
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 28(3), 225–248 (MARCH 1998)

Elastic Windows: Design, Implementation,
and Evaluation of Multi-Window Operations

eser kandogan1 and ben shneiderman2

1Department of Computer Science, Human-Computer Interaction Laboratory,2Institute for
Advanced Computer Studies, University of Maryland, College Park, MD 20742, U.S.A.

(email: {kandogan,ben}Kcs.umd.edu)

SUMMARY

Most windowing systems follow the independent overlapping windows approach, which emerged
as an answer to the needs of early computer users. Due to advances in computers, display
technology, and increased information needs, modern users demand more functionality from
window management systems. We propose Elastic Windows with improved spatial layout and
rapid multi-window operations as an alternative to current window management strategies. In
this approach, multi-window operations are achieved by issuing operations on window groups
hierarchically organized in a space-filling tiled layout similar to TreeMaps.1 Sophisticated multi-
window operations have been developed to handle fast task-switching and to structure the work
environment of users to their rapidly changing needs. We claim that these multi-window operations
and the tiled spatial layout dynamics decrease the cognitive load on users by decreasing the
number of window operations. This paper describes the Elastic Windows interface in detail and
then presents a user study conducted to compare the performance of 12 users with Elastic
Windows and traditional Independent Overlapping Windows. User performance was measured in
terms of task environment setup, switching, and task execution for 2, 6, and 12 window situations.
Elastic Windows users had statistically significantly faster performance for all tasks in 6 and 12
window situations. These results suggest promising possibilities for multiple window operations
and hierarchical nesting, which can be applied to the next generation of tiled as well as overlapped
window managers. 1998 John Wiley & Sons, Ltd.

key words: window management; multi-window operations; hierarchical windows; personal role management;
World Wide Web; windowing system evaluation

INTRODUCTION

Window management strategies can only be analyzed by a careful consideration of
the tasks for which windows are used. Cardet al. attempted to categorize tasks by
the functions provided by windows, which they listed as:2

(a) More information.
(b) Access to multiple sources of information.
(c) Combining multiple sources of information.
(d) Independent control of multiple programs.
(e) Reminding.

CCC 0038–0644/98/030225–24$17.50 Received 4 November 1996
 1998 John Wiley & Sons, Ltd. Revised 14 May 1997

Accepted 8 September 1997

226 e. kandogan and b. shneiderman

(f) Command context/active forms.
(g) Multiple representations.

Most current windowing systems follow the independent overlapping windows
approach, which emerged as an answer to the needs of early computer users. These
windowing systems no longer provide efficient means to serve the functions in this
list. With advances in computer networks, the Internet, and Web browsers, users are
collecting not only more information but also different formats such as image, video,
sound, structured text, etc. This increase in the amount and variety of information
creates problems in accessing and using stored information when current strategies
are employed.

In early computer systems, in order to access information users had to recall exact
file names, directory structures, etc. These attributes are called nominal attributes of
information. Recalling nominal attributes becomes more difficult as the amount of
information increases, because nominal attributes refer to computer-based objects
rather than task-based objects.

With the introduction of windows, users can use spatial attributes like location of
icons or windows to access information. However, current systems provide limited
capabilities in terms of icon and window placement, generally a single screen where
icons and windows can be placed independently anywhere on the screen. As a result,
computer screens become cluttered and windows are hidden making it harder to
access information using spatial attributes, a situation called Windowitis by Kahnet
al.3 They observed that in such situations users become disoriented, lose the relation-
ships that exist between windows due to loss of spatial cues, and become unproductive
in completing their tasks. Increased clutter makes it hard for users to recognize
visual cues on the screen as reminders of their unfinished tasks.

In current systems, visual attributes for information access are underutilized. As
a result, the computer screen fills up with many similar icons with only the label
under the icon being different. Therefore, users have to scan all the icons on the
screen in two dimensions rather than recalling spatial or visual attributes of infor-
mation. Although most of the applications set their icon image, it is usually difficult
for users to set different visual primitives for pieces of information they collect.
Automatically generated icons, dynamically reflecting attributes of information, might
be helpful. We believe that users performance for information access can be improved
by incorporating visual attributes of information into windowing systems.

In current systems tasks that require interaction with information contained in
multiple windows require the user to operate one window at a time. Providing
multiple window operations with simple actions is likely to help users.

Traditionally, windows have been used mostly for a single application. In that
sense, multiple windows functioned as independent control of multiple programs, by
distributing applications into multiple windows. There is now a growing tendency
for applications to have multiple windows, where functionality is distributed into
multiple windows as opposed to applications. The danger is that windows belonging
to different applications can be mixed, when users are working on multiple tasks.

Current user interfaces exploit visual metaphors of physical objects, such as
documents and folders on a desktop. Applications are confined to overlapping
rectangular windows on the desktop, similar to their physical counterparts (papers,
calendar, calculator, etc.).

227elastic windows

Novel approaches emphasize a docu-centric approach (Microsoft OLE and Apple’s
Open-Doc) in which documents become more important and applications fade into
the background. Information objects of various types such as text, image, video,
sound, spreadsheet cells are organized in documents independent of applications.
However, these approaches lack an effective scalable organization method.

Although these innovations are one step to achieve a visual environment in
harmony with users’ perceptions of their work, an effective organization of infor-
mation according to users’ roles that reflects this perception is needed.4,5 Organization
criteria should be the users’ roles, rather than documents. Users can have a number
of different roles possibly multi-level, and overlapping.

The key to personal role management is organizing information according to the
roles that an individual has in an organization. It complements the previous approach,
where information is distributed into multiple windows, by providing an effective
organization based on users’ roles. When users are working in a role, they have the
most relevant objects regarding that role like schedules, documents, correspondence
with people, etc. all visually available. These visual cues remind them of their goals,
related individuals, required tasks, and scheduled events all within the context of
the current role. Users should be able to create/abandon roles, extend/modify the
current role hierarchy by inserting/deleting sub-roles, and combine roles and/or
objects within different roles.

Our earlier work6 stated the requirements for future windowing systems. A more
complete list is as follows:

(a) Support a unified framework for information organization and coordination
according to users’roles.

(b) Provide a visual, spatial layout that matchessemantics.
(c) Supportmulti-window operations for fast arrangement of information.
(d) Support information access withpartial knowledgeof its nominal, spatial,

temporal, andvisual attributes and relationships to other pieces of information.
(e) Allow fast switching and resumption among roles.
(f) Free users’ cognitive resources to work ontask domain operationsrather than

computer domain operations.
(g) Use screen space efficientlyand productively for tasks.
(h) Increase collaboration within the window managerto support more powerful

information transfer schemes among multiple windows.

In the next section, we give a detailed description of the Elastic Windows approach
followed by related work. Next, the user study comparing performance of Elastic
Windows to traditional Independent Overlapping Windows is described in detail
along with the results and observations made.

ELASTIC WINDOWS

Principles

Elastic Windows design is based on three principles:hierarchical window organiza-
tion, multi-window operations, and space-filling tiled layout.

228 e. kandogan and b. shneiderman

Hierarchical window organization

Hierarchical window organization supports users structuring their work environment
according to their roles. It allows users to map their role hierarchy onto the nested
rectangle tree structure. Figure 1 displays the hierarchical organization of different
roles of a university professor. This professor is advisor to a number of students in
a number of research projects, teaches two courses this semester, is liaison to three
companies, and has personal duties.

The hierarchical layout clearly indicates the hierarchic relationship between the
contents of the windows by the spatial cues in the organization of windows. It
provides the users with an overview of all their roles, where they can pick any role
or parts of it and start working on it.

Problems in accessing and managing large collections of information are reduced
by establishing hierarchical nested windows for the organization of information
objects (Figure 2). Grouping of windows provides role-based context by bringing the
set of windows associated with a role into one overall context. In Elastic Windows,
window hierarchies can be collapsed into a single icon (or other visual primitives)
which allows manipulation (e.g. move, copy, open, close, pack, etc.) of a collection
of objects as a single entity. This form of visual aggregation also reduces access

Figure 1. Personal role manager: hierarchical organization of a university professor’s roles

229elastic windows

Figure 2. Hierarchical nested windows

and management problems of large collections. It also saves screen space allowing
users to concentrate at any level of detail.

Current window management strategies have a limited notion of workspace. Most
systems provide only one screen, whereas more novel systems such as Rooms7 and
UNIX vtwm-clone window managers provide multiple virtual screen spaces where
windows can be placed in any of these spaces. Some systems also provide an
overview where users can look at thumbnail images of the screen layouts and use
the overview to switch to these spaces and to move windows among spaces.
Basically, these two approaches allow only two-levels of workspace.

In Elastic Windows, users can work at any level of detail regarding their roles.
Multi-level task focus is provided by allowing users to make any window full screen
at any point in the hierarchy. This is a multi-level approach as opposed to the two-
levels (overview and workspace) in most virtual screen window managers.

Multiple window operations

Typically, people organize papers on their desk as piles, and move all of them
simultaneously. Malone8 found that users like to group items spatially. We claim
that providing multi-window operations on groups of windows can decrease the
cognitive load on users by decreasing the number of window operations.

In Elastic Windows, multiple window operations are achieved by applying the
operation to a group of windows at any level of the hierarchy. The results of the
operation are propagated down to windows inside that group recursively. This way
groups of windows can be packed, resized, or closed with a single operation.

Operations like multi-window open, close, resize, pack, and unpack enable users to
change the window organization quickly to compare, filter, and apply the information.
Operations like save, load, and change layout work on multiple windows allowing
users to quickly restore previous work environments as well as try alternative layouts
for different subtasks within the same context. Another way to achieve multi-window
operations is to select an operation and apply it to a number of windows rapidly in
a serial manner.

230 e. kandogan and b. shneiderman

Space-filling tiled layout

We have taken a space-filling tiled approach similar to TreeMaps1 at this stage
of our research to explore its potential for productive use of screen space. Non-
overlapping approaches may have an advantage in that they avoid wasted space and
disturbing overlaps. On the other hand, in space-filling tiled approaches, window
contents may not always conform to different window sizes and small window sizes
may not provide sufficient visibility of window contents.

In Elastic Windows, groups of windows stretch like an elastic material as they
are being resized, and other windows shrink to make space. The effect of changes
in window size on the contents depends on the application. Contents can be scaled,
clipped, reformatted, or aggregated (such as showing only section headings of a
document). For example, upon shrinking a window used for editing a document, it
might be preferable to keep the same magnification factor; but when viewing a web
document, scaling of contents might be preferable.

We have chosen the tiled window layout in order to maximize the visibility of
windows. People typically try to organize windows to be non-overlapping while
working on a task, even when overlapping windows are allowed. As Cohenet al.9
stated, overlapping window layouts are difficult to handle when large numbers of
windows must all be visible at once, and they come and go rapidly.

In Elastic Windows, hierarchies of windows are represented by the borders
surrounding the sub-windows. Users are quite flexible in the placement of sub-
windows in a group window. There is no strict horizontal or vertical placement rule
within window groups.

Initially, we developed a mail-tool application based on these three principles. It
has been a test-bed to try hierarchical organization of windows to help users manage
large collections of e-mail messages, multiple window operations for reducing the
number of window operations, and space-filling tiled layout for efficient management
of screen space. Figure 3 displays the mail-tool written using Elastic Windows
principles. The new messages are shown iconized in the left window. Old messages
from people at the University of Maryland, and at Bilkent University, from friends,
and association members are grouped on the right in the OldMail window, each in
separate windows with further classification. The layout provides the user with an
overview of all correspondence, where users can pick any category and work on it.

The potential of hierarchical organization of windows as an overview led us to
provide hierarchical contexts for interaction with information organized according to
user’s roles. We then developed Elastic Windows for personal role management to
provide users a uniform framework for management of personal information by
including information formats such as documents, images, lists, etc. besides e-mail
messages. In Figure 1, the hierarchical organization of different roles of a university
professor is shown. We also introduced aggregation of information by allowing users
to collapse a hierarchy of information into a single visual primitive for efficient
management of information.

Recently, WorldWide Web (WWW) browsing capability was added into Elastic
Windows. Figure 4 shows a screen snapshot of Human-Computer Interaction Lab
(HCIL) web pages. The Research Project Descriptions link is opened below the
HCIL main page on the left. All six current project descriptions are opened with a
single select and open action, grouped in a container window on the right. Elastic

231elastic windows

Figure 3. Mail-tool: organization of correspondence in a hierarchical layout gives an overview

Windows principles support a variety of WWW browsing strategies such as hier-
archical browsing, multi-page open, comparison, and filtering. It allows users to keep
a visual history of browsing, to explore multiple pages simultaneously by a multiple-
open operation, and to organize visited pages hierarchically on a two-dimensional
layout, facilitating spatial and visual access, as an alternative to a bookmark list.

Layout dynamics

Due to the space-filling tiled nature of the layout, window size changes affect
size of other windows in the same group. In Elastic Windows the proximity of
effect is limited only to windows under the same group and their sub-windows.

Effect of the changes in the window size under the same group is split pro-
portionally according to the window sizes. Depending on the border dragged and
the direction of drag, it results in either a push or pull as shown in Figures 5(a)–
(c). In both of these cases, window sizes are updated proportionally to their previous
sizes as calculated below, wherewidth andwidth′ stand for the width of the windows
before and after the push of windows C and D byg respectively.

In Elastic Windows size changes in the upper levels are propagated down to their
subwindows recursively. Figure 6 shows an example of resizing the Teaching window

232 e. kandogan and b. shneiderman

Figure 4. WWW browser: HCIL homepage with descriptions of six current projects

Figure 5. (a) Original layout, (b) window B pushes windows C and D, (c) window B pulls windows C
and D

(original layout as shown in Figure 1), pushing the surrounding windows to the sides
proportional to their sizes. Each Elastic Window has a default minimum window
size, but users can also set a different value for each window.

233elastic windows

Figure 6. Teaching window resized pushing surrounding windows to the sides (from Figure 1)

Visual access

In the Elastic Windows approach, windows or a hierarchy of windows can be
iconified. When windows are iconified users can change the icon image by a simple
image editor capable of loading standard image formats. For a hierarchy of windows,
however, users can set their icons to behierarchiconswhere the icon image reflects
the window hierarchy. This miniature image of the hierarchy helps users in recogniz-
ing the icon among many. Moreover, users can click on different regions of the
hierarchicon to select windows at different levels. An example series of actions for
hierarchicons is given in Figure 7.

Window borders are used to indicate hierarchical groupings of windows. Border
coloring gradually changes according to the level of the window in the hierarchy

Figure 7. Hierarchicons. (a) Initial, top level hierarchy selected, (b–c) down in the hierarchy, (d) up in
the hierarchy, (e) selected subhierarchy dragged, (f) changes are reflected in the hierarchicons image

234 e. kandogan and b. shneiderman

thus making groups recognizable. Also, users can set the color of the window
backgrounds, this makes windows easily recognizable. Background color of a higher-
level window is propagated down the hierarchy (Figure 1).

Window operations

Multiple open/close operations

In Elastic Windows, selecting, dragging and dropping multiple objects (e.g. e-mail
subject list, e-mail message, text icon, single window, hierarchy of windows, etc.)
on the border of a window opens separate windows for each object in the selection.
An empty window can also be opened as a ‘container’ window by double-clicking
on a window border.

The position of the new window is determined by the border of the existing
window. For example, clicking/dropping on the right border of a window will open
a new window to the right of the current window pushing it to the left (Figure 8(a–b)).

A window is closed by selecting the Close operation from the menu. When a
window is closed, the freed space is distributed to other windows at the same level

Figure 8. (a) Original layout, (b) five e-mail headers selected and empty container window is opened,
(c) window group created with five e-mail messages

235elastic windows

proportional to their previous sizes. The Close operation can also be applied to
windows at any level of the hierarchy. Closing a higher level window will close all
its sub-windows as well.

Creating window groups and hierarchies

Window groups can be created by opening a container window and dragging and
dropping selected objects inside this window. A separate window is opened for each
object in the selection as a member of the group surrounded by the container
window borders. In Figure 8, five e-mail messages are selected from a list of message
subjects, and opened in separate windows in the container window on the right.
Multiple objects can be added or removed from the container window at any time.
It is also possible to open a new empty container window within an existing
container window to create hierarchical windows.

Multiple maximize operation

Users can focus on a set of windows and maximize them to cover the whole
screen. This is particularly useful when users are expecting to work on a set of
windows for a long time. With the maximize operation, users can use more of the
screen real estate, avoiding the loss of screen space due to nesting.

In Elastic Windows users can work at any level of detail regarding their roles
(Figure 9). Multi-level task focus is provided by allowing users to make any window
full screen at any point in the hierarchy, giving users more space to focus on the
task in that context.

Layout save/load/change operations

In Elastic Windows multiple layouts can be saved for each object, and loaded at
a later time. This operation helps users to reconstruct their previous working
environments easily. Users are also provided with three standard layouts: horizontal,
vertical, and tiled.

Users can also save custom-made layouts for each object under different names
and load them. This gives them flexibility in using alternative layouts for different
subtasks within the same context without the burden of recreating the layouts
used earlier.

Multiple resize operations

Windows at any level of the hierarchy can be resized by dragging on the border.
All of the sides and corners of the window borders can be used in resizing. The
drag direction and the border being dragged determines the effect as explained in
the layout dynamics section. The corners of a window are used for diagonal resizing,
whereas the sides are used for either horizontal or vertical resizing depending on
the border.

Inside a group window with many windows open, typically users need to focus
on one of these windows for a certain time. Bidirectional resizing allows resizing
of a window in both directions by pushing/pulling the opposing borders by the
same amount.

236 e. kandogan and b. shneiderman

Figure 9. (a) Original layout as in Figure 1, (b) university window maximized, (c) teaching window
maximized

Multiple copy/move operations

The copy operation creates a duplicate of a window or hierarchy of windows,
with their contents, at a different position in the hierarchy. The proportions of the
sub-windows are kept the same at the new position, but their sizes might change.
Both the copy and the original access the same source, thus changes to the contents
in one of them affect the other one as well. The move operation, however, relocates
a window or hierarchy of windows to a new position in the hierarchy, while
removing the windows at the old position.

Multiple pack/unpack and iconify operations

Windows at any level of the hierarchy can be packed by selecting from the menu.
Packed windows appear in the same location, preserving the spatial cues with reduced
size, but only their title is shown as a thin rectangular bar appropriately placed in
the layout. Keeping the packed windows in the same position avoids the spatial
disorientation and helps users later to locate them easily as well as to remind them
of unfinished tasks.

Pack and unpack operations on groups of windows help users to filter-out unnecess-

237elastic windows

ary information. When a packed window is unpacked all the windows in the group
are restored to their previous sizes with a single action, so that users can reconstruct
their previous working environments easily. The pack/unpack operations are primarily
used to abandon a task for a while and open up space for other tasks. The purpose
of an iconify operation, however, is to save the window layout and their contents
for later uses.

Other operations

Users can set the minimum width or height of a window in order to protect the
window from an unintentional resizing. This constraint on the window width or
height can be removed by the corresponding release operation.

Multiple window operations can also be achieved by serial application of a window
operation to a number of windows. Once the users selects an operation, it can be
applied to a number of windows by clicking on the window.

The Elastic windows approach satisfies most of the requirements of future win-
dowing systems as discussed in detail in the previous sections. In summary, we
believe that hierarchical window organization provides a framework for information
organization and coordination according to user’s roles by mapping their role
hierarchy onto the nested rectangle structure. While the hierarchical structure depicts
a possible relationship among information contained in multiple windows, it also
allows multi-window operations that permit fast task initiation, switching, and screen
layout arrangement. Although information is hierarchically organized, information
can also be accessed using incomplete knowledge of users on its nominal, spatial,
and visual attributes. The space-filling layout of Elastic Windows might increase
screen space utilization by avoiding wasted space among windows.

RELATED WORK

The Rooms system7 uses multiple virtual workspaces, where the overlapping window
strategy is used in each of these single-screen workspaces. Each task is devoted to
a workspace, where users can switch to other tasks using either the overview or the
doors between workspaces for rapid transitions. There is no mechanism which allows
multi-window operations.

The Cedar10 system also uses tiling, where windows are organized in two columns
with an arbitrary number of windows in each column. It also uses a space-filling
tiled layout, but proportional resizing is not provided. Windows can not be grouped
hierarchically and multiple window operations are not provided. A number of other
early windowing systems also use tiling. Myers has an excellent taxonomy of these
early windowing systems.11

A more recent system, the Dylan programming environment, uses a pane-based
window system,12 which allows both horizontal and vertical panes, with a mechanism
to create links between panes. However, it does not support multiple window
operations and hierarchical organization of windows.

Recent research in more advanced information management user interfaces has
generated a handful of interesting innovations. The Web-Book work at Xerox extends
the 2D desktop metaphor to a 3D office metaphor.13 Web documents can be organized
hierarchically in metaphors like book, shelf, table, etc. While the approach facilitates

238 e. kandogan and b. shneiderman

hierarchical organization of documents, multiple window operations are not supported.
Although 3D metaphors may be appealing, we wonder whether the screen space
is underutilized.

Pad++ introduced a novel technique for spatially organizing information on an
infinitely zoom-able surface.14 Web documents are presented in a two-dimensional
tree structure at varying magnification. Navigation in the zoom-able surface and
arrangement of a number of documents at different locations in a single view can
be problematic for novice users. Pad++ relies only on spatial and visual attributes
of information.

LifeStreams organizes documents by temporal attributes on a linear timeline.15

Access to information can be done through either a time-ordered list of documents
or a search tool. While temporal attributes of information are exploited to access
information, spatial and visual attributes are totally neglected. Also, once documents
are accessed and opened, the approach provides no additional layout organization
facility besides what is provided by the window manager.

In LifeLines,16 users can access documents from a compact temporal overview
consisting of multiple time-lines each characterizing different aspects of the infor-
mation through direct manipulation. Work on the Visage project17 has introduced
information-centric techniques in which individual data elements can be drag-and-
dropped into different views to generate custom visualizations, such as tables, bar
graphs, or geographial maps. Feiner describes a hypertext system which supports the
creation of large graphical documents with an arbitrary directed graph structure, with
graphical information hiding and structure manipulation capabilities.18

Lansdale observed that current interfaces do not support the variety of activities
people use to organize and access information.19 He observed that people remember
far more about pieces of information than labels (nominal), such as when it was
received (temporal), what it looks like (visual), where it was put (spatial), and many
other things. It is also suggested that information be accessible based on partial
knowledge of its attributes. Shneiderman demonstrated a number of interesting
strategies to coordinate information existing in multiple windows.20

There is a growing interest in personal role management not only in the human-
computer interaction area but in other areas as well. Researchers in the database
area have extended the current object model with roles.21

An early study by Buryet al.22 (1985) comparing user performance in windowed
systems to non-windowed systems revealed that task-completion times in windowed
systems can be longer due to window arrangement time. However, in a detailed
analysis, the actual times spent on task execution were found to be shorter, and the
error rates were significantly lower in windowed systems.

Bly and Rosenberg23 compared user performance of tiled and overlapping window
management strategies for regular and irregular tasks, where regularity is determined
by the layout of information in a window. Their results favored tiled windows for
regular tasks. For irregular tasks, however, expert performance was faster in overlap-
ping windows, whereas novice performance was faster in tiled windows. Laneet
al.24 also compared tiled and arbitrary overlap strategies for multi-window searches.
Their results also indicated faster novice user performance for the tiled strategy.

Gaylin25 observed that the number of window operations that are used to switch
the active window set constitutes 63 per cent of all the operations in an independent
overlapped window manager. This result supports the findings by Bannonet al.26

239elastic windows

that people switch among tasks frequently, forcing them to change the visible set
of windows on the screen. According to Gaylin’s observations, create and delete
window operations accounted for about 15 per cent of total operations, whereas
move and resize operations accounted for 6 per cent, with twice as many moves as
the resizes.

Gaylin also measured window operation frequencies during log-on, as users set
up their computers in a typical work configuration. Although the most frequently
used commands are still those used to switch the active windows, window creation
operations accounted for 17 per cent, move operation for 17 per cent, and resize
for 12 per cent.

Gaylin used these window operation frequencies to create a windowing system
benchmark. We believe that a more reliable benchmark test should be based on task
domain operations, not interface domain operations.

Cardet al.27 introduced cost of knowledge characteristic function for characterizing
information access from dynamic displays, where the cost is determined as the time
to access information.

EXPERIMENTS

In our evaluation, we measured user performance on task environment setup, task
environment switching, and task execution (Figure 10).

Task environment setupis the act of accessing information objects needed for the
task, opening windows for them, and arranging the layout. An example would be
for programmers to open source code modules in multiple windows and to arrange
them on the screen.

Figure 10. Three categories for window benchmarking: task environment setup, switching, and task
execution

240 e. kandogan and b. shneiderman

Task environment switchingis the act of changing the screen contents to an
existing environment setup. An example would be to switch to reading specifications
in the middle of programming.

Task executionsare actions with information contained in windows in a task
environment layout. An example would be looking sequentially through many job
descriptions to find the best paying job.

We identified four task execution types: Sequential scanning, comparison, determine
context+scan, and recall context+scan (Figure 11).

Sequential scanningis looking sequentially through a number of information
sources for a certain attribute of the information, such as the job salary.Comparison
is comparing a number of information sources based on one or more attributes, such
as job descriptions or benefits. It is different from sequential scanning because users
tend to glance back and forth at information sources multiple times till they
comprehend the distinctions well enough to make a judgment.Determine context+scan
is a filtering based on an attribute to establish a context for further scanning. For
example, once a decision is made to seek jobs in California, this context enables
the users to limit scanning only to California jobs. Inrecall context+scan, the context
is not determined, but rather recalled based on previous interaction with the same
information sources.

We are aware that not all the tasks users do with computers are this regular and
this list is not complete. We chose these four types of task execution because of
their significance in personal role management.

Subjects

Twelve computer science graduate students with 11 of them having more than
five years experience with window systems participated in the experiments. Seven
out of 12 of the subjects had experience with three or more windowing systems and
9 out of 12 use a windowing system for more than 20 hours weekly.

Figure 11. Task types: sequential scanning, comparison, determine context+ scan, and recall
context+ scan

241elastic windows

Design

The experiment design was a within-subject counterbalanced design with 12
subjects, with three subjects per group. Each subject was tested on both of the
interfaces but the order of interfaces was counterbalanced for half of the users. To
reduce the chance of performance improvement in the second interface, a parallel
set of questions was used on the second interface. The order of the question set
was also reversed for half of the subjects in each group. Since all four permutations
(E1→I2, E2→I1,I1→E2, I2→E1) were included, results are presented for aggregated
groups. The tasks in both of the question sets match each other in the same order.
To verify the results obtained from the within-subject design, we extracted a between-
subjects data from the initial study with reduced number of subjects (six subjects in
two groups, only the first interface timings are counted). Also to investigate interface
ordering effects and question set differences we ran three-way ANOVA (Interface
order, Question set, Interface type) statistics.

Tasks

Each subject was tested on the information store of a hypothetical student. This
student is enrolled in two courses this semester: Software Engineering and Computer
Networks. Course materials and partners, homework, and correspondence with the
professor, TAs, and classmates are organized in a hierarchical structure for each
course. This student has a number of other roles like the organization of a birthday
party, home duties, and job responsibilities. There are two projects at the job that
the student is responsible for. Project materials, like the programming code, docu-
ments, reports, and correspondence with the partners and the boss are organized also
in a hierarchical structure for each project.

User performance was measured on task environment setup, task environment
switching, and task execution on three different degrees of task environment com-
plexities: low, medium, and high, represented by 2, 6, and 12 windows, respectively.
In the context of the student role, the task environments have been chosen as
follows: low complexity task environment included two documents of a course
project, medium complexity task environment included six e-mail messages from the
boss at the job, and high complexity task environment included twelve pieces of
project programming code at the job. Actual tasks for medium task environment
complexity used in the experiment are:

(a) Task environment setup:Open all six e-mails from my Multimedia project
boss Rich regarding new positions in the company.

(b) Task execution (Sequential scanning):Which of the positions require ‘TCP/IP
programming experience of more than two years?’

(c) Task execution (Comparison):Which position has the longest list of require-
ments?

(d) Task execution (Determine context+scan): How many of the positions are in
the Networking group?

(e) Task execution (Recall context+scan): What is the maximum wage for the
positions in the Networking group?

(f) Task environment switching:Switch to the Analysis and Capability documents
in the Software Engineering course.

242 e. kandogan and b. shneiderman

Figure 12. An example task schedule

An example task schedule for a subject is shown in Figure 12.
Each subject was given a similar six session schedule, with the order of task

environment complexities varied. Two task executions are given at each session, a
total of four for each task complexity, covering all task execution types. According
to this schedule each subject makes three task environment setups at three different
task environment complexities, three task environment switchings, and 12 task
executions total.

Training

A 15-minute training session was given to each user for both of the interfaces,
supplemented with a practice test. Users were expected to develop strategies for
handling multiple windows in both of the interfaces during this practice. Users were
also given a five-minute training session on the information hierarchy used in
the experiment.

Training of the Elastic Windows interface began with the hierarchical coloring
scheme, and the elastic nature of windows with the proportional space allocation

Figure 13. Average task environment setup times (* for p, 0.05 ** for p , 0.01 indicating significance
level)

243elastic windows

strategy. It covered opening/closing, resizing, packing/unpacking, and maximizing a
hierarchy of windows.

Training of the independent windows interface covered a similar set of tasks,
including opening a window, iconifying and reopening windows, resizing, and closing
windows as well as traversing the information hierarchy using the file manager.

Hypothesis

Elastic Windows with multiple window operations yields faster performance than
independent overlapped windows for expert users of independent overlapping win-
dowing systems fortask environment setup, switching,and task executionfor medium
and complex task environments.

Independent variables were the windowing interface (Elastic Windows and Inde-
pendent Overlapping Windows), and task environment complexity (2, 6, and 12
windows). Dependent variables were task environment setup times, task environment
switching times, and task execution times.

Task environment setup time is determined by the duration to bring up all windows
related to the task. Task switching time is determined by the duration to switch the
active window set. Task execution time is the duration, given a question about the
information on multiple windows, it takes the subject to find the necessary information
on windows and reply. It includes the necessary window arrangement time.

Procedure

The subjects were given a brief description of the experiment, filled out a subject
information sheet, and signed a consent form. The experiment took about an hour,
including the training and practice test. Subjects were free to ask any questions
during the training session and before starting each task during the experiment.

The systems compared in the experiments are the Elastic Windows interface and
a twm-clone window manager with the Open Windows file-manager both running
on a Sun Sparc 20, using SunOS operating system under X windows.

RESULTS AND OBSERVATIONS

User performance

Task environment setup

Task environment setup times for Elastic Windows for medium and high com-
plexity treatments were found to be less than that of the Independent Overlapping
Windows with a statistical significance at the 0.01 level. For the high complexity
situation, users performed about four times faster with Elastic Windows (20.5
seconds) than with Independent Overlapping Windows (75.3 seconds). The standard
deviation for the high complexity task environment setup in the Independent Overlap-
ping Windows is high due to the diverse approaches taken by the subjects in the
organization of windows. Statistics for the between-subjects design confirmed these

244 e. kandogan and b. shneiderman

results. The ANOVA statistics found no significant difference related to interface
ordering and question set differences.

In Elastic Windows, the steps for setting up a task environment include opening
a container window, selecting multiple task related objects, and dragging and dropping
them in the container window. It might be necessary to maximize the container
window to full screen for better visibility. Average task environment setup times
stayed nearly constant at all task complexities as shown in Figure 13. Standard
deviations are shown as rectangles over the bars in the chart, and the minimum and
maximum times are shown as a vertical line.

In the Independent Overlapping Windows, each icon has to be double-clicked and
the windows placed appropriately on the screen, one by one. In this approach, the
setup times are heavily dependent on the number of windows. However, the depen-
dency is more than linear since as the number of windows on the screen increases,
it becomes much more difficult to arrange windows.

Multiple selection and open can easily be added to the existing windowing systems,
but what is lacking is the framework to identify and operate on multiple windows
as a group.

Task switching

All task switching times were found to be shorter with the Elastic Windows
interface with a statistical significance level of 0.05, except for low to medium and
low to high complexity environment switchings. The between-subject analysis, how-
ever, found low to high switching statistically significant since an outlier was detected
using the Grubbs test. The medium to low switching turned out to be not statistically
significant. ANOVA analysis was not made for task switching analysis since the
number of subjects (3) were low in each treatment.

The average task switching times are shown in Figure 14.
Diverse strategies in switching among environments, led to high variances in

performance times. Still, the average time to do a task environment switch was
nearly constant (4.8 to 7.3 seconds) independent of the environment complexity. In
the Independent Overlapping Windows, however, the switching time increased as
task environment complexity increased (12.1 to 45.2 seconds). This is mainly due
to the one window at a time approach. Providing an overview and a set of

Figure 14. Average task environment switching times (* for p,0.05 ** for p ,0.01 indicating signifi-
cance level)

245elastic windows

workspaces, as in Rooms,7 would certainly make task switching time independent
of the number of windows involved, but Rooms offers only two levels.

Task execution

Task execution times for all task complexities and task execution types were
statistically significantly shorter for Elastic Windows at the 0.05 level, except for
sequential scanning and recall context+scan for the low complexity treatment. The
between-subjects analysis confirmed these results. ANOVA statistics found no statisti-
cally significant ordering effect, or question set differences except for sequential
scanning and recall context+scan for the medium complexity treatment. In sequential
scanning an interaction is found between interface type and question set. In recall
context+scan an interaction is found in the combination.

In sequential scanning, having a stable layout during the task execution helped
subjects greatly. In Elastic Windows, windows are well-organized, side by side, and
during task execution subjects did not find it necessary to manipulate (resize,
move) windows. However, in Independent Overlapping Windows, the layout was
continuously changing, windows were raised, moved, and resized frequently, due to
limited screen space. Subjects produced dramatic changes from the initial layout
during task execution. These disruptive changes were more prevalent as task environ-
ment complexity increased.

In Comparison, having windows side by side in Elastic Windows helped users to
compare window contents. Since windows are well organized, users adopted a visual
approach in comparing window contents, and eliminated some windows immediately.
However, in Independent Overlapping Windows, users had to look at each window
one by one, changing the layout constantly, which made it harder to do the
comparison after a while. The situation was more severe in the high complexity
environment (Figure 15). Users performed a comparison task in 10.9 seconds with
Elastic Windows and in 135.4 seconds with Independent Overlapping Windows,
thereby achieving more than ten-fold performance speed-up.

In determine context+scan, subjects using Elastic Windows maximized a subset
of the windows belonging to the context, enabling them to focus on the context
more easily due to larger screen space allocated. In Independent Overlapping Win-
dows, however, subjects did not reorganize the layout but relied on the scrollbar.

Recall was easier in the Elastic Windows interface because of the more stable
window organization across task executions. Subjects stated that it was easier to
remember window locations than in the Independent Overlapping Windows. Since
the window organization was modified in the overlapping windows interface for
each task execution in the sequence, the locational memory of users was lost. Task
execution times were statistically significantly shorter with Elastic Windows for
medium and high complexities, at the 0.05 level. In the low complexity task
environment with only two windows on the screen, it was not difficult to recall
window locations.

Some of the subjects had one task execution with comparably low performance
in the Elastic Windows interface, where subjects had hard times thinking of a
strategy for the task. This is mostly due to the relative inexperience of the subjects
with the Elastic Windows interface as opposed to their lengthy experience with the
popular Independent Overlapping Windows interfaces.

246 e. kandogan and b. shneiderman

Figure 15. Average task execution times (* for p,0.05 ** for p ,0.01 indicating significance level)

In summary, multi-window operation facilitated by the hierarchical organization
of windows proved to be faster for task environnment setup, switching, and task
executions than single window operations in current approaches. These results suggest
promising possibilities for multiple window operations and hierarchical nesting, which
can be applied to the next generation of tiled as well as overlapped window
managers. They should enable users to more readily deal with increasingly complex
tasks. Especially, tasks with multiple windows (more than two) are likely to benefit
from multi-window operations.

Subject interviews

After the experiments subjects were debriefed about their usual use of multiple
windows. Most of the subjects expressed a preference to use more windows for
some tasks, given efficient means to do so. They described opening multiple copies
of the same source file to view different parts of the code, thereby avoiding disruptive
scrolling and find commands.

Some subjects said that, although it was not easy to see the hierarchy at first,
they claimed to get used to it after several tasks. According to our observations
during the experiment, subjects were initially following the hierarchy to access
information; however, after some time, they started to use their spatial memory and
access information directly based on that knowledge. This observation was confirmed
by most of the subjects. Some subjects, however, had no problems visualizing the
hierarchy. One subject said that he liked the overview of hierarchical roles as a
guide to his daily tasks.

247elastic windows

Most of the users indicated preference for clicking to see contents. This could be
due to their past practice on independent overlapping windows systems, but also
their desire for a quick look at window contents. Subjects made a number of
suggestions for the Elastic Windows interface about this and other features.

CONCLUSION

We believe that there is an opportunity to improve today’s window management
strategies. This paper suggests requirements for future windowing systems, and then
describes the Elastic Windows approach in detail. Its hierarchical structure of window
organization enables users to do multiple window operations by applying window
operations on groups of windows. Our experiment compared Elastic Windows with
Independent Overlapping Windows in terms of user performance times on task
environment setup, switching, and four task execution types. We found statistically
significant performance differences in favor of the Elastic Windows interface for
most of the tasks. A ten-fold performance speed-up was achieved for a comparison
task at the high complexity situation. We are working on extending and formalizing
our evaluation method, possibly leading to a window benchmarking test based on
task domain actions.

Current implementation is based on the space-filling tiled layout strategy. In tiled
approaches window sizes may not always conform to window contents. However,
the ideas of hierarchical window organization and multiple window operations are
applicable to other layout strategies.

These results suggest promising possibilities for multiple window operations and
hierarchical nesting, which can be applied to the next generation of tiled as well as
overlapped window managers. They should enable users to more readily deal with
increasingly complex tasks. However, our experiments measured only expert user
performance. While the Elastic Windows interface offers more powerful window
management facilities, it might require more user training. Studies on novice users
with extended set of tasks and long-term usage will provide important information
on its acceptance for a larger population.

Role management was not explicitly tested in this study, but users appeared to
grasp this novel layout strategy and use it competently. A future study will focus
on the benefits of role management and alternate layouts to support it.

Acknowledgements

We are grateful to Kent L. Norman for his contribution in the analysis of experiment
results. Special thanks go to Visix Software Inc. for their donation of the Galaxy
Application Environment used in the development of Elastic Windows. This material
is based upon work supported by the National Science Foundation under Grant No.
NSF IRI 96-15534, and by IBM.

REFERENCES

1. B. Johnson and B. Shneiderman, ‘Space-filling approach to the visualization of hierarchical information
structures’,Proc. IEEE Visualization ’91, 1991, pp. 284–291.

2. S. K. Card, M. Pavel and J. E. Farrell, ‘Window-based computer dialogues’,Proc. INTERACT ’84,
First IFIP Conference on Human-Computer Interaction, London, UK, 1984, pp. 355–359.

3. M. J. Kahn and E. Charnock, ‘How to prevent “windowitis” in your graphical interface?’,Proc. Silicon
Valley Ergonomics Conference & Exposition, ErgoCon’95, 1995, pp. 18–25.

248 e. kandogan and b. shneiderman

4. B. Shneiderman and C. Plaisant, ‘The future of graphic user interfaces: Personal role managers’,People
and Computers IX, Cambridge, UK, 1994, pp. 3–8. Cambridge University Press.

5. C. Plaisant and B.Shneiderman, ‘Organization overviews and role management: Inspiration for future
desk-top environments’,Proc. IEEE 4th Workshop in Enabling Technologies: Infrastructure for Collabor-
ative Enterprises, 1995, pp. 14–22.

6. E. Kandogan and B. Shneiderman, ‘Elastic Windows: Improved spatial layout and rapid multiple window
operations’,Proc. Advanced Visual Interfaces ’96, New York, 1996, pp. 29–38. ACM.

7. A. Henderson and S. K. Card, ‘Rooms: The use of multiple virtual workspaces to reduce space
contention in a window-based graphical user interface’,ACM Trans. Graphics, 5(3), 211–243 (1986).

8. T. W. Malone, ‘How do people organize their desks? Implications for the design of office automation
systems’,ACM Trans. Office Information System, 1(1), 99–112 (1983).

9. E. S. Cohen, E. T. Smith and L. A. Iverson, ‘Constraint-based tiled windows’,IEEE Computer Graphics
and Applications, 6(5), 2–11 (1986).

10. W. Teitelman, ‘A tour through cedar’,IEEE Software, 1(2), 44–73 (1984).
11. B. Myers, ‘Window interfaces: A taxonomy of window manager user interfaces’,IEEE Computer

Graphics and Applications, 8(5), 65–84 (1988).
12. J. Dumas and P. Parsons, ‘Discovering the way programmers think about new programming environ-

ments’, Communications of the ACM, 38(6), 45–56 (1995).
13. S. Card, G. Robertson and W. York, ‘The webbook and the web forager: An information workspace

for the world-wide web’,Proc. ACM CHI ’96 Conference–Human Factors in Computing Systems, 1996,
pp. 111–117.

14. B. B. Bederson and J. D. Hollan, ‘Pad++: A zooming graphical interface for exploring alternate interface
physics’, Proc. ACM UIST’94, User Interface Software and Technology Conference, 1994, pp. 17–26.

15. E. Freeman and D. Gelernter, ‘Lifestreams: A storage model for personal data’,ACM SIGMOD Bulletin,
25(1), 80–86 (1996).

16. C. Plaisant, B. Milash, A. Rose, S. Widoff and B. Shneiderman, ‘Lifelines: Visualizing personal
histories’, Proc. ACM CHI-96 Conference–Human Factors in Computing Systems, 1996, pp. 221–227.

17. S. F. Roth, P. Lucas, J. A. Senn, C. C. Gomberg, M. B. Burks, P. J. Stroffolino, J. A. Kolojejchick and
C. Dunmire, ‘Visage: A user interface environment for exploring information’,Proc. IEEE Symposium on
Information Visualization, 1996, pp. 3–12.

18. S. Feiner, ‘Seeing the forest for the trees: Hierarchical display for hypertext structure’,Proc. ACM
UIST’90, User Interface Software and Technology, 1990, pp. 205–212.

19. M. Landsdale, ‘The psychology of personal information management’,Applied Ergonomics, 19 55–
67 (1988).

20. B. Shneiderman,Designing the User Interface: Strategies for Effective Human-Computer Interaction:
Second Edition, Addison Wesley, Reading, MA, 1992.

21. G. Gottlob, M. Schreftl and B. Roeck, ‘Extending object-oriented systems with roles’,ACM Trans.
Information Systems, 14(13), 268–296 (1996).

22. K. F. Bury, S. E. Davies and M.. J. Darnell, ‘Window Management: A review of issues and some
results from user testing’,Technical Report HFC-53, IBM Human Factors Center, San Jose, CA,
June 1985.

23. S. Bly and J. Rosenberg, ‘A comparison of tiled and overlapping windows’,Proc. ACM CHI’86
Conference–Human Factors in Computing Systems, 1986, pp. 101–106.

24. J. C. Lane, S. P. Kuester and B. Shneiderman, ‘User interfaces for a complex robotic task: A comparison
of tiled vs. overlapped windows’,Technical Report January, University of Maryland, Computer Science
Department College Park, MD, CS-TR-3784, 1997.

25. K. B. Gaylin, ‘How are windows used? Some notes on creating empirically-based windowing benchmark
task’, Proc. ACM CHI’86 Conference–Human Factors in Computing Systems, 1986, pp. 96–100.

26. L. Bannon, A. Cypher, S. Greenspan and M. L. Monty, ‘Evaluation and analysis of users’ activity
organization’,Proc. ACM CHI’83, Human Factors in Computing Systems Conference, 1983, pp. 54–57.

27. S. K. Card, P. Pirolli and J. D. Mackinlay, ‘The cost-of-knowledge characteristic function: Display
evaluation for direct-walk dynamic information visualizations’,Proc. ACM CHI’94 Conference–Human
Factors in Computing Systems, 1994, pp. 238–244.

