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ABSTRACT
Motivation: The most commonly utilized microarrays for
mRNA profiling (Affymetrix) include ‘probe sets’ of a series
of perfect match and mismatch probes (typically 22 oligonuc-
leotides per probe set). There are an increasing number of
reported ‘probe set algorithms’ that differ in their interpretation
of a probe set to derive a single normalized ‘signal’ representat-
ive of expression of each mRNA. These algorithms are known
to differ in accuracy and sensitivity, and optimization has been
done using a small set of standardized control microarray
data. We hypothesized that different mRNA profiling projects
have varying sources and degrees of confounding noise, and
that these should alter the choice of a specific probe set
algorithm. Also, we hypothesized that use of the Microarray
Suite (MAS) 5.0 probe set detection p-value as a weight-
ing function would improve the performance of all probe set
algorithms.
Results: We built an interactive visual analysis software tool
(HCE2W) to test and define parameters in Affymetrix ana-
lyses that optimize the ratio of signal (desired biological vari-
able) versus noise (confounding uncontrolled variables). Five
probe set algorithms were studied with and without statistical
weighting of probe sets using the MAS 5.0 probe set detec-
tion p-values. The signal-to-noise ratio optimization method
was tested in two large novel microarray datasets with dif-
ferent levels of confounding noise, a 105 sample U133A
human muscle biopsy dataset (11 groups: mutation-defined,
extensive noise), and a 40 sample U74A inbred mouse lung
dataset (8 groups: little noise). Performance was measured
by the ability of the specific probe set algorithm, with and
without detection p-value weighting, to cluster samples into the
appropriate biological groups (unsupervised agglomerative
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clustering with F -measure values). Of the total random
sampling analyses, 50% showed a highly statistically signi-
ficant difference between probe set algorithms by ANOVA
[F(4,10) > 14, p < 0.0001], with weighting by MAS 5.0 detec-
tion p-value showing significance in the mouse data by ANOVA
[F(1,10) > 9, p < 0.013] and paired t -test [t (9) = − 3.675,
p = 0.005]. Probe set detection p-value weighting had the
greatest positive effect on performance of dChip difference
model, ProbeProfiler and RMA algorithms. Importantly, probe
set algorithms did indeed perform differently depending on the
specific project, most probably due to the degree of confound-
ing noise. Our data indicate that significantly improved data
analysis of mRNA profile projects can be achieved by optim-
izing the choice of probe set algorithm with the noise levels
intrinsic to a project, with dChip difference model with MAS 5.0
detection p-value continuous weighting showing the best over-
all performance in both projects. Furthermore, both existing
and newly developed probe set algorithms should incorporate
a detection p-value weighting to improve performance.
Availability: The Hierarchical Clustering Explorer 2.0 is
available at http://www.cs.umd.edu/hcil/hce/. Murine arrays
(40 samples) are publicly available at the PEPR resource
(http://microarray.cnmcresearch.org/pgadatatable.asp; http://
pepr.cnmcresearch.org; Chen et al., 2004).
Contact: ehoffman@cnmcresearch.org

INTRODUCTION
Simultaneous analysis of many thousands of genes on the
microarray leads to an ‘expression profile’ of the original
cell or tissue. This profile represents the subset of the 40 000
genes that are being employed by that cell or tissue, at that
particular point of time. High density oligonucleotide arrays
containing up to 500 000 features are used widely for many
projects in biological and medical research. The most popular
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Affymetrix GeneChip uses about 1 million oligonucleotide
probes to query most (∼40 000) human mRNAs in two small
(1.28 cm2) glass arrays. Importantly, Affymetrix arrays have
intrinsic redundancy of measurements for each gene, with
11–16 ‘perfect match’ probes for different regions of each
gene sequence, with each perfect match paired with a sim-
ilar ‘mismatch’ probe with a single destabilizing nucleotide
change in the center of the 25 nucleotide sequence (Liuet al.,
2002; Hubbellet al., 2002). The complete set of 16 probe
pairs is called the ‘probe set’ for any single gene. The mis-
match is meant to serve as a ‘noise filter’; labeled mRNA
binding to the ‘mismatch’ is considered to represent a meas-
ure of non-specific binding, and thus a measure of ‘noise’
for the corresponding perfect match (see The Tumor Analysis
Best Practices Working Group, 2004).

There are many confounding uncontrolled variables
intrinsic to most microarray projects. For example in human
patient samples, the outbred nature of humans leads to extens-
ive genetic heterogeneity between individuals, even if sharing
the same pathological condition or exposed to the same envir-
onmental or drug challenge. It is often difficult to precisely
match age, sex and ethnic background of human subjects in
microarray projects, leading to considerable inter-individual
variability in the analyses. Furthermore, human tissue samples
typically show extensive tissue heterogeneity, with small size
leading to sampling error, and variability in histological sever-
ity and cell content (e.g. variable amounts of fibrosis, fatty
infiltration, inflammation, regeneration). Many of these vari-
ables are not a concern in studies of inbred mouse strains.
Inbred mice show very little inter-individual variability, and
the experimental manipulation of groups of mice leads to
homogeneous treatment groups often with relatively high
numbers of replicates. Moreover, the use of whole lungs or
other tissues leads to a normalization of tissue heterogeneity.

There are also technical variables that could confound
interpretation, quality and preservation of the biopsy mater-
ial, quality of RNA, cDNA and cRNA, hybridization and
chip image variation, probe set signal algorithms and stat-
istical analysis methods. Quality Control (QC) and Standard
Operating Procedure (SOP) can mitigate many confounding
technical variables with factory-produced Affymetrix arrays,
and these have been found to be a relatively minor source of
confounding variation if QC parameters are employed (Bakay
et al., 2002a; DiGiovanniet al., 2003).

‘Probe set algorithms’ refer to the method of interpreting
the 11–16 probe pairs (22–32 oligonucleotide probes) in a
probe set on an Affymetrix microarray that query a parti-
cular mRNA transcript. Key variables in different probe set
algorithms include the penalty weight given to the mismatch
probe of each probe pair, the weighting of specific probes
in a probe set based on empirical ‘performance’, the man-
ner by which a single ‘signal value’ is derived from the
interpretation of the probe set, and how this is normalized
relative to other probe sets on the microarray or in the

entire project. Most reports of new probe set algorithms,
and comparison of existing algorithms, have been perform-
ance using one or a few ‘test datasets’ in the public domain;
specifically ‘spike in’ control datasets from Affymetrix
(http://www.affymetrix.com/analysis/download_center2.affx)
and GeneLogic (http://qolotus02.genelogic.com/datasets.nsf/)
(Li and Wong, 2001b; Irizarryet al., 2003b; Bolstadet al.,
2003). These data have shown that using only the perfect
match probe, and ignoring the mismatch probe of each probe
pair can considerably increase the sensitivity of the study,
particularly at low signal levels (Irizarryet al., 2003a). The
performance of different probe set algorithms and normal-
ization methods is typically done using receiver operating
characteristic (ROC) curves, providing an assessment of
signal-to-noise ratio for the spike-in control mRNAs.

As discussed above, different projects are known to have
different levels of confounding noise. We hypothesized that
the increased sensitivity of probe set algorithms that ignore the
mismatch signal, such as robust multi-array average (RMA)
(Irizarry et al., 2003b), would be expected to come at an
increased cost of noise, where the quality of low level signals
defined by RMA in ‘noisy’ projects would lead to data inter-
pretations of poor integrity. Specifically, detection of spike-in
controls would be expected to be independent of confounding
noise within arrays and projects. However, the increased sens-
itivity of some probe set algorithms would be expected to lead
to a high proportion of false positives in projects where there
was relatively high level of unwanted noise. We hypothesized
that different probe set algorithms would show a ‘project-
specific’ performance, based upon the extent of confounding
noise in a particular project.

The optimization of signal-to-noise ratio is a critical issue
in microarray experiments, where tens of thousands of trans-
cripts are analyzed simultaneously. If a highly sensitive probe
set algorithm is used in a noisy project, then the resulting
data will have very poor quality and specificity, with many
thousands of ‘false positives’. This would lead to both mis-
classification of samples, and very noisy results that could
absorb large amounts of experimental time to parse through.
Even though such noises and noise filtering methods strongly
influence data analysis, signal-to-noise ratios are rarely optim-
ized, or even considered in microarray data analyses. This is
partly because of the lack of analysis tools that allow research-
ers to interactively test and verify various combinations of
parameters for noise analysis.

Another aspect of microarray data interpretation that could
alter results is the ‘weighting’ of specific probe sets. Typ-
ically, once a particular probe set algorithm is employed on
a microarray project, each probe set signal is considered as
equal weight with any other probe set signal. However, probe
sets that detect transcripts expressed at a very high level would
be expected to show a ‘more robust’ signal with greater quality,
compared to probe sets that are performing poorly or detect-
ing very low level transcripts (near background). A measure
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of the confidence of the performance of the probe set is a
continuous ‘detectionp-value’ assignment, which is a func-
tion of the signal difference between the perfect match (PM)
and mismatch (MM) probes in a probe set and the signal
intensity. In Affymetrix MAS 5.0, the Discrimination score,
R = (PM− MM)/(PM + MM), is calculated for each probe
pair, and the one-sided Wilcoxon’s signed rank test against
a small positive number (default= 0.015) is performed to
generate the detectionp-value (Affymetrix, 2001a,b,c http://
www.affymetrix.com/products/software/specific/mas.affx,
https://www.affymetrix.com/support/downloads/manuals/
data_analysis_fundamentals_manual.pdf). Two threshold
values andα2 are assigned where poor detectionp-values (less
thanα1) are assigned an ‘absent’ call, while more robust detec-
tion p-values (greater thanα2) are assigned a ‘present’ call
(defaultα1 = 0.04 andα2 = 0.06). It is now standard prac-
tice in many publications using Affymetrix arrays to use the
‘present/absent’ calls as a form of noise filters. For example,
a ‘10% present call’ noise filter requires any specific probe
set to show a ‘present’ call in at least 1 in 10 microarrays
in that project, otherwise it is excluded from all further ana-
lyses (DiGiovanniet al., 2003, 2004; Zhaoet al., 2002, 2003).
Use of a threshold is not as statistically valid as a continuous
weighting method, and here we tested the effect of weighting
of all probe set algorithms by MAS 5.0 detectionp-values.

We hypothesized that it would be possible to identify the
most appropriate probe set analysis and noise filtering meth-
ods by conducting permutational analysis of the probe set
‘signal’ algorithm, and noise filters using continuous MAS
5.0 probe set detectionp-values. The goal was to use unsu-
pervised hierarchical clustering to find the signal algorithm
that maximized the separation of the ‘known’ biological vari-
able, while minimizing confounding ‘noise’. We enhanced
our interactive visual analysis tool, the Hierarchical Clustering
Explorer to enable researchers to perform the permutational
study and to help them interactively evaluate the result. We
report the analysis results of such permutational studies with
very noisy human muscle biopsies samples and much cleaner
inbred mouse lung biopsies samples.

In our previous work (Seoet al., 2003, http://ieeexplore.iee.
org/ie15/8655/27434/01221348.pdf), we performed a pilot
permutational study with a small subset (25 samples of
3 groups) of our 105 human muscle biopsies. We varied probe
set signal algorithms (MAS 5.0, RMA), ‘present call’ filter
thresholds, and clustering linkage methods, and ‘visually’
investigated the results in HCE2 (the Hierarchical Clustering
Explorer 2.0). For the dataset, the strength of the biological
variable was maximized, and noise minimized, using MAS
5.0, 10% present call filter, and average linkage (or average
group linkage). In this paper, we extend the pilot study to
the extent that (1) we test not only the human muscle data
with extensive noise but also the inbred mouse lung data
expected to show considerably less biological noise [varying
genetic background (polymorphisms), tissue heterogeneity],

(2) compare three more signal algorithms (dChip, dChip dif-
ference model, Probe Profiler), (3) use a novel continuous
noise filtering method instead of the binary 10% ‘present call’
filtering used previously and (4) evaluate the unsupervised
clustering results not only using visual inspection but also
using a general external evaluation measure (F-measure).

We first explain our permutation study design and datasets
in detail. Then, our novel noise filtering method incorpor-
ated into the unsupervised hierarchical clustering algorithm
is presented. An external clustering evaluation measure—
F -measure is explained and application of the measure to
a hierarchical clustering result is explained in the follow-
ing section. Then, we talk about how those two methods
are implemented inHCE2W (the improved version of the
Hierarchical Clustering Explorer 2.0 withp-value weighting
andF -measure). After presenting results with discussions, we
conclude our paper.

SYSTEMS AND METHODS
We selected two large Affymetrix datasets that were expected
to differ in amount of mitigating, uncontrolled biolo-
gical noise. Data generation for both datasets was subjec-
ted to standardized quality control and standard operating
procedure. The first dataset was a mouse experimental
asthma project, of 40 individual mouse lungs studied
in 8 biological groups (5 mice as independent replicates
within each group) (see http://microarray.cnmcresearch.org/
pgadatatable.asp; U74A microarrays utilized). The studied
biological variables were exposed to dust mite allergen and
time points after exposure. This dataset was expected to be
relatively low in confounding biological noise; entire lungs
were used that effectively removed tissue heterogeneity as an
uncontrolled variable, and the inbred nature of the mouse lines
used effectively removed uncontrolled genetic heterogeneity
between individuals.

The second dataset was a human muscle biopsy project, with
105 muscle biopsies used individually on U133A microarrays,
in 11 biological (diagnostic) groups. Clinical heterogeneity,
different human patients may or may not share the same exact
underlying initiating biochemical problem, is a major con-
founding variable in most human mRNA profiling studies. It
is important to point out that clinical heterogeneity was not a
confounding variable in the human samples studied here, as
patients within a diagnostic group were mutation-positive for
the same gene (e.g. shared the same ‘ground truth’ in primary
biochemical disorder) (Duchenne muscular dystrophy, Becker
muscular dystrophy, spastic paraplegia, dysferlin deficiency,
Fukutin related protein deficiency, Calpain III deficiency,
Fascioscapulohumeral muscular dystrophy, Emery Dreifuss
muscular dystrophy). In two groups, there is no known
single gene causative of the disorder, but all patients in
these groups were clearly affected by the condition as dia-
gnosed by an acknowledged leader in that specific disorder
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Fig. 1. Permutation study framework using unsupervised clustering inHCE2W (the improved version of the Hierarchical Clustering
Explorer 2.0 withp-value weighting andF -measure). Inputs to the Hierarchical Clustering Explorer are two files, signal data file and
p-value file. Each column of the two input files has values for a sample (or a chip), and the known target biological group index is assigned
to each column of the signal data file. Success is measured usingF -measure of a dendrogram and the known biological grouping.

(Acute Quadriplegic, Juvenile dermatomyositis). The 11 dia-
gnostic groups were normal skeletal muscle from volunteers
in exercise studies(n = 19) (Chen et al., 2003), Duch-
enne muscular dystrophy(n = 9) (dystrophin mutations;
Chenet al., 2000; Bakayet al., 2002a,b), Acute Quadriplegic
Myopathy(n = 5) (TGFbeta/MAPK activation; DiGiovanni
et al., 2004), spastic paraplegia(n = 4) (spastin mutations;
Molon et al., 2004), dysferlin deficiency(n = 9) (dysferlin
gene mutations; unpublished data), Juvenile Dermatomyos-
itis (n = 18) (autoimmune disease; Tezaket al., 2002),
Fukutin related protein hypomorph(n = 7)(homozygous mis-
sense for glycosylation enzyme, M. Bakay, K. Gorni and
E. P. Hoffman, unpublished data), Becker muscular dystrophy
(n = 5) (hypomorph for dystrophin; see Hoffmanet al., 1988,
1989; M. Bakay, Y.-W. Chen and E. P. Hoffman, unpub-
lished microarray data), Calpain III deficiency(n = 11)

(Calpain III gene mutations; see Chouet al., 1999; M. Bakay
and E. P. Hoffman, unpublished microarray data), Fascio-
scapulohumeral muscular dystrophy(n = 13) (deletion of
chromosome 4q; Winokuret al., 2004) and Emery Dreifuss
muscular dystrophy(n = 4) (lamin A/C missense muta-
tions; M. Bakay, G. Melcon and E. P. Hoffman, unpublished
microarray data). This dataset was expected to have consider-
ably greater confounding biological noise. The age and sex of
subjects varied, tissue heterogeneity is known to be signific-
ant, and genetic heterogeneity between subjects is substantial.
Moreover, the differences between groups were expected to
be relatively minor for some groups. For example, Duchenne
muscular dystrophy and Becker muscular dystrophy are both
caused by mutations of the same dystrophin gene; however,
Duchenne affects children and is caused by nonsense muta-
tions, while Becker muscular dystrophy affects adults and
is caused by partial-loss-of-function mutations. Thus, any
attempt to distinguish some groups using unsupervised meth-
ods is expected to be considerably more challenging than for
the murine lung dataset. Note that all data were subjected
to the same QC/SOP protocols, as described on our website
(http://microarray.cnmcresearch.org), and was generated in
the same laboratory (Center for Genetic Medicine, Children’s
National Medical Center, Washington DC).

For the two datasets, we processed CEL files using five
different probe set signal algorithms; MAS 5.0, dChip
perfect match only, dChip difference, Probe Profiler and

RMA. MAS 5.0 results were obtained using Affymet-
rix Laboratory Information Management Systems (LIMS)
software, dChip results were generated using the official
software release (Li and Wong, 2001a), Probe Profiler
results were obtained using the Probe Profiler software by
Corimbia Inc. (www.corimbia.com) and the RMA results
were obtained using the affycomp package of the Biocon-
ductor Project (http://www.bioconductor.org).

Previous comparison studies using well-known benchmark
datasets such as spike-in and dilution experiments have evalu-
ated probe set signal algorithms in terms of the known expec-
ted features (Baughet al., 2001; Hillet al., 2001). Copeet al.
(2003) have developed a graphical tool to evaluate probe set
signal algorithms using statistical plots and summaries. They
also utilized the benchmark datasets to identify the statistical
features of the data for which the expected outcome is known
in advance. These studies can provide a general guideline of
which method is suitable for a specific investigation. While
one method is better than others in general, according to the
studies using the benchmark data, the ‘ideal’ method of probe
set analysis could be different for different projects. What we
suggest in this paper is a permutation study framework (Fig. 1)
to help researchers choose a probe set signal algorithm that
optimizes the signal-to-noise balance for their projects.

Samples (or columns in the input file) were clustered
using the unsupervised hierarchical agglomerative clustering
algorithm in HCE2W (the improved version of the Hier-
archical Clustering Explorer 2.0), and the ‘unsupervised’
clustering results are compared with the grouping by our tar-
get biological variable. In this manner, we can evaluate the
probe set signal algorithms by comparing the groupings nat-
urally derived from the input dataset to the groupings formed
by our target biological variable.

Hierarchical agglomerative clustering has been the most
commonly used method for microarray data clustering
(Moreauet al., 2002) since Eisenet al. (1998) first applied
it to microarray data analysis. In hierarchical agglomerative
clustering, when we want to clusterm data items, each data
item initially occupies a cluster by itself. The most similar
two clusters are then merged to construct a new cluster. The
similarity/distance values between the new cluster and the
remaining clusters are then updated using a specific linkage
algorithm. We ran HCE2W using the average linkage method
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(aka UPGMA: Unweighted Pair Group Method with Arith-
metic Mean) in this study. We have previously studied the
effect of different linkage algorithms in agglomerative clus-
tering, and found that the UPGMA linkage method provided
the best sample distinction by visual output (Seoet al.,
2003). Typically for microarray data, the average linkage
method gives acceptable results (Quackenbush, 2001). It
is at least included or used as default measures in many
standard microarray analysis tools (GeneSpring, Spotfire
DecistionSite, S-plus ArrayAnalyzer, R and so on).

Average linkage is summarized as follows. LetCn be a new
cluster, a merger ofCi and Cj at a stage of the hierarch-
ical agglomerative clustering process. LetCk be one of the
remaining clusters. Then the distance betweenCn andCk can
be calculated using the following equation where Dist(Ca , Cb)
is the distance (or dissimilarity) betweenCa andCb, |Ca| is
the number of items in a clusterCa :

Dist(Cn,Ck) = Dist(Ci ,Ck)
∗|Ci |/(|Ci | + |Cj |)

+ Dist(Cj ,Ck)
∗|Cj |/(|Ci | + |Cj |).

The merge and update are repeated until there remains only
one cluster of sizem.

We also developed a novel probe set weighting scheme for
data analysis. Newer Affymetrix MAS 5.0 software generates
a probe set detectionp-value; this provides an assessment of
the assuredness of the distinction between perfect match and
mismatch probes across the entire 22 feature probe set, and
thus a measure of the ‘performance’ of the probe set. It would
be expected of probe sets that performed well (e.g. highly
significant detectionp-value) would provide ‘better’ data than
poorly performing probe sets. A corollary to this hypothesis is
that weighting of probe sets so that clustering is driven more
strongly by well-performing probe sets would provide a novel
noise filter that would improve clustering results. Towards
this end, we used each probe set algorithm tested with and
without a continuous weighting of all probe sets based upon
MAS 5.0 probe set detectionp-value. For each input signal
dataset, we ran HCE twice to obtain 20 comparison results
in total (2 experiments× 5 signal algorithms× 2). First, we
ran HCE without weighting using the Affymetrix MAS 5.0
detectionp-values. Second, we ran HCE with weighting each
signal value in the input dataset with the detectionp-values
as explained in the following section. By comparing the two
results, the effect of noise filtering methods can be verified
across the five probe set signal algorithms and two datasets of
different noise-level.

Incorporating probe set detection p-value to
similarity calculation
Affymetrix noise calculations give us two outputs: one is the
continuous detectionp-value assignment, and the other is a
simple detection call (‘present/absent’). Each signal intens-
ity value has a confidence factor—detectionp-value, which

contributes to determining the detection call for the corres-
ponding probe set. When the probe set detectionp-value
reaches a certain level of significance, then the probe set is
assigned a ‘present’ call, while all these probe sets with less
robust signal-to-noise ratios are assigned an ‘absent’ call. This
enables the use of a ‘present call’ threshold noise filter that
has been used in many published studies (Chenet al., 2000,
2002; DiGiovanniet al., 2003, 2004; Hittelet al., 2003).
In our previous study (Seoet al., 2003), we reported that
a ‘10% present call’ noise filter did improve the perform-
ance of probe set signal algorithms. While such ‘present call’
based filtering improves performance, it is clearly an arbitrary
threshold method, and thus it is highly possible that potentially
important signals that might be conveyed by the probe sets are
filtered out.

Affymetrix MAS 5.0 uses a two-step procedure to deter-
mine the detectionp-value for a probe set. It calculates the
discrimination score,R = (PM− MM)/(PM + MM) for each
probe pair, and then testsR against a small positive threshold
value. It assigns a rank to each probe pair according to the dis-
tance fromR and the given threshold, and then the one-sided
Wilcoxon’s signed rank test is used to generate the detectionp-
value for the probe set. The discrimination scoreR describes
the ability of a probe pair to detect its intended target, so the
detectionp-values are a reliable continuous indicator of how
well the measured transcript is detected. Even though these
detectionp-values are given by Affymetrix MAS 5.0, they
can be used with other signal algorithms since (1) all signal
algorithms used the CEL files as their inputs and detection
p-values are directly calculated from CEL files and (2) the
signal algorithm and detection algorithm are independent of
each other in MAS 5.0. We used the detectionp-values from
MAS 5.0 as a continuous weighting for probe sets for all five
tested signal algorithms in this study. By involving this con-
fidence factor in the clustering process, we believe it would
give greater potential sensitivity by considering all probe sets
in an analysis without the cost of poor signal-to-noise ratio.

There are many possible similarity measures for unsuper-
vised clustering methods, and it is also possible to develop
weighted versions of most similarity measures. For example,
we can derive a weighted Pearson correlation coefficient as
follows from the Pearson correlation coefficient that has been
widely used in the microarray analysis. Letx = (x1, . . . ,xn)

andy = (y1, . . . ,yn) be the vectors representing two arrays to
be compared, and letp(y) = [p(y1), . . . ,p(yn)] andp(x) =
[p(x1), . . . ,p(xn)] be the vectors representingp-values for
x andy, respectively. Then the weighted Pearson correlation
coefficient is given by

rxy =
∑

wi(xi − xw)(yi − yw)√∑
wi(xi − xw)2

∑
wi(yi − yw)2

, (1)

wherewi = [(1 − p(xi) + (1 − p(yi))]/2, yw = ∑
wiyi/∑

wi , xw = ∑
wixi/

∑
wi .
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Fig. 2. The pseudo code for the overallF -measure calculation.

The weighted Pearson correlation coefficient has been used
in many microarray data analysis tools, e.g. in Eisen’s Cluster
software (http://rana.lbl.gov/manuals/ClusterTreeView.pdf).
Our extension is that we use the complement of detection
p-value to calculate the weight for each term since the smaller
thep-value is, the more significant the signal is. Other similar-
ity measures such as Euclidean distance, Manhattan distance
and cosine coefficient can be extended to their weighted
version in a similar way to the weighted Pearson correlation
coefficient.

Using external measure for evaluation of
unsupervised clustering results
In our previous pilot study (Seoet al., 2003), we visually
inspected the unsupervised clustering results to see how well
the clustering result fit to the known biological variable. Visual
inspection was the right choice for the study since we only
have 25 arrays of 3 different groups of samples. But since
we now have 105 arrays of 11 different groups of samples,
visual inspection is not realistic. Therefore, we decided to
use reasonable clustering evaluation measures in addition to
visual inspection in this study.

There are two kinds of clustering result evaluation meas-
ures, internal and external. The former is for the case
where one is not certain what the correct clustering is.
It compares the clusters using internal measures, such as
distance matrix without any external knowledge. The lat-
ter is for the case where we already know the correct
classes of our samples. In this study, we already know
the correct class labels of samples, and thus use external
measures. Possible external measures include purity, entropy
andF -measures. Among them,F -measures (Van Rijsbergen,
1979, http://www.dcs.gla.ac.uk/Keith/Preface.html) have
been used as an external clustering result evaluation meas-
ure in many studies across many fields including information
retrieval and text-mining (Lewis and Gale, 1994; Bjornar
and Aone, 1999; Cohen and Richman, 2002). Furthermore,
F -measure has been successfully applied to hierarchical
clustering results (Bjornar and Aone, 1999).

We appliedF -measure to the entire hierarchical struc-
ture of clustering results and also to the set of clusters

determined by the minimum similarity threshold inHCE2W.
Let C1, . . . ,Ci , . . . ,Cn be the right clusters according to the
target biological variable. LetHC1, . . . ,HCj , . . . ,HCm be
the clusters from the hierarchical clustering results. InF -
measure, each cluster is considered as a query and each class
(or each correct cluster) is considered the correct answer of
the query. TheF -measure of a correct cluster (or a class)Ci

and an actual clusterHCj is defined as follows:

F(i, j) = 2P(i, j) · R(i, j)

P (i, j) + R(i, j)
,

where

P(i, j) = |Ci ∩ HCj |
|HCj | , R(i, j) = |Ci ∩ HCj |

|Ci | . (2)

The precision valuesP(i, j)and recall valuesR(i, j) are
defined by the information retrieval concepts. TheF -measure
of a classCi is given by

F(i) = m
max
j=1

F(i, j). (3)

Finally, the F -measure of the entire clustering result is
given by

n∑

i=1

|Ci |
N

· F(i), (4)

whereN is the total number of arrays in the experiment.
The F -measure score is between 0 and 1. The higher the

F -measure score is, the better the clustering result is. When
we calculate theF -measure for the entire cluster hierarchy,
for each external class we traverse the hierarchy recursively
and consider each subtree as a cluster. Then theF -measure for
an external class is the maximum ofF -measures for all sub-
trees. The pseudo code for the overallF -measure calculation
is shown in Figure 2.

Interactive visual analysis of hierarchical
clustering results
HCE2 (the Hierarchical Clustering Explorer 2.0) is an inter-
active visualization tool for hierarchical clustering results
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(a) Clustering DialogBox (b) Visualization of a clustering result of human muscle samples 

Fig. 3. Software development of HCE2W for probe set selection and detectionp-value weighting. (a) Researchers can check the option
checkbox (highlighted with a red oval) to use the MAS 5.0 detectionp-values as weights for distance/similarity measures. (b) Each sample
name is color-coded by its biological class. OverallF -measure is highlighted with a green oval. TheF -measure distribution is shown, as the
distance from the left-hand side, over the dendrogram display as indicated by an arrow mark.

(Seo and Shneiderman, 2002, http://www.cs.umd.edu/hcil/
hce/). HCE2 users load a microarray experiment dataset from
a tab-delimited file, and apply their desired hierarchical clus-
tering methods to generate a dendrogram and a color mosaic.
Users can immediately observe the entire clustering result in a
single screen that enables identification of high-level patterns,
major clusters and distinct outliers. They can adjust the color
mapping to highlight the separation of groups in the dataset.
Then they start their exploration of the groupings. Instead of
using fingers and pencils on a static clustering results, HCE2
users can use a dynamic query device called ‘minimum simil-
arity bar’ to find meaningful groups. TheY -coordinate of the
bar determines the minimum similarity threshold. A cluster (a
subtree of the dendrogram) will be shown only if any two items
in the cluster are more similar than the minimum similarity
threshold specified by the minimum similarity bar. Thus, users
see tighter clusters as they pull the bar lower to increase the
minimum similarity threshold. HCE2 is provided as a public
domain software tool.

A troublesome problem related to clustering analysis is that
there is no perfect clustering algorithm. Clustering results
highly depend on the distance calculation method and linkage
method used in the clustering process. Therefore, molecu-
lar biologists and other researchers need some mechanism to
examine and compare two clustering results. HCE2 users can
select two different clustering methods and compare the two
clustering results in a single screen. When users double click
on a cluster in one clustering result, HCE2 shows the map-
ping to the other clustering result by connecting the same items
with a line (for detail see http://www.cs.umd.edu/hcil/hce/).

Through this comparison, users can determine clustering
parameters that most faithfully assemble items into the appro-
priate biological groups according to their known biological
function.

Since sample clustering is the main task of this study, we
implemented an improved version of HCE2,HCE2W, to
enable users to better understand sample (or chip) clustering
results. WithHCE2W, users can focus on either sample clus-
tering or gene clustering by switching the main dendrogram
view between sample and gene. When the sample clustering
result is on the main dendrogram view, each sample name
is color-coded according to its biological class so that users
can assess the quality of clustering from the visual representa-
tion. To facilitate signal-to-noise ratio analyses for microarray
experiments, we incorporated a weighting method for dis-
tance/similarity function and an external clustering evaluation
method intoHCE2W as described in the previous sections.
HCE2W users can choose the option of usingp-values as
weights in the clustering dialogue box (Fig. 3a) and get
an instantaneous graphical feedback ofF -measure for each
minimum similarity threshold value (Fig. 3b).

As users drag the minimum similarity bar, a line graph of
F -measure score is overlaid on the main dendrogram view so
that they can easily see the overall distribution ofF -measure
values right on the clustering result. Since the maximumF -
measure value is highlighted with red dot on theF -measure
distribution curve, users can easily know when to stop drag-
ging the minimum similarity bar to get the best clustering
results in terms ofF -measure. ThisF -measure is calculated
based on the current grouping determined by the current value
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of minimum similarity threshold. While thisF -measure helps
users find natural groupings in the dataset, we need another
measure that evaluates the clustering structure as a whole
to compare many clustering results reasonably. We used the
overallF -measure described in the previous section for this
purpose. The overallF -measure evaluates the entire cluster
hierarchy instead of considering only the groups by the cur-
rent minimum similarity threshold.HCE2W shows the overall
F -measure value at the top center of the main dendrogram
view that is calculated by the pseudo code in the previous
section (Fig. 2).

RESULTS AND DISCUSSION
We felt that the ‘ideal’ method of probe set analysis was likely
different for different projects. Application of any noise fil-
ter can be appropriate in one context, and inappropriate in
another, depending on the sensitivity desired, and the relative
cost of noise that generally accompanies increased sensitiv-
ity. For example, the RMA method performs very well with
known ‘spike-in’ RNAs, providing greater sensitivity and
more stable ‘signals’ from probe sets. However, the greater
sensitivity of the RMA method would be expected to come
at a cost to specificity; the less weight given to the mismatch
‘noise’ filter by RMA would be expected to lead to greater
signal-to-noise ratio problems in complex solutions. The test-
ing of two cell samples that vary only due to a single highly
controlled variable would be best analyzed by RMA. On the
other hand, comparison of human muscle biopsy profiles
(as below) are complicated by many uncontrolled variables,
such as inter-individual variation, and the biopsy content of
different constituent cell types (myofiber, connective tissue,
vasculature). In the latter experiment, the greater sensitivity of
RMA would be offset by the high cost of specificity and noise
resulting from non-specific hybridization and uncontrolled
variables.

We investigated the systematic alteration of signal-to-noise
ratios by iteratively altering the probe set analysis algorithm
(five methods), and weighting of genes using MAS 5.0 probe
set detectionp-value. The latter is, to our knowledge, a novel
method of continuous weighting based upon the observed per-
formance of each probe set, with better performing probes
given greater weight in the resulting clustering. We also
developed a new implementation,HCE2W, of our public
domain HCE2 software, to effectively interrogate optimal
signal-to-noise ratios by visualizingF -measures in unsuper-
vised clustering analyses. To test the effectiveness of these
methods, we utilized two large datasets that were expec-
ted to differ considerably in the amount of confounding
and uncontrolled biological noise intrinsic to the projects;
a ‘noisy’ 105 human muscle biopsy U133A dataset, and a
‘less noisy’ 40 microarray U74A inbred mouse lung dataset
(see Systems and Methods section for description of the data-
sets). All microarrays were processed in the same laboratory,

following the same quality control and standard operating
procedures, thus minimizing non-biological technical noise
in both projects.

All arrays were analyzed using five different signal
algorithms, including Affymetrix MAS 5.0, dChip perfect
match only model, dChip difference model, Probe Profiler and
RMA method. We used the continuous probe set detectionp-
value as a ‘weighting’ function. Spreadsheets corresponding
to each profile were then loaded intoHCE2W. Unsupervised
clustering of the profiles was done using permutations of
signal algorithms, with and without a noise filter (continu-
ous probe set detectionp-value weighting). For each signal
algorithm, we prepared two data files; a signal value file and a
detectionp-value file where each column is a sample and each
row is a probe set. OurHCE2W program supports five differ-
ent linkage methods: average, average group, complete, single
and one-by-one linkage (Seo and Shneiderman, 2002). In this
study, we choose average linkage since it is the most widely
used linkage method and it was one of the most desirable
linkage methods in our previous study (Seoet al., 2003).

For each signal algorithm, we first ranHCE2W without
applying any noise filter. Then,HCE2W was run again
applying the noise filter (using the detectionp-values as a con-
tinuous weighting function) to the dataset. We visualized the
unsupervised clustering of the dataset to determine the method
that provided the best clustering according to our ‘known’
biological variable (specific biochemical defect, patient dia-
gnosis), and thus was most effective in reducing undesirable
noise. In the following bar graphs (Fig. 4), we have deter-
mined the ‘performance’ for each probe set algorithm using
F -measure, either weighted by Affymetrix MAS 5.0 probe
set detectionp-value (the ‘wt’ bars) or unweighted (the
‘no-wt’ bars).

As expected, the two projects showed different results, with
the inbred mouse lung data (low noise) showing greater suc-
cess of unsupervised clustering into appropriate biological
variables by all probe set algorithms and weighting meth-
ods. This reflects the much more highly controlled nature of
the mouse data, with less confounding biological noise, as
described above.

Using probe setp-value as a weight improved the perform-
ance of dChip difference model, Probe Profiler and RMA
probe set algorithms in both datasets (Fig. 4). There was
no detectable change in the performance of MAS 5.0 and
dChip PM only algorithms using unsupervised clustering and
F -measure (Fig. 4). This suggests that utilizing a continuous
weighting with MAS 5.0 detectionp-value would improve
data analysis with three of the most commonly used probe set
algorithms and clustering methods.

We then compared the relative performance of the differ-
ent probe set algorithms. Most obvious was the differences
in performance of RMA in the two datasets. RMA, a probe
set algorithm that is thought to be among the most sensitive
with low signal intensities, performed very well in the mouse
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Fig. 4. External evaluation results usingF -measure of unsupervised clustering for the human muscular dystrophy data and the mouse lung
biopsy data. ‘no-wt’ bar represents the result without MAS 5.0 detectionp-value weighting, and ‘wt’ bar represents the result withp-value
weighting.

Fig. 5. Experiment results with 50% random sampled datasets. (a) dChip difference model with detectionp-value weighting outperformed
other probe set signal algorithms in human muscle data[F(4, 10) > 14,p < 0.0001]. (b) The result withp-value weighting (‘wt’) was
statistically significantly better than that without weighting (‘no-wt’) for mouse lung data[t(9) = −3.675,p = 0.005].

dataset, if used with MAS 5.0 detectionp-value weighting
(Fig. 4b). However, this same RMA algorithm showed the
poorest performance of all algorithms in the human data
(Fig. 4a). We can conclude that the greater sensitivity of the
RMA algorithm with low signal strengths is an advantage in
projects with low confounding noise (e.g. inbred mouse data),
but this same advantage becomes a liability driving poor per-
formance in the human data with high levels of confounding
noise. It is important to point out that the large majority of
human subjects studied had a ‘known’ primary genetic defect
(e.g. gene mutation positive), as described in the Systems
and Methods section. Thus, underlying clinical heterogeneity
could be ruled out in this specific project.

We performed pairedt-tests with the two results to see if
there is a statistically significant difference between the results
with or without continuous detectionp-value weighting.

There was no statistically significant difference in the human
muscle data. This is because the performance of MAS 5.0 and
dChip PM only model was unchanged or slightly worse with
thep-value weighting while those of others get better. Exclud-
ing the two cases, the difference was statistically significant.
There was a statistically significant difference in the mouse
lung data[t(4) = −3.687,p = 0.021]. We conclude that use
of MAS 5.0 detectionp-value weighting is recommended for
dChip difference model, ProbeProfiler and RMA.

We then used a random-sampling permutation study
to determine the statistical significance of differences in
performance found between the different probe set algorithms
and to verify the previoust-test result on the effect of
continuous detectionp-value weighting with more samples
(Fig. 5). We random-sampled 50% of probe sets to partition
our original datasets into two small datasets with only half the
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number of probe sets. For each randomly sampled partition of
input data, we repeated the previously mentioned permutation
study to get two-times larger external evaluation result.

We then conducted 5× 2 two-way ANOVA on the effect
of five probe set signal algorithms and our novel detection
p-value weighting. The analysis showed that the probe set
signal algorithms did have a statistically significant effect on
the external evaluation measure for both the mouse and human
experiments[F(4, 10) > 14,p < 0.0001]. The effect of the
detectionp-value weighting was statistically significant only
for the inbred mouse lung data[F(1, 10) > 9,p < 0.013].
We also re-ran pairedt-tests to verify the significance of the
detectionp-value weighting with more samples. Thet-test
results showed that the continuous detectionp-value weight-
ing made a more statistically significant difference for the
inbred mouse lung data[t(9) = −3.675,p = 0.005]than the
previous result, but this again did not reach significance for
the human muscle data.

Our data provide guidance of how researchers might optim-
ize probe set algorithms and signal weights for individual
projects. Our permutation study of noise level (two data-
sets), probe set analysis (five methods) and noise filtering
(two methods—with or without detectionp-value weighting)
with HCE2W found that:

• Performances of all probe set signal methods were better
with a less-noisy dataset (inbred mouse lung dataset) than
with noisy dataset (human muscle biopsy).

• Noise filter using continuous probe set detectionp-value
improved the performances for dChip difference model,
Probe Profiler and RMA.

• dChip difference model with MAS 5.0 probe set detection
p-values as weights was the most consistent in maxim-
izing the effect of the target biological variables on data
interpretation of the two datasets.

While our current implementation only uses hierarchical
agglomerative clustering in our permutation study framework,
it is also possible to employ other unsupervised clustering
algorithms, such asK-means clustering or SOM cluster-
ing. The novelF -measure andp-value weighting described
here can also be used for these algorithms with minor
modifications.

There are additional microarray experimental platforms
available for mRNA profiling, including mechanically spot-
ted cDNA and oligonucleotide arrays (for as review see The
Tumor Analysis Best Practices Workshop, 2004). Spotted
arrays typically have a single ratio per gene, or, in some
cases, replicate spots per array. The single measurement pos-
sible with spotted arrays does not permit the development of
algorithms to determine ‘signal’ across a larger ‘probe set’ as
with Affymetrix arrays. Thus, the methods described here are
not easily applicable to spotted microarrays.

CONCLUSION
Our data suggest that large microarray projects should
undergo a systematic ‘signal-to-noise ratio’ analysis, as we
have presented here. By using permutations of probe set sig-
nal algorithms, and noise reduction filters (continuous variable
probe set detectionp-values), with unsupervised clustering,
the analysis method that most faithfully assembles profiles
into the appropriate biological groups should maximize the
signal from the biological variable, while minimizing the
confounding noise intrinsic to the project. This results in a
balanced signal-to-noise ratio assay that should provide the
best balance between sensitivity and specificity. Our future
plans are to implement a more extensive and automated pro-
ject analysis, where these and other variables are systemically
varied to achieve the best clustering into the desired biological
variable groupings.
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