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Abstract. The growing importance of network analysis has increased
attention on interactive exploration to derive insights and support per-
sonal, business, legal, scientific, or national security decisions. Since net-
works are often complex and cluttered, strategies for effective filtering,
clustering, grouping, and simplification are helpful in finding key nodes
and links, surprising clusters, important groups, or meaningful patterns.
We describe readability metrics and strategies that have been imple-
mented in NodeXL, our free and open source network analysis tool,
and show examples from our research. While filtering, clustering, and
grouping have been used in many tools, we present several advances on
these techniques. We also discuss our recent work on motif simplification,
in which common patterns are replaced with compact and meaningful
glyphs, thereby improving readability.
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1 Introduction

The Graph Drawing community has an admirable history in developing scalable
algorithms that present graphs with appealing aesthetic properties. Early work
dealt with synthetic or abstract graphs whose drawings were assessed by bal-
ance, symmetry, and visual appeal [5,10,11]. But during the past two decades
the community has increasingly expanded its scope to deal with the growing
number of realistic networks generated by scientific article citations, cell phone
calling patterns, banking transactions, social media communications, etc. (e.g.,
[14]). These networks represent important scientific, commercial, terrorist, or
friendship interactions, where pro-social initiatives, commercial enterprises, or
entertainment activities can have profound societal impacts. However, criminals
or terrorists may use networks for destructive purposes while malicious actors
may undermine effectiveness by disrupting or spamming the network.

The growing number of network analysts must cope with complex structures,
disconnected components, well-connected clusters, and multiple attributes for
nodes and links. They often deal with networks of dynamically evolving struc-
tures, where links act as pathways for volatile information or commodity flows.
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This shift from abstract problems that appeal to mathematicians and al-
gorithm developers to pressing problems that influence commerce, politics, or
national security has dramatically raised the prominence of graph drawing, net-
work analysis, and interactive information visualization. Interactive approaches
have become important, because the scale and richness of information within a
network means that drawing one aesthetically pleasing graph is rarely the best
strategy. Analysts learn complex exploratory processes that include rapid selec-
tion of meaningful subsets, relevant groups, and pertinent clusters. The goals
for network visualization designers are now more closely tied to readability and
the capacity to quickly extract meaningful insights about the data to support
time-critical and sometimes life-critical decisions.

The good news for the Graph Drawing community is that our work is in high
demand and that pressing new problems appear daily. However, these demands
come with raised expectations, forcing researchers to simultaneously address
basic and applied problems, theory and practice, and curiosity-driven as well as
mission-driven agendas.

Evaluation methods are also changing. Algorithmic efficiency remains vital,
but on actual graphs, machine performance may be improved by leveraging
knowledge of the topology. Worst case analyses are still helpful but performance
on frequently occurring examples is also important. Another change is that hu-
man performance by domain experts and novice analysts to extract insights be-
comes increasingly important compared with machine performance [21,23,25,30].

There is increased interest in automatable measures that can be used to
reduce flaws such as node occlusions, link crossings, and node-link overlaps, as
these readability metrics or aesthetic criteria can help analysts to create more
comprehensible networks. Readability metrics and interactive tools allow users
to automatically or manually clean up cluttered diagrams, while facilitating basic
tasks such as counting the nodes, following the links, or identifying meaningful
clusters. Other challenging tasks include finding nodes or links with extreme
attribute values, surprising link attributes, or unexpectedly strong connections
among subgroups.

The single goal of drawing the best graph gives way to developing systematic
yet flexible discovery processes [24,25] that support the collection of valuable
insights. A starting step is data cleaning to ensure that missing data problems
are resolved, data values are within permissible ranges, no duplicate data have
crept into the archive, and known constraints across data values are respected.
Then systematic yet flexible discovery processes enable users to apply step-by-
step methods to explore a network, ensuring that they conduct appropriate tests,
while allowing detours when interesting patterns invite further attention.

Modern graph drawing challenges are increasingly complex because of the
growing availability and variety of node and link attributes. Sometimes these
are numerical quantities that can be conveniently represented by node size,
node color, link thickness, or link color. Other times, node or link labels contain
meaningful data such as names, text strings, or entire documents, which can
sometimes be displayed on the graph or explored one at a time with tooltips.
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However, these node and link labels often require integration of increasingly so-
phisticated natural language processing or machine learning and data mining
algorithms. In general, the rich integration of visualization with text analytics
and statistics is providing high payoffs for analysts [9,29]. Sometimes the visu-
alization will suggest to users which analytics methods should be applied, other
times the analytics methods suggest which visualizations might be most helpful.

We have found ways to help users solve these problems with interactive meth-
ods, such as (1) filtering to remove less important nodes and links, (2) clustering
by link structures to identify structural components, (3) grouping by node val-
ues to understand groups and their relationships, and (4) motif simplification
to reduce complexity and increase readability by replacing common structures
with simpler glyphs.

To attain the full benefits of these methods, users often need novel layout
algorithms and multiple coordinated views. Force-directed layouts are being
steadily improved to deal with special cases such as near-planar graphs, dis-
connected components, or high link-density graphs.

More attractive opportunities may lie in slicing and dicing graphs into mean-
ingful clusters, based on connectivity, or into well-defined groups, based on node
attributes. Once clusters and groups have been formed, they can be placed in
different windows or panes, so as to permit exploration of each component as
well as its relationships with other components.

For several years our group has been embedding our ideas into NodeXL
[31] (www.codeplex.com/nodexl), a free open-source interface that allows users
to draw graphs by using a Microsoft Excel template. We provide a textbook
to introduce concepts and guide new users as well as knowledgeable analysts
[15]. A large number of example networks collected and analyzed with NodeXL
are available on an open data web site (www.nodexlgraphgallery.org). For
programmers, we provide a set of reusable C# class libraries, a WPF graph
visualization control, and an architecture for custom data import plugins.

This paper focuses on recent improvements we made to NodeXL which were
designed to produce more readable and understandable graph drawings. These
improvements might help analysts make meaningful insights more reliably, so as
to support personal, business, legal, scientific, or national security decisions.

2 Defining and Measuring Readability

A happy situation occurs when a small planar graph can be drawn that is free
from readability-inhibiting flaws and presents clear color and size encodings, plus
readable labels. Since many graphs have high link densities with complex struc-
tures, we aspire to create imperfect but useful graph drawings with as few flaws
as possible. Put positively, we aspire to enable analysts to uncover structural
properties, important clusters, and significant nodes and links.

Users of network analysis tools generally have two techniques for improving
the node-link drawing readability: automatic layout algorithms and direct ma-
nipulation. Both these approaches are based on heuristics, either defined by the

www.codeplex.com/nodexl
www.nodexlgraphgallery.org
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layout algorithm or by the user’s mental model of readability. Many researchers
focus on improved layout algorithms, but few deal with educating users about
readability and helping them effectively manipulate the drawing. We can give
users rules to apply (e.g., [32], pp. 13), or teach them about basic readability
principles [2]. However, it is challenging for users to balance (or even remember)
these rules or optimize the ones that would most benefit the target task.

Defining practical readability measures accelerates progress towards improved
graph drawings, because it guides analysts in making both manual and automatic
changes that improve quality. One approach is to count the number of flaws that
inhibit readability [27] and support analysts in reducing their prevalence [2,7,12].

Occluded nodes, crossed links, or node-link overlaps clearly interfere with
readability, so measuring their frequency is a good starting point. But even
with three metrics analysts have to make difficult tradeoffs when revisions to
improve one of these metrics degrades another or modifies the spatial layout
substantially. These modifications can have a profound impact on the detection
of communities and the perceived importance of individual nodes [20,22]. Hence,
significant thought must be given to properly drawing graphs so that analysts
will be able to understand and effectively communicate data like clusters, the
bridges between them, and the importance of individual nodes. Since more than
a dozen graph readability metrics have been defined, analysts would do well to
create taxonomies of graphs and tasks so that the weighting of each metric might
be tuned to the graph or task type.

We have begun building a task taxonomy of readability metrics and a NodeXL
implementation, so that users can calculate metrics useful for the task at hand.
In addition to global metrics for the entire drawing, we are implementing local
metrics for individual nodes, links, or groups so as to direct users to problem ar-
eas that need attention. These local metrics can be updated as users manipulate
the drawing, and used to color-code problem areas. Moreover, they can be fed
into automatic layout algorithms with multiple criteria [5] or to provide semi-
automatic “snap-to-grid” assistance that reduces users’ manipulation burden.

3 Improving Readability

This paper describes four interactive methods for improving readability and
enabling analysts to more frequently create readable graphs that enable them
to extract meaningful insights: (1) filtering to remove less important nodes and
links, (2) clustering by link structures to identify structural components, (3)
grouping by node values to understand groups and their relationships, and (4)
motif simplification to reduce complexity and increase readability by replacing
common structures with simpler glyphs. Table 1 summarizes the goals these four
methods help realize.

3.1 Filtering to remove less important nodes and links
Some networks have large numbers of nodes and links which can obscure mean-
ingful groups or network items with interesting attribute values. User-controlled
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Table 1: Interactive methods to reveal patterns.

Method Entity of attention Goals

Filtering Node & link attribute
values or statistics

Remove less relevant nodes & links to
reveal relevant patterns and key nodes &
links

Clustering Clusters algorithmically
based on link
connectivity

Identify structural components, then
redraw to highlight clusters; replace
clusters with single nodes; show group
size and inter-group relationships (color,
size, group-in-a-box)

Grouping Groups based on node
attributes

Use pre-existing groups, then redraw to
highlight groups; replace groups with
single nodes; show group size and
inter-group relationships (color, size,
group-in-a-box)

Simplification Common, meaningful
structures to replace with
simplified glyphs

Reduce visualization complexity, raise
visibility of common structures, reveal
occluded structures, allow comparisons

dynamic query filters [1,35] have demonstrated their value in successful com-
mercial products that deal with multivariate data, such as Spotfire and Tableau.
Dynamic query filters are even more valuable in network visualizations, where
the clutter of nodes and links can severely inhibit readability. NodeXL supports
filters on node values, link values, graph metrics, layout positions, and many
other attributes.

The power of filtering is shown in an example network of U.S. Senate vot-
ing patterns from 2007.1 The similarity in voting patterns (from 0.0 to 1.0) is
an attribute of each one of the 4950 links connecting the 100 Senator nodes.
The naive drawing produces a thickly connected graph (Fig. 1), but filtering the
similarity values to show only those with values above 0.65 produces a reveal-
ing portrait (Fig. 2). The force-directed layout further shows the willingness of
three Republican Senators (center, in red) to vote in support of their Democrat
colleagues (top-right, in blue). One of these, Arlen Specter, later switched his
affiliation to the Democrats in 2009.

Filtering can be applied to node values as well to remove incidental nodes,
leaving only key actors. Filtering is a well-established technique for multivariate
data, as shown in scattergrams, but the variety of filters in many networks means
careful thought is needed to produce effective results. Furthermore, scattergram
filtering typically leaves the remaining markers in place, but in networks, layout
methods interact with filtering, so thoughtful exploration is needed.
1 Data provided by Chris Wilson of Slate magazine available in the NodeXL template
format at http://goo.gl/oa4tg

http://goo.gl/oa4tg
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Fig. 1: 2007 U.S. Senate voting graph, showing all 4950 links.

Fig. 2: 2007 U.S. Senate voting graph voting graph, showing only links with a
voting similarity value greater than 0.65. Republican Senators Snowe, Collins,
and Specter (center, in red) have voting patterns that are closer to their Demo-
crat colleagues (top-right, in blue). Specter ended up switching his affiliation
to Democrat in 2009. Independents are in orange and laid out as part of the
top-right, blue Democrat community.
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Fig. 3: Co-appearance network in Les Misérables.

3.2 Clustering to identify structural components

Understanding the complexity of human anatomy is often facilitated by decom-
posing into subsystems such as circulatory, muscular, skeleton, neural, digestive,
etc. These decompositions favor functional structures over physical adjacency.
Since networks represent complex phenomena, clustering by link connectivity
into functional subsystems often proves to be beneficial.

Clustering by link connectivity has been a popular method, but rapid devel-
opments in the algorithms show that much work remains. NodeXL implements
the Clauset-Newman-Moore [4], Wakita-Tsurumi [33], and Girvan-Newman [13]
clustering algorithms, which all result in mutually exclusive cluster member-
ship. They currently work only on undirected graphs, but additions to support
directed and weighted graphs are planned. An example of clustering is the net-
work of characters in Les Misérables, shown in Fig. 3. Link strength shows the
number of scenes in which pairs of characters appear, while node size shows
the number of scenes for each character. The co-appearance network shows the
relatedness among characters.

Improvements in clustering algorithms are likely, and their integration with
filtering would bring further advances. For example, it might be helpful to show
that certain filtering settings would produce dramatically more effective clusters.
Verifying the quality of a clustering outcome is often hampered by the lack of a
ground truth. Clustering is often used as an exploratory data analysis method
to discover unexpected inclusions within a known cluster, unexpected separation
into other clusters, or surprising clusters.
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Fig. 4: Twitter event graph for Collective Intelligence 2012.

Unfortunately, layout algorithms may not help analysts to see the clus-
ters clearly. To reinforce the cluster membership, the NodeXL team added the
group-in-a-box feature [28]. The clusters are placed inside a box whose size
depends on the number of nodes, and arranged by the squarified treemap algo-
rithm [3]. While NodeXL does not currently support hierarchical clustering, the
treemap layout could be easily extended to visualize nested clusters. Fig. 4 shows
the 7 clusters identified for Twitter users who used the hashtag #CI2012 to in-
dicate the Collective Intelligence conference held in April 2012. Links indicate
follower, following, mentions, or retweet relationships, and node size indicates
number of followers. The largest cluster in the upper left consists mainly of
US-based researchers, while other clusters represent other national groups and
commercial users. The link strength between clusters is indicated by a “com-
bined” link whose thickness indicates number of links.

Since large numbers of links that span a graph drawing can undermine read-
ability, there has been a strong attraction to link bundling to reduce clutter
[19,26]. Fig. 5 shows 12 clusters, in which the inter-cluster links are bundled
together. The initial view is attractive, but the bundles seem to obscure rather
than highlight the strength of relationships among the clusters. Improvements
to link bundling strategies seem possible.
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Fig. 5: Twitter event graph for Theorizing the Web 2012 (by Awalin Sopan).

3.3 Grouping to find attribute relationships

Nodes may represent people, places, documents, or roles, which are readily un-
derstandable in small networks. However, with thousands or millions of nodes,
analysts may gain insights by replacing nodes of a common type with a single
group node, e.g. author nodes in a scientific citation network might be grouped
by their current institution into a single node for each institution. This node
could be sized by the number of authors, thereby showing the productive insti-
tutions and revealing the degree of collaboration across institutions. Simplifying
a million-node author network into a 3000 node institution network removes
some information, but reveals important patterns.

Attribute-based node aggregation has been leveraged by several tools to un-
derstand overall relationships at the expense of showing the underlying topology
explicitly. PivotGraph [34] groups nodes based on the intersection of a pair of
attributes, and arranges the meta-node for each group on a grid with each at-
tribute as an axis. Aggregate links between groups are shown with arcs. Similarly,
GraphTrail [6] groups nodes by attribute into standard charts, where the groups
can be further filtered, merged, or used to pivot to connected groups of other
node types. One advantage of this aggregation is a dramatic reduction in screen
space required, a fact leveraged by GraphTrail to show the history of exploration
directly integrated into the network analysis canvas.
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Fig. 6: 2007 U.S. Senators grouped by their regional affiliation (from [28]).

In NodeXL, grouping by node values is often the first step in creating a
group-in-a-box layout that preserves individual node visibility, while enabling
analysts to see relationships within groups. Fig. 6 shows U.S. Senators (from
Fig. 1) grouped by their regional affiliation and presented in a group-in-a-box
layout, with links between groups removed to reduce complexity. Nodes are also
colored by node values to show party affiliations: red for Republicans, blue for
Democrats, and orange for independents. Grouping multiple nodes into a single
node or removing links between groups produces measurable improvements in
readability by removing less relevant information. Alternatively, when nodes are
grouped in a group-in-a-box layout, links can then be combined as in Fig. 4.

3.4 Motif simplification to reduce complexity
Many networks have repeated occurrences of familiarmotifs, which are common
patterns of nodes and links. These motifs may be a natural part of the network
structure or merely an artifact of the data collection process. Regardless of their
cause, many frequently expressed motifs contain little information, especially
when compared to the space they occupy in the network visualization. Rather
than asking users to view the entire network or to filter out specific subgraphs
manually, NodeXL provides tools to automatically identify several common mo-
tifs and simplify them into representative glyphs [8]. Well-designed glyphs have
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several benefits: they (1) require less screen space, (2) are easier to understand
in the context of the network, (3) can reveal otherwise hidden relationships, and
(4) preserve as much underlying information as possible.

Our initial work focused on three basic motifs that are especially valuable to
social scientists:

– A fan motif, sometimes called a star, consists of a head node connected
to leaf nodes that have no other neighbors (Fig. 7a). Since there may be
hundreds of leaves, replacing all the leaves and their links to the head with
a simple fan glyph can dramatically simplify a network.

– A connector motif consists of a set of functionally equivalent span nodes
that solely span two or more anchor nodes (Fig. 7b). Simplifying the con-
nector motifs frequently reduces the complexity of the dense center of the
node-link diagram, and allows easier connectivity comparisons.

– A clique motif consists of a set of nodes in which each pair is connected by
at least one link (not shown). Cliques with four or more nodes are common
in dense social networks. Replacing them with representative glyphs makes
it easier to understand overall connectivity.

An example of motif simplification is shown in Fig. 8, which represents the
bipartite network for the Lostpedia wiki community collected by Beth Foss.
Boxes with labels show wiki pages, linked to the colored discs representing their
associated editors. The editors are colored and sized according to two measures
of their activity in the wiki. The left side of Fig. 8 shows the initial network,
while the right shows a simplified version. Each fan motif was replaced with a fan
glyph that shows the underlying topology, while each connector motif with two
anchors is replaced with a connector glyph that shows the bridging relationship.
The simplified view on the right has 25 nodes instead of the original 513, and
requires a quarter of the original screen space. Improved readability would come
by replacing the connector motifs that have three or four anchors as well. The
improvement is even more pronounced in larger datasets with thousands of nodes
in a fan and large connector groups.

For each motif we want to simplify, great care must be given to the design
of a glyph to represent it. Arbitrary motifs can be shown as a simple meta-node
(
⊕

), but a representative glyph that reveals the motif properties will be far
more effective. Some examples of fan and connector motifs and the representative
glyphs we designed to replace them are shown in Fig. 7. The shape of our glyphs
indicates the underlying topology, and each glyph is sized proportional to the
number of nodes it replaces. The arc (and thus the area) of each fan glyph is
scaled by the number of nodes it contains, in a range of 10–120◦. The size of
a connector glyph is also scaled linearly by the number of nodes it replaces. If
an underlying visual attribute encoding exists for the nodes or links, we try to
show the average of the underlying attribute values using the same color or size
scale in the glyph version.

Using motif glyphs we can effectively simplify a static drawing, but interac-
tivity is required for the network to be easily understandable and investigable.
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(a) Fan motifs and glyphs (b) Connector motifs and glyphs

Fig. 7: Three fan motifs (7a) and three connector motifs (7b) are shown here
along with their simplified glyph versions. The motifs vary in the number of
nodes they contain and the node attribute values used for the blue-orange color
scale.

⇒

Fig. 8: Edit history of the Lostpedia wiki pages on the “Four-toed-statue” (left)
and a simplified drawing with fan and 2-connector motif glyphs (right, zoomed
in). Wiki pages are shown as boxes with labels and are connected by the contrib-
utors editing them, with some contributors editing only one page and other users
editing two or more. Contributors are colored and sized by their total number
of edits on main or theory pages. Data by Beth Foss.
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In NodeXL, users can investigate the contents of any glyph, switch between the
original and simplified version of any set of motifs on demand, position the glyphs
manually, and even use automatic layout algorithms on the simplified drawing.
Effective layout algorithms for these simplified networks require special handling
of non-uniform node sizes and shapes [17].

4 Case Study: Finding Regional Innovation Clusters

One of the goals of urban planners is to understand the relationships behind
innovation and how the ties between organizations, individuals, and funding
agencies affect growth. Christopher Scott Dempwolf,2 a researcher in the School
of Architecture, Planning and Preservation at the University of Maryland, has
been working to model innovation based on patent ties, federal and state funding,
and physical locations. We introduced Dempwolf to NodeXL and helped guide
several of his network analyses, including one of Pennsylvania innovations in
1990. He was keen on detecting technology and talent clusters, which could
then be positively influenced. The network he collected included patent ties,
federal funding from SBIR/STTR, and state funding through the DCED and
Ben Franklin Technology Partners.

An initial drawing of this network is shown in Fig. 9, which uses the Harel-
Koren layout [16,18], link bundling, and categorical coloring for node and link
types. While quite beautiful, this drawing is not particularly effective. Some large
structures are easily distinguishable, like the cauliflower-shaped groups of gray
inventors and a few large orange enterprises. However, the overall structures and
relationships are hard to interpret.

Dempwolf was interested in technology and talent clusters, so to try to pick
these features out of this large network we applied the Clauset-Newman-Moore
clustering algorithm [4]. The algorithm finds clusters of nodes that link to each
other more frequently than outside the cluster, which, in this case, represents
clusters of entities with similarities in patented technology. With a node-link
diagram alone it can be challenging to see group membership, size, and aggregate
relationships using solely color or shape coding. We applied the group-in-a-box
layout [28] to make these features explicitly visible by laying out each detected
cluster individually, after filtering out several tiny clusters (Fig. 10).

In analyzing this drawing, we discovered many expected clusters around spe-
cific Pennsylvania counties and local enterprises. For example, the bottom-left
cluster of Fig. 10 is the Pittsburgh metro area, containing the large orange West-
inghouse Electric. The Pittsburgh cluster is highly connected (via the hidden
links) to the Montgomery county cluster to its right, another large metro area.
An unexpected exception to the location grouping is the top-left pharmaceutical
and medical cluster, composed of several companies, universities, HHS, and an
interesting arrangement of inventors in several connected fans. These sorts of
meaningful structures were mostly hidden in the original drawing (Fig. 9).

2 http://www.terpconnect.umd.edu/~dempy

http://www.terpconnect.umd.edu/~dempy
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Fig. 9: Pennsylvania innovation relationships in 1990 (data by Scott Dempwolf).

Fig. 10: The innovation network from Fig. 9 after using the group-in-a-box layout,
hiding inter-group links, and filtering to only the largest groups.
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Dempwolf found that these clusters represented specific economic develop-
ment opportunities that could be influenced to increase employment. According
to him, “This approach gives you a list of firms to go talk to and specific things
to talk with them about. It also identifies specific talent clusters. These are
things that traditional industry cluster analysis has never done.” More details of
Dempwolf’s use of NodeXL for identifying high-priority economic development
targets are available in his slide deck.3

5 Discussion

Interactive network analysis is of growing importance for many national priori-
ties. However, existing visualization tools often show cluttered, dense drawings
from which analysts have difficulty deriving insights. Making it easier for a wide
range of users to succeed with network analysis would dramatically expand its
application across diverse disciplines. Our tool NodeXL is already widely used,
especially for introductory courses, but improving the readability of network
drawings would greatly increase its value.

This paper demonstrates how classic techniques of dynamic filtering, link
clustering, and attribute-based node grouping can be effectively integrated in
NodeXL. Moreover, our new motif simplification technique enables rapid, inter-
active complexity reduction, so as to more clearly present the underlying network
structure. NodeXL also includes readability metrics users can use to gauge the
effectiveness of their drawings, or even feed into automated techniques to im-
prove the layout. Moreover, the metrics can be used to quantify the benefit of
our filtering, clustering, grouping, and simplification techniques.

Acknowledgments. The authors wish to thank Marc Smith and the NodeXL
team for their support. This project is supported by National Science Foundation
grants 0915645 and 0968521, the Social Media Research Foundation, and the
Connected Action Consulting Group.
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