiskers” are drawn to the furthest point that it is less than 1.5× IQR
away from the edges of the box. All data points outside of this range are drawn
as circles. For example, in the case of the serial submissions, the first quartile
is 404.5, and the third quartile is 543, giving an IRQ of 138.5. In this case,
the whisker extends upward to the furthest point that is less than 543 + 1.5×
138.5 = 750.75, which is 552. The other two points, 880 and 1122, are drawn as
circles.

From this plot, we can see at a glance that MPI programs tend to be larger
than OpenMP programs, which tend to be larger than serial programs. We
can also see how much variation there is in program size across the participant
submissions.

5.2 Effort

• H1: Writing OpenMP requires less development time than writing MPI pro-
grams.

14

●

●

MPI OpenMP

10
20

30
40

50

ho
ur

s

Figure 5.2: Boxplot that illustrates the distribution of effort data for MPI and
OpenMP tasks.

Figure 5.2 shows the distribution of the effort for the two programming
models. Figure 5.3 shows the same data, with line segments connecting the
MPI and OpenMP efforts for each subject.

Because this is a within-subjects study, we apply a two-sided, paired t-test.
We also show the effect size with Cohen’s d, using the pooled standard devia-
tion. Table 5.2 summarizes these results.

The test shows a statistically significant result. The effect size calculation
indicates an effect size of 1.1, roughly one standard deviation of the sample
population. Unfortunately, the software engineering community has not yet
developed conventions about whether a particular effect size is large. Given
the large variation across individual programmers in this data (see Figure 5.2),
we consider this effect size to be substantial. Comparing the means of the
groups, using OpenMP represents a mean effort savings of approximately 43%.

In addition, we asked the students on a post-test questionnaire to compare
the difficulty of MPI and OpenMP to serial development over different types of
development activity. Unfortunately, we had a very low response rate: only 4
students filled out the questionnaire. Their responses appear in Table 5.2. The

15

ho
ur

s

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●

●
●

10
20

30
40

50

MPI OpenMP

Figure 5.3: Dot plot of effort distribution, with MPI and OpenMP efforts for
each subject connected by line segments. Closed circles indicate data points
where we have performance data for both MPI and OpenMP, as discussed in
Section 5.4

Table 5.1: Summary of effort data

group means MPI:22.5 hours, OpenMP: 12.9 hours
mean of differences 9.6 hours
p-value .042
confidence interval (0.37, 18) hours
effect size (Cohen’s d): 1.1

16

Table 5.2: Post-test questionnaire: difficulty relative to serial

MPI OpenMP
as easy as harder much harder as easy as harder much harder

Pre-program thinking 1 2 1 1 3
Development time 1 2 1 2 2
Learning 1 3 2 2
Tuning for performance 2 2 1 2 1
Debugging 1 3 3 1
Overall difficulty 1 3 1 3

data are consistent with the effort scores: OpenMP is perceived as easier than
MPI across all different types of programming activity.

Because the students solved each problem twice, we are concerned about
ordering effects[27]: it is reasonable to assume that parallelizing a program in,
say, MPI, is easier if you have already parallelized it before in OpenMP. Because
mortality left us with data that was not counter-balanced, this was a particular
concern in our case.

Figure 5.4 shows an interaction diagram, which can be useful for iden-
tifying interactions among independent variables through visual inspection.
In this case, the two variables are programming model (MPI, OpenMP) and
the ordering (MPI-then-OpenMP, OpenMP-then-MPI). The diagram shows the
mean effort for four groups:

• MPI effort when solving MPI first (3 data points)

• OpenMP effort when solving OpenMP first (8 data points)

• MPI effort when solving MPI second (8 data points)

• OpenMP effort when solving OpenMP second (3 data points)

If there was no interaction among variables, then the lines would be paral-
lel. The diagram suggests that OpenMP requires less effort than MPI regardless
of whether the programmer has experience solving the problem previously us-
ing a different model. It also suggests an interaction effect: it appears that it
solving the problem previously in MPI made it easier to solve in OpenMP, but
solving the problem previously in OpenMP made it harder to solve in MPI!

Note that we are extremely wary of drawing any significant conclusions
based on the small sample size, especially given the variation in the data as
seen in Figure 5.2.

17

●

●

●

●12
16

20
24

order

ef
fo

rt
 (

ho
ur

s)

first second

MPI

OpenMP

Figure 5.4: Interaction plot that shows the mean effort for four groups
(MPI:first, MPI:second, OpenMP:first, OpenMP:second) which illustrates the
interaction between programming model and ordering. If there was no inter-
action effect, the lines would be parallel.

18

MPI OpenMP

40
50

60
70

80
90

%

Figure 5.5: Boxplot that illustrates the distribution of assignment grades for
MPI and OpenMP tasks.

5.3 Correctness

• H2: OpenMP programs are more likely to be correct than writing MPI pro-
grams.

Figure 5.5 shows the distribution of the grades for the two programming
models. As previously, we apply a paired t-test. We also show the effect size
with Cohen’s d, using a pooled standard deviation.

The test shows no statistically significant result in correctness across the
two groups. Although there is a reasonably large effect size (0.53), there is
insufficient power to detect a difference, as suggested by the large confidence
interval.

5.4 Performance

• H3: OpenMP programs are more likely to run faster than MPI programs.

19

Table 5.3: Correctness analysis (grade)

group means MPI:80.5%, OpenMP: 89.1%
mean of differences −8.6%
p-value 0.094
confidence interval (−19%, 1.8%)
effect size (Cohen’s d) 0.53

Table 5.4: Execution time

ID Sequential time LAM/MPI MPICH2 OpenMP
33 28.6s N/A N/A 15.0s
34 22.4s 8.1s 12.9s 31.5s
36 37.8s 18.7s 18.9s 34.0s
38 23.2s N/A 9.0s 12.6s / 24.3s
39 47.3s N/A 63.3s 46.0s

108 34.6s 16.5s 15.4s 27.0s

To measure the performance of the parallel programs, we compute the
speedup achieved by the parallel implementation on four cores versus the se-
rial implementation on one core. As described in Section 4.7, we measured
program execution time by executing all programs on four cores of a multicore
machine using a reference serial input and recording the execution time.

When evaluating performance, we considered only programs that were
considered correct by the assignment grader. Our rationale is that a defect
in the code may result in result in a reduced execution time (e.g., failure to
use locking correctly in OpenMP, failure to check that non-blocking I/O has
completed in MPI). Only five students submitted both MPI and OpenMP im-
plementations that were considered correct (participants 34,36,38,39,108) and
one student submitted a correct OpenMP implementation but an incorrect MPI
implementation (participant 33).

Execution times are shown in Table 5.4. Speedups for MPI and OpenMP im-
plementations are shown in Table 5.4. Participant 38 submitted two separate
OpenMP implementations, one using loop-level parallelism and another using
parallel sections, the performance of both implementations is reported: the im-
plementation using loop-level parallelism executed in less time. The strategies
are discussed in more detail in Section7.

Two of the MPI implementations worked properly on MPICH2, but not
LAM/MPI. For one of the implementations, all processes seemed to hang, tak-
ing up 100% of the CPU. The problem is what Nakamuara et al. refer to as
a potential deadlock[28]. The correct behavior depends upon the behavior of
the MPI Send function call, which may or may not block. A description of this

20

Table 5.5: Speedups on 4 cores

speedup strategy
ID LAM/MPI MPICH2 OpenMP MPI OpenMP
33 ∗ ∗ 1.9× 1D decomp 1D decomp
34 2.8× 1.7× 0.7× 1D decomp 2D decomp
36 2.0× 2.0× 1.1× 1D decomp 1D decomp
38 ∗ 2.6× 1.8× / 1.0× 1D decomp loop-level/2D decomp
39 ∗ 0.7× 1.0× 1D decomp loop-level

108 2.1× 2.2× 1.3× 1D decomp 1D decomp
Mean 1.95× 1.30×

Table 5.6: Summary of performance data

group means MPI:1.95×, OpenMP: 1.18×
mean of differences 0.78×
p-value .0.063
confidence interval (−0.069×, 1.6×)
effect size (Cohen’s d): 1.5

problem can be found in Nakamura’s HpcBugBase1. For the other improp-
erly functioning LAM/MPI implementation, the program appeared to com-
plete the simulation and produce output, but hung before final termination:
we were not able to determine why it behaved properly with MPICH2 but not
LAM/MPI.

Since we are doing a within subject comparison, we must discard the data
from participant 33, leaving us with only 5 pairs of data points for statistical
analysis. Where we have data from two MPI implementations, we use the
median of the two. For participant 38, we use the larger speedup for OpenMP.
Table 5.4 shows the results of the t-test, which are not statistically significant at
the p < .05 level.

Despite the lack of statistical significance for this test, we feel that the large
effect size estimate of 1.5 suggest that for this particular computing configura-
tion, novice programmers are more likely to get better performance with MPI
than OpenMP. However, because of the small number of data points, and be-
cause program performance is sensitive to many different variables, we cannot
draw any firm conclusions.

1http://www.hpcbugbase.org/index.php/Potential_Deadlock

21

http://www.hpcbugbase.org/index.php/Potential_Deadlock

Chapter 6

THREATS TO VALIDITY

No individual study is perfectly designed, and individual flaws in the design
can raise concerns about the validity of the conclusions. Similarly, issues can
arise during the execution of the study that also threaten the validity of the
conclusions. In this section, we discuss such issues.

6.1 Internal

In a controlled experiment, the goal is to test whether a causal relationship ex-
ists between the independent variable (selection of MPI or OpenMP as parallel
programming model) on the dependent variables (developer effort, correct-
ness, and program performance) by systematically varying the independent
variable, while attempting keep all other context variables constant.

However, factors other than the systematic varying of the independent vari-
able can sometimes be the source of variation in the dependent variables. In
the literature, these are referred to as internal threats to validity.

Mortality. One of the challenges of running human-subject experiments is
ensuring that the study participants in each of the treatment groups are equiva-
lent. Ideally, this is done by random assignment into treatment groups to avoid
any systematic bias in the two groups.1. The problem of non-equivalent groups
due to nonrandom assignment to treatments is known as the selection problem.

As we used random assignment to treatment groups, we did not have this
threat to validity in this study. However, we ran into a different problems. Sev-
eral of the students that consented to the study did not enable instrumentation
on the machines or worked on a non-instrumented machine. This problem of
mortality, where participants initially sign up for the study but fail to complete
it, was particularly problematic in our case because it affected the treatment

1Note that the importance of equivalent groups makes it very difficult to run such studies with
experts, because it requires a pool of participants that is equally experienced in both MPI and
OpenMP, to ensure that the two groups have equal levels of experience once the random assign-
ment has been done

22

groups unevenly: eight students started with OpenMP and only three started
with MPI.

Since this is a within-subjects study, we were still able to compare OpenMP
with MPI for all participants. However, the study was no longer fully coun-
terbalanced, which means that the results may also reflect the difference in
ordering in which the problems were solved, in addition to the effect due to
programming model.

History / Repeated testing. It is possible that the students would learn from
the experience of having solved it the first time with the different model. We
tried to control for this effect by using counter-balancing: half of the students
solved the problem with MPI first, and half solved it with OpenMP first. Un-
fortunately, due to mortality effects (specifically, students who did not enable
the instrumentation or worked on uninstrumented machines), our final data
set was not fully counterbalanced: 3 students solved the problem first with
OpenMP and 8 solved the problem first with MPI. This suggests that the effort
savings of using OpenMP may be even more pronounced than is suggested by
the results of the study.

Confounding variables. The development machines used by the study par-
ticipants for the MPI and OpenMP machines were different. Differences in de-
velopment effort may be partially attributable to the environment differences.
In particular, the mechanism for executing parallel programs was different on
the two machines. The MPI machine was a batch-scheduled cluster: to run a
parallel program, the programmer must write a job script which invokes the
program, and submit the script to a scheduler. The scheduler executes the pro-
gram when sufficient resources become available on the cluster. In contrast,
the OpenMP machine was an interactive server and could invoke the paral-
lel program immediately after it was successfully compiled. This confounding
may explain some of the observed difference in effort across models, as MPI
programmers may have spent additional development time writing job scripts
and waiting for their jobs to run.

6.2 Construct

To conduct a controlled experiment, we must operationalize the dependent vari-
ables. That is, we must take fairly abstract concepts like “correctness” and
“performance” and define suitable metrics that we can collect during the ex-
periment and use for statistical analysis.

If the chosen metrics do not properly capture the underling concepts, then
the study has problems that are commonly referred to as construct threats to
validity.

Mono-measure bias. The underlying constructs we analyze in this study (ef-
fort, correctness, performance) are difficult to measure. In this study, we used
only a single measure for each concept, which runs a risk of not capturing them
properly.

For the correctness metric, we took advantage of the environment in which

23

the study was run: the professor was already grading the assignments, so we
leveraged these grades. However, because this measure is subjective, it is dif-
ficult to identify how accurate it is, and whether there is any bias. For a future
study, we would probably recommend either defining a set of test suites to use
as a basis for correctness, which would provide a simple, objective measure
(number of tests passed). If expert judgment was used in a follow-on study, we
would recommend using multiple judges and measure the inter-rater agree-
ment to check for consistent ratings across experts.

For the effort metric, the participants may have spent considerable amounts
of effort on trying to solve the problem that were not captured by the instru-
mentation (e.g. working out an algorithm on paper). We originally attempted
to mitigate this by asking the students to record their effort in a paper log. Un-
fortunately, the response rates were too low for the self-reported effort data to
be usable: not enough students turned in the forms.

Capturing program performance is even more difficult, because the perfor-
mance of a program is sensitive to many different factors, such as computer
architecture, cache, compiler implementation, compiler optimization flags and
library implementation. In addition, the relative performance of serial, MPI
and OpenMP implementations can vary based on the input files. We expect
that speedups will decrease for smaller input sizes because the ratio of par-
allelizable work to multi-thread/process overhead will decrease. In addition,
the distribution of the computational load may vary based on the input.

6.3 External

This study was conducted in a specific context: solving a small parallel pro-
gramming problem in the context of a graduate-level course. This is quali-
tatively different from implementing a complete application in a commercial
or research environment. For example, in larger programs, more of the code
will be inherently serial, and so the effect of the parallel programming model
will not be as pronounced. In addition, the students did their development
on remote machines, since they did not have access to parallel computers at
the time that the study was conducted. While this was advantageous for the
internal validity of the study, it threatens external validity because we expect
development habits to change when developing and running on a local ma-
chine.

Even for small-scale problems, this single study is not representative of all
of the different types of parallelizable problems. This study focused on one
particular problem: a nearest-neighbor problem that is common in many physi-
cal simulations. Other types of problems will be easier or harder to parallelize
using a message-passing model based on their communication patterns (e.g.
embarrassingly parallel problems, all-to-all problems).

We also might expect different results if the assignment goals were stated
differently[29]. For example, if the students were told that their grades de-
pended on achieving a certain level of program performance, they may have

24

spent more time trying to optimize their code. It may be the case that OpenMP
requires more effort to achieve the same level of performance as MPI on a cer-
tain platform because of the time required to tune various parameters that af-
fect performance.

Finally, this study was performed with graduate students who were just
learning MPI and OpenMP during the course. We do not know how the re-
sults of the study would change if the students had more experience in parallel
programming.

25

Chapter 7

DISCUSSION

7.1 Examining student solutions

In addition to the statistical analysis, we also examined the strategies that the
students used to achieve parallelism. For the MPI case, a natural approach is
to use domain decomposition. The programmer subdivides the board into con-
tiguous regions, and each process is assigned to simulate the behavior of the
sharks and the fishes in one region. Because the MPI processes run in a separate
address space, the borders of these regions need to be exchanged among pro-
cesses, hence the term nearest-neighbor to describe this type of parallelism. In
general, parallel programmers seek to minimize the amount of data exchanged
among processes, although for multicore systems this is less of an issue than
in clusters. In theory, the optimal region shape is a square, which minimizes
perimeter given a fixed area. This is known as a 2D decomposition, as each
process has to exchange information with neighbors in the left-right directions
and in the up-down directions. Conversely, a simpler solution is to use rectan-
gular regions that span entire rows, because each process only has to exchange
information with neighbors in the up-down direction. This is known as a 1D
decomposition. Both types of decompositions are shown in Figure 7.1.

To obtain optimal performance, we want to divide the computational work
up as evenly as possible among the processors: otherwise processors with less
work will have to wait for other processors to catch up. Figure 7.1 shows
equally-sized regions being assigned to each process. However, work is not
directly proportional to the number of grid cells. Instead, it is proportional to
the number of occupied grid cells. Because the number of occupied grid cells in
a region changes over time, ensuring that the amount of work remains evenly
divided across processors, a task known as load balancing, increases the com-
plexity of the implementation.

Out of the 11 MPI solutions examined, 9 of them used domain decompo-
sition with communication among neighbors. The other two used a less effi-
cient master-worker scheme[30], where communication was centralized through

26

1D decomposition

2D decomposition

Figure 7.1: Two domain decomposition strategies used by students for paral-
lelizing the solution

27

a single master process rather than between members. Only 1 of the 9 domain
decomposition solutions used a 2D decomposition, the rest used a 1D decom-
position.

For the OpenMP case, there are two general strategies available: loop-level
parallelization, or using parallel sections to implement domain decomposition.
Because the amount of computational work within loop iterations can be quite
small, this parallel strategy is sometimes referred to as fine-grained parallelism.
By contrast, the domain decomposition approach is referred to as coarse-grained
parallelism, because there are relatively large chunks of computational work to
be processed in parallel. MPI is generally only used for coarse-grained paral-
lelism, where OpenMP supports both, in principle.

As written, the assignment description implies that students should use the
domain decomposition approach for their OpenMP solution, and that is what
7 out of the 11 participants did (2 used 2D decomposition, and the other 5 used
1D decomposition). Two students used loop-level parallelism, and one student
did both approaches and submitted two separate implementations. The pro-
fessor did not deduct points for the students who used loop-level parallelism.
Because of the small size of the data sample, it is difficult to draw firm con-
clusions. Nevertheless, the data suggest that a novice is more likely to achieve
speedup with MPI than with OpenMP. This contradicts our H3 hypothesis:
we assumed that there would be some overhead incurred in the MPI imple-
mentations because of the interprocess communication involved. One possible
explanation for the overall poor OpenMP performance is that it is difficult to
handle locking correctly and still obtain good performance.

7.2 Performance-effort tradeoffs in productivity

The study results suggest that implementing a parallel program using OpenMP
requires substantially less effort than implementing the same program in MPI.
In particular, taking a serial program and converting it to an MPI program re-
quires more substantial modifications to the source code than converting it to
an OpenMP program. This result is consistent with the folklore from the high-
performance computing community which suggests that OpenMP is easier to
write parallel programs in than MPI.

These performance results reinforce the importance of considering both
programmer effort and program performance when considering the produc-
tivity of a parallel programming paradigm [31, 32]. If MPI programs tend to
get better performance than OpenMP programs, then programmers need to
understand the performance-effort tradeoffs when choosing the appropriate
parallel programming model for their project.

Advocates of the OpenMP model may argue that the OpenMP programs in
this experiment likely ran slower because of poor implementations that were
too conservative in locking strategies to avoid race conditions. Indeed, it is
conceivable that with modifications, the OpenMP programs would run even
faster than their MPI counterparts. However, we do not know how much ef-

28

fort would be involved in this activity of improving performance. In particular,
since the performance problems may be related to locking, then modifying this
code may lead to race conditions, which are notorious for being difficult to de-
bug. An interesting alternative study design would be to give the students a
specific performance requirement, so that they had to keep working until the
code met that requirement. Such a study would be more useful for practition-
ers who are developing under stringent performance requirements.

7.3 Using a parallel programming course for run-
ning a study

We felt that a graduate-level course with a parallel computing component was
a natural fit for a parallel programming study. It would have been difficult
to get prospective participants to commit to solving a parallel programming
problem that may take up to 50 hours of effort, unless they were required to do
so for some other purpose.

Conducting this type of a study in a classroom environment is surprisingly
challenging. Professors who teach parallel programming issues are seldom
versed in experimental design, and so running such a study requires a collab-
oration among empiricists and parallel computing experts. The programming
assignment must be tailored to serve the purposes of the study, keeping in
mind that the primary goal of the assignment is to serve the pedagogical needs
of the course. Because of the length of time required to solve this program, we
could not simply lock the participants in a room and time their efforts with a
stopwatch. Having them work on their own time creates formidable measure-
ment challenges. While these programming problems seem small (∼ 1 KLOC),
they are probably near the upper limit of the kind of problem that can be used
in a controlled experiment if direct effort measurement is desired. For larger
problems, obtaining sufficient number of participants and collecting accurate
data would become much more complicated: such problems are more well-
suited to a case study approach [33, 11].

7.4 Recommendations for future studies

The participants were not given any specific quality or performance objective
in this study: they completed it as they would any other programming assign-
ment in a course. We saw, as a result, wide variation in terms of both cor-
rectness and performance. An alternative study design would be to set some
level of correctness that the code must achieve (e.g., provide participants with
a comprehensive suite of test cases), and/or to provide them with a minimum
level of speedup that they should achieve.

We expect different results for two types of parallel programming tasks. It
would be interesting to see how results vary by task, and if it is, indeed, possi-

29

Table 7.1: Power analysis calculation

observed mean of differences 9.6 hours
pooled standard deviation 8.93 hours
minimum power ≥ .0.8
alpha ≤ .05
Total subjects required 30

ble to classify the relative productivity of MPI vs. OpenMP based on different
problem types (e.g., embarrassingly parallel, nearest neighbor).

In this study, we used a crossover design with a single programming task.
The results of our analysis suggest that there may be an interaction effect be-
tween programming model (MPI vs. OpenMP) and ordering (MPI-then-OpenMP
vs. OpenMP-then-MPI). This means that even if we did not have the mortality
issues described in Section 6, the effect of ordering would not cancel out across
the groups. For a future study, we recommend not using such a crossover de-
sign. Other options are to use a simple design where participants solve only
one problem, or a fully counterbalanced design where the participants solve
two problems, rather than solving the same problem twice.

We can use a statistical technique known as power analysis to estimate the
number of subjects required in a future study to observe a statistically signifi-
cant difference in effort between MPI and OpenMP, using the observed differ-
ence of means and the observed variances from this study. For simplicity, we
will assume that the future study will be a basic design with two groups (MPI,
OpenMP), and we will assume that the variance will be the same across the
two groups. We use our sample difference between the means as an estimate
of the true difference between the means, and we used the pooled standard
deviation as an estimate of the true standard deviation.

Table 7.4 shows a summary of the data involved in the power analysis
calculation, which was computed using Lenth’s power analysis tool [34]. A
follow-on study would require a minimum of 30 participants: 15 in the MPI
group, and 15 in the OpenMP group, to have better than 80% probability of
detecting a difference in effort between MPI and OpenMP.

30

Chapter 8

CONCLUSION

Programmers will no longer be able to achieve performance improvements on
the next generation of processor architectures without substantially modifying
their programs to take advantage of parallelism. The study described in this
paper suggests that it requires significantly less effort to make such changes
with the OpenMP parallel programming model than the MPI parallel program-
ming model. The performance data is less conclusive, but suggests that this re-
duction in effort may come at a cost of reduced performance. Even in the con-
text of this single study, it is unclear which model would be more productive
for developers without considering the relative importance of the performance
of the final implementation.

Additional studies are required to determine how performance and effort
vary for different programming problems, different populations of program-
mers, and for different software development contexts. We have seen very dif-
ferent programming tools used in the computational science community ver-
sus the IT community[35].

In addition, MPI and OpenMP are both moving targets. In this study, par-
ticipants used features from the MPI-1 and OpenMP 2.5 standards. At the time
of this writing, implementations that support MPI-2 and OpenMP 3.0 are avail-
able.

We hope that this study will become part of a larger body of empirical re-
search to support the software community as it struggles to come to grips with
the challenges of multicore software engineering. We are already seeing tech-
nologies hyped by proponents without empirical evidence supporting claims
of improved productivity. As no clear market winner has yet emerged, we as
researchers have an opportunity to help guide the course of adoption of multi-
core software technologies.

31

Chapter 9

ACKNOWLEDGEMENTS

This research was supported in part by Department of Energy grant awards
DE-FG02-04ER25633 and DE-CFC02-01ER25489, and Air Force Rome Labs grant
award FA8750-05-1-0100. We would like to acknowledge Alan Sussman for ac-
commodating this research in his course, Taiga Nakamura for data cleaning,
Nabi Zamani for building the tools to calculate effort, Thiago Craverio and
Nico Zazwarka for building the experiment management software, and Sima
Asgari for managing the IRB process. Finally, we would like to thank Marv
Zelkowitz, Jeff Hollingsworth, Forrest Shull and Jeff Carver for their advice in
the design of the study and artifacts.

32

Bibliography

[1] Graham SL, Snir M, Patterson CA ((eds.)). Getting up to Speed: The Future
of Supercomputing. National Academies Press, 2004.

[2] Bronis RdS, Jeffrey KH, Shirley M, Patrick HW. Results of the PERI survey
of SciDAC applications. Journal of Physics: Conference Series 2007; :012 027.

[3] Sutter H. The free lunch is over: A fundamental turn toward concurrency
in software. Dr. Dobb’s Journal March 2005; 30(3).

[4] Asanovic K, Bodik R, Keaveny JDT, Keutzer K, Kubiatowicz J, Morgan N,
Patterson D, Sen K, Wawrzynek J, Wessel D, et al.. A view of the parallel
computing landscape. Communications of the ACM October 2009; 52(10).

[5] Shadish WR, Cook TD, Campbell DT. Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Second edn., Wadsworth Publish-
ing, 2001.

[6] Szafron D, Schaeffer J. An experiment to measure the usability of parallel
programming systems. Concurrency: Practice and Experience March 1996;
8(2):147–166.

[7] Browne J, Lee T, Werth J. Experimental evaluation of a reusability-oriented
parallel programming environment. IEEE Transactions on Software Engi-
neering February 1990; 16(2):111–120.

[8] Cantonnet F, Yao Y, Zahran M, El-Ghazawi T. Productivity analysis of the
UPC language. IPDPS 2004 PMEO workshop, 2004.

[9] Chamberlain B, Dietz S, Snyder L. A comparative study of the NAS MG
benchmark across parallel languages and architectures. 2000 ACM/IEEE
Supercomputing Conference on High Performance Networking and Computing
(SC2000), 2000; 297–310.

[10] VanderWiel S, Nathanson D, Lija D. Complexity and performance in par-
allel programming languages. 2nd International Workshop on High Level Pro-
gramming, 1997.

33

[11] Pankratius V, Jannesari A, Tichy WF. Parallelizing bzip2: A case study
in multicore software engineering. IEEE Software 2009; 26(6):70–77, doi:
http://dx.doi.org/10.1109/MS.2009.183.

[12] Hochstein L, Carver J, Shull F, Asgari S, Basili VR, Hollingsworth J,
Zelkowitz M. Parallel programmer productivity: A case study of novice
HPC programmers. SC ’05: Proceedings of the ACM/IEEE Conference on Su-
percomputing, 2005, doi:10.1109/SC.2005.53.

[13] Hochstein L, Basili VR, Vishkin U. A pilot study to compare program-
ming effort for two parallel programming models. Journal of Systems and
Software November 2008; 81(11):1920–1930, doi:10.1016/j.jss.2007.12.798.

[14] glu KE, Sarkar V, El-Ghazawi T, Urbanic J. An experiment in measuring
the productivity of three parallel programming languages. Proceedings of
the Third Workshop on Productivity and Performance in High-End Computing
(P-PHEC), 2006.

[15] Luff M. Empirically investigating parallel programming paradigms: A
null result. Proceedings of the PLATEAU 2009 Workshop on Evaluation and
Usability of Programming Languages and Tools, 2009.

[16] Kirk RE. Experimental Design: Procedures for Behavioral Sciences. Wadsworth
Publishing, 1994.

[17] Cohen J. The earth is round (p¡.05). American Psychologist 1994; 49(12).

[18] Basili VR, Caldiera G, Rombach HD. Goal question metric approach. En-
cyclopedia of Software Engineering. John Wiley & Sons, 1994; 528–532.

[19] Dewdney A. Sharks and fish wage an ecological war on the toroidal planet
Wa-Tor. Scientific American December 1984; .

[20] Burns G, Daoud R, Vaigl J. LAM: An open cluster environment for MPI.
Proceedings of Supercomputing Symposium ’94, University of Toronto, 1994;
379–386.

[21] Gropp W, Lusk E, Doss N, Skjellum A. A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Com-
puting September 1996; 22(6):789–828.

[22] Johnson PM, Hongbing K, Agustin J, Chan C, Moore C, Miglani J, Shenyan
Z, Doane WEJ. Beyond the personal software process: Metrics collection
and analysis for the differently disciplined. 25th International Conference on
Software Engineering, 2003; 641–646.

[23] Hochstein L, Basili VR, Zelkowitz M, Hollingsworth J, Carver J. Combin-
ing self-reported and automatic data to improve programming effort mea-
surement. Fifth joint meeting of the European Software Engineering Conference
and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC-FSE’05), 2005, doi:10.1145/1081706.1081762.

34

[24] Mirhosseini-Zamani SN. High productivity computer systems: Realiza-
tion of data cleaning and human effort measurement tools. Master’s The-
sis, University of Maryland, College Park 2007.

[25] Hochstein L, Nakamura T, Shull F, Zazworka N, Basili VR, Zelkowitz MV.
An Environment for Conducting Families of Software Engineering Experiments,
Advances in Computers, vol. 74. Elsevier, 2008; 175–200.

[26] TUkey JW. Exploratory Data Analysis. Addison Wesley, 1977.

[27] Kitchenham B, Fry J, Linkman S. The case against cross-over designs in
software engineering. Software Technology and Engineering Practice, 2003.
Eleventh Annual International Workshop on September 2003; :65–67.

[28] Nakamura T, Hochstein L, Basili VR. Identifying domain-specific defect
classes using inspections and change history. Proceedings of the 5th Interna-
tional Symposium on Empirical Software Engineering (ISESE’06), 2006; 346–
355, doi:10.1145/1159733.1159785.

[29] Weinberg GM, Schulman EL. Goals and performance in computer pro-
gramming. Human Factors 1974; 16(1):70–77.

[30] Mattson TG, Sanders BA, Massingill BL. Patterns for Parallel Programming.
Software Patterns Series, Addison-Wesley Professional, 2004.

[31] Kepner J. HPC productivity model synthesis. The International Journal of
High Performance Computing Applications 2004; 18(4):505–516. Other link at
http://www.highproductivity.org/IJHPCA/10f-Kepner-Synthesis.pdf.

[32] Zelkowitz M, Basili VR, Asgari S, Hochstein L, Hollingsworth J, Naka-
mura T. Measuring productivity on high performance computers. Proceed-
ings of the 11th International Symposium on Software Metrics, 2005.

[33] Rodman A, Brorsson M. Programming effort vs. performance with a hy-
brid programming model for distributed memory parallel architectures.
Euro-Par’99 parallel processing : 5th International Euro-Par Conference, vol.
1685 / 1999, Amestoy P, Berger P, Daydé M, Duff I, Frayssé V, Giraud L,
Ruiz D (eds.), Springer-Verlag GmbH, 1999; 888–898.

[34] Lenth R. Java applets for power and sample size.

[35] Basili VR, Cruzes D, Carver JC, Hochstein LM, Hollingsworth JK,
Zelkowitz MV, Shull F. Understanding the high-performance-computing
community: A software engineer’s perspective. IEEE Software July 2008;
25(4):29–36, doi:10.1109/MS.2008.103.

35

Appendix A

Assignment

36

CMSC 714- High Performance Computing

Fall 2005 - Programming Assignments 1 and 2

Due October 11 and October 20, 2005 @ 6:00PM

The purpose of this programming assignment is to gain experience in parallel programming on an
SMP and a cluster, using OpenMP and MPI, respectively. For this assignment you are to write a
sequential and two parallel implementations of a program to simulate a game called Sharks and
Fishes.

The game is a variation of a simple cellular automata. The game is played on a square grid containing
cells. At the start, some of the cells are occupied, the rest are empty. The game consists of
constructing successive generations of the grid. To understand how the game works, imagine the
ocean is divided into a square 2D-grid, where:

each grid cell can be empty or have a fish or a shark,
the grid is initially populated with fishes and sharks in a random manner, and
the population evolves over discrete time steps (generations) according to certain rules.

Rules for Fish

At each time step, a fish tries to move to a neighboring empty cell, picking according to the
method described below if there are multiple empty neighbors. If no neighboring cell is empty,
it stays. Fish move up or down, left or right, but not diagonally (like Rooks not Bishops).
If a fish reaches a breeding age, when it moves it breeds, leaving behind a fish of age 0, and its
age is reset to 0. A fish cannot breed if it doesn't move (and its age doesn't get reset until it
actually breeds).
Fish never starve.

Rules for Sharks

At each time step, if one of the neighboring cells has a fish, the shark moves to that cell eating
the fish. If multiple neighboring cells have fish, then one is chosen using the method described
below. If no neighbors have fish and if one of the neighboring cells is empty, the shark moves
there (picking using the method described below from empty neighbors if there is more than
one). Otherwise, it stays. Sharks move up or down, left or right, but not diagonally (like Rooks
not Bishops).
If a shark reaches a breeding age, when it moves it breeds, leaving behind a shark of age 0 (both
for breeding and eating), and its breeding age is reset to 0. A shark cannot breed if it doesn't
move (and its age doesn't get reset until it actually breeds).
Sharks eat only fish, not other sharks. If a shark reaches a starvation age (time steps since last
eaten), it dies (if it doesn't eat in the current generation).

More on Rules for Fish and Sharks

The specification above is not specific about when ages for starving or breeding are incremented, and
whether starving or breeding takes precedence. The right way to think about it is that an animal's age
is incremented between generations (and a generation consists of a red and a black sub-generation, as
described in the next section). So if a shark reaches its starvation age in a generation, it dies, since the
starvation age did not get reset by the end of the previous generation. As for breeding, an animal is
eligible to breed in the generation after its current breeding age reaches the animal's minimum
breeding age (supplied on the command line).

Traversal Order Independence

Since we want the order that the individual cells are processed to not matter in how the game evolves,
you should implement the game using a so-called red-black scheme (as in a checkerboard) for
updating the board for each generation. That means that a generation consists of 2 sub-generations.
In the first sub-generation, only the red cells are processed, and in the second sub-generation the black
cells are processed. In an even numbered row red cells are the ones with an even column number, and
in an odd numbered row red cells are the ones with an odd column number. The red-black scheme
allows you to think of each sub-generation as a separate parallel (forall) loop over the red (or black)
cells, with no dependences between the iterations of the loop. Note that in the red-black scheme a fish
or shark may end up moving twice in a generation. The rules that follow about selecting cells and
resolving conflicts apply for each sub-generation.

Rules for Selecting a cell when multiple choices are possible

If multiple cells are open for moving to for either a fish or a shark, or occupied for a shark to
move to eat a fish, number the possible choices starting from 0, clockwise starting from the
12:00 position (i.e. up, right, down, left). Note that only cells that are unoccupied (for moves)
or occupied by fish (for sharks to eat), are numbered. Call the number of possible cells p.
Compute the grid cell number of the cell being evaluated. If the cell is at position (i,j) in the
ocean grid with (0,0) the grid origin, and the grid is of size MxN, the grid cell number C = i x N
+ j .
The cell to select is then determined by C mod p . For example, if there are 3 possible cells to
choose from, say up, down and left, then if C mod p is 0 the selected cell is up from the current
cell, if it is 1 then select down, and if it is 2 then select left.

Conflicts

A cell may get updated multiple times during one generation due to fish or shark movement.
If a cell is updated multiple times in a single generation, the conflict is resolved as follows:

If 2 or more fish end up in a cell, then the cell ends up with the fish with the greatest
current age (closest to breeding - big fish win). The other fish disappear.
If 2 or more sharks end up in a cell, then the cell ends up with the shark with the greatest
current starvation age (closest to starvation - more hungry sharks win), and the resulting
shark gets the breeding age of the shark that had the greatest current starvation age. If 2
or more sharks have the same greatest starvation age, the resulting shark gets the greatest
breeding age of the tied sharks. The other shark(s) disappear.
If a shark and a fish end up in a cell, then the cell ends up with a shark - the shark eats the

fish, so resets its starvation clock. The resulting shark gets the greatest breeding age of
all the sharks that end up in the cell (i.e. ignore their previous starvation ages). Any other
fish and/or shark(s) disappear.

For this project the game grid has finite size. The x-axis and y-axis both start at 0 (in the upper left
corner of the grid) and end at limit-1 (supplied on the command line).

Part 1

Write a serial implementation of the above program in C. Name the source file sharks-fishes-
serial.c.

Input

Size of the grid
Distribution of sharks and fishes in the following file format

x y type
1 3 fish
3 5 shark

Shark and fish breeding ages
Shark starvation age
A number of timesteps (iterations)

Your program should take six command line arguments: the size of the grid (limit), the name of the
data file, the shark and fish breeding ages, the shark starvation age, and the number of generations to
iterate.

To be more specific, the command line of your program (e.g., for a sequential version) should be:

sharks-fishes <limit> <input file name> <shark breeding age>
<fish breeding age> <shark starvation age> <# of
generations>

A sample set of parameters for the command line and an input data file will be made available soon.

Output

At the end of program output a list of positions of sharks and fishes in the same file format as for the
input data file.

A sample output file for the sample input data will also be made available soon.

Data structures

A 2-D grid of cells

struct ocean{

int type /* shark or fish or empty */
struct swimmer* occupier;
} ocean[MAX][MAX];

A linked list of swimmers

struct swimmer{
int type;
int x,y;
int age;
int last_ate;
int iteration;
swimmer* prev;
swimmer* next;
} *List;

At a high level, the logic of the serial (non-parallel) program is:

Initialize ocean array and swimmers list
In each time step, go through the swimmers in the order in which they are stored and perform
updates

Part 2: OpenMP

Write an OpenMP implementation of the Sharks and Fishes program as in the Part 1, with the same
rules. Name this source code sharks-fishes-omp.c . There are now some complications to
consider:

You need to distribute the 2D ocean grid across threads, in 1 or 2 dimensions. Each thread is
responsible for a 2-D grid of ocean cells.
For communication, each thread needs data from up to 4 neighboring threads.
2 challenges are potential for conflicts, and load balancing

Conflicts

Border cells for a given thread (the ones just outside the cells a thread is responsible for) may
change during updates due to fish or shark movement.
Border cells need to be synchronized properly. Hence the update step involves communication
between threads, but only at the borders of the grid assigned to each thread.

Load Balancing

The workload distribution changes over time.
A 2D block distribution may not be optimal, so you might want to experiment with 1D block
distributions too.

Part 3: MPI

Write an MPI implementation of the Sharks and Fishes program as for OpenMP, and deal with the
same problems. Name this source code sharks-fishes-mpi.c .

HINTS

The goal is not to write the most efficient implementations, but rather to learn parallel programming
with OpenMP and MPI.

Figure out how you will decompose the problem for parallel execution. Remember that OpenMP
synchronization between threads must be done carefully to avoid performance bottlenecks, and that
MPI (at least the mpich implementation) does not have great communication performance so you will
want to make message passing infrequent. Also, you will need to be concerned about load balancing.

WHAT TO TURN IN, AND WHEN

You must eventually submit the sequential and both parallel versions of your program (please use file
names that make it obvious which files correspond to which version, as described above) and the
times to run the parallel versions on input data to be give later, for 1, 2, 4 and 8 processes).

You also must submit a short report about the results (1-2 pages) that explains:

what decomposition was used
how was load balancing done
what are the performance results, and are they what you expected

You will turn in the serial version and either the OpenMP or MPI parallel version at the first due date,
with the short report, and then the serial version again (hopefully the same) and the other parallel
version at the second due date, with an updated report. I will send email to each of you, telling you
which parallel version you should turn in first. Please do the parallel versions in the order that you are
assigned them, to aid the software engineering study being done on you during the programming
assignments.

RUNNING OpenMP on tau/ceti

To run with OpenMP, you need to add the Sun compiler to your path (typically done in your .cshrc
file):

set path=(/opt/SUNWhpc/bin $path)

The Sun C compiler that understands OpenMP is then invoked with mpcc (if you really want to use
C++, use mpCC instead).

To compile your OpenMP program, use the compiler flags "-xO3 -xopenmp=parallel" (e.g., mpcc
-xO3 -xopenmp=parallel your_file.c).
Note that OpenMP compiler optimization is level 3 whether you explicitly set it or not, and you will
get a compiler warning you if you don't use -xO3.

To choose the number of threads that OpenMP will use at runtime, set the OMP_NUM_THREADS
environment variable before running your program. This means that you don't have to recompile to
change the number of threads.

For example, to run the OpenMP hello world example from http://www.llnl.gov/computing/tutorials
/openMP/exercise.html):

$ mpcc -xO3 -xopenmp=parallel omp_hello.c -o omp_hello
$ setenv OMP_NUM_THREADS 8
$./omp_hello
Hello World from thread = 0
Number of threads = 8
Hello World from thread = 4
Hello World from thread = 7
Hello World from thread = 1
Hello World from thread = 3
Hello World from thread = 2
Hello World from thread = 6
Hello World from thread = 5

Note that because the default compiler optimization level is 3 for OpenMP codes, if you compile your
sequential code without optimization level 3, you may see a performance boost that's due to compiler
optimization, not parallelism. So please also compile your serial code with -xO3 to show your
performance results

RUNNING MPI with MPICH on the red/blue cluster

To run MPI, you need to set a few environment variables:

setenv MPI_ROOT /usr/local/stow/mpich-1.2.7
setenv MPI_LIB $MPI_ROOT/lib
setenv MPI_INC $MPI_ROOT/include
setenv MPI_BIN $MPI_ROOT/bin
add MPICH commands to your path (includes mpirun and the C
compiler that links in the MPI library, mpicc)
set path=($MPI_BIN $path)
add MPICH man pages to your manpath
if ($?MANPATH) then
 setenv MANPATH $MPI_ROOT/man:$MANPATH
else
 setenv MANPATH $MPI_ROOT/man
endif

The number of processes/processors the program will run with is specified as part of the mpirun
command with the –np switch (you will instead probably use the pbsmpich command to run the MPI
job with the Linux cluster scheduler - see the cluster documentation for more details).

Software Engineering Study

The instructions for setting up your accounts for the high performance computing software
engineering study discussed in class are here .

Templates, sample code, makefiles, etc. are available here .

ADDITIONAL RESOURCES

For additional OpenMP information, see http://www.openmp.org (OpenMP API specification, and a
lot more). For more on the Sun OpenMP implementation, see http://docs.sun.com/app/docs
/doc/819-0501 .

For additional MPI information, see http://www.mpi-forum.org (MPI API) and http://www-
unix.mcs.anl.gov/mpi (for MPICH).

For more information about using the Maryland cluster PBS scheduler, MPI, etc., see
http://www.umiacs.umd.edu/research/parallel/classguide.htm . The scheduler has recently been
updated with a new frontend with the same set of commands as PBS, so you need to add the path to
the new scheduler commands at the front of your path:

set path = (/opt/UMtorque/bin $path)

Last updated Saturday, 15 October 2005 10:53 PM

	INTRODUCTION
	RELATED WORK
	BRIEF INTRODUCTION TO NHST
	Overview
	Calculating the p-value
	Errors and power
	Uncertainty and effect sizes

	DESCRIPTION OF THE STUDY
	Goals
	Hypotheses
	Study Design
	Participants and groups
	Study Task
	Procedure
	Apparatus
	Effort
	Correctness
	Performance

	DATA ANALYSIS
	A note about boxplots
	Effort
	Correctness
	Performance

	THREATS TO VALIDITY
	Internal
	Construct
	External

	DISCUSSION
	Examining student solutions
	Performance-effort tradeoffs in productivity
	Using a parallel programming course for running a study
	Recommendations for future studies

	CONCLUSION
	ACKNOWLEDGEMENTS
	Assignment
	Appendix

