
HUMAN-COMPUTER INTERACTION RESEARC H

AT THE UNIVERSITY OF MARYLAND

Ben Shneiderman
Department of Computer Science an d

Human-Computer Interaction Laboratory
University of Marylan d
College Park, MD 2074 2

October 1985

The Human-Computer Interaction Laboratory (1-ICIL)
is a unit of the Center for Automation Research a t
the University of Maryland . HCIL 1s an interdisci-
plinary research group whose participants are faculty
to the Departments of Computer Science and Psychol-
ogy and the Colleges of Library and Information Ser-
vices, Business, and Education. In addition, staff
scientists, graduate students, and undergraduates con-
tribute to this small, but lively community that pur-
sues empirical studies of people using computers .

Our support comes from Industrial research projects,
government grants, the State of Maryland, and th e
University of Maryland . Projects often become Inter-
related In surprising ways enabling individuals t o
cooperate constructively . Some of our efforts durin g
the past year are described below .

1) Programmer workstations

We have been exploring ways to attach three or mor e
separate screens to an IBM PC and use each screen as
a window. This gives a full 25/80 display space fo r
each window . We also have used a single very larg e
display, the IBM 3290 Plasma Display Workstatio n
with 82 lines of 166 characters, to get the large win-
dow sizes we want .

We have conducted observational studies and buil t
many variations of multiple screen formats under sup -
port from IBM Federal Systems Division In Bethesda ,
Maryland. These studies have led us to the following
concepts :

Fusion: Several screens are 'fused' together at th e
bottom/top or right/left edge to form one, continuou s
logical screen . Fusing two screens at the bottom/top
gives a 50 line, 80 column display . Fusing two screens
at the right/left edge gives a 25 line, 160 colum n
display . We can display whole pages of code at onc e
or all of a spreadsheet .

Copying: One central screen is used like current singl e
screens. Several other screens are used to display
copies of text copied from the central screen . The
programmer can copy the entire central screen to one
of the copy screens or copy only part of the centra l
screen. This allows the programmer to save text fo r
later reference or, the programmers can save part of
an on-line manual or a directory listing . Copy screen s
cannot be edited - they are strictly for reference .

Direct Selection : As the cursor moves from object t o
object, information about the current object i s
displayed on the other screen . In one form of direc t
selection the cursor position is combined with a selec-
tion button (on a mouse or on the keyboard) . This
allows a programmer to move the cursor on to a varl -

able name, select It by pressing the buttons, an d
receive the data declaration on another screen .

Synchronized Scrolling : This Is similar to fusion of th e
left/right edges . One file is displayed per screen . The
scrolling of the files 1s linked ; the command up-one-
line moves all files up one line . This Is convenient for
comparing files with similar lay-out, e .g . versions o f
same program . Another use is for scrolling the Input
to a document formatter and the resulting formatte d
output to check and correct errors . Clever software
can make synchronized scrolling even more useful b y
supporting the scrolling of related items to several files
even If the lay-out of the files are not the same, e .g .
an Input file to test cases and an output file of results .

Independent Scrolling : All screens can be controlle d
separately . A programmer can look at arbitrary part s
of several files or several parts of one file . Indepen-
dence is similar to logging on to several terminals at
once . The advantage is that you can copy from one
screen to another . This 1s the most general, leas t
structured way to use several displays . The screen s
are just there - available for whatever the user want s
to use them for. For the concept to be useful chang-
ing screens must be simple and rapid .

These concepts can be applied in many program
development situations :

Input - Filter - Output Situations: Using independent
screens the input to a program, the program text, an d
the output of the program can be displayed at once .
This makes a very powerful debugging tool . An
advanced Implementation of synchronized scrolling
would allow the programmer to step through the pro -
gram. As each Item from the Input Is read, the pro-
grammer would see exactly which lines of code were
executed and what output was produced . Some Inter-
preters currently provide program tracing, but they
use overlapping windows. All too often the output i n
question is obscured by the window listing the pro-
gram. Programmers must work around these prob-
lems by pushing and shuffling windows .

Integration And Reference Tasks : Many tasks requir e
referring to some text or comparing between texts .
Help screens are little help when they obliterate th e
lines you need help with . Multiple screens can mak e
such tasks much easier. For example, a programme r
could display on-line manuals and program text at th e
same time, using Independent screens, to look up the
correct use of a procedure . Using synchronized scrol-
ling a programmer could display the text of a progra m
on one screen and the documentation on anothe r
screen .

January 1986 Volume 17 Number 3

	

SIGCHI Bulletin

	

27

Semantically linked parts of different files can b e
displayed together even if there is no one-to-on e
correspondence of lines between the files. Thus mov-
ing up one line on one file may involve scrolling u p
several lines on some other file so the linked parts stay
together . For example, a programmer could put a
program's code In one file and its comments I n
another. Some method for linking comments t o
specific parts of code would be provided . Thus, even
If comments are larger than the code both wil l

This gives more room on screen for both code an d
comments . Also, the code can be read without th e
distraction of the comments . Finally, the comment
file can serve as high-level documentation when rea d
without the code (this requires carefully written com-
ments) .

Direct selection is used in reading Pascal programs .
When the cursor is placed on a variable (and the but -
ton is pressed) the declaration for the variable is
displayed . If the cursor is on a procedure name th e
parameter Ilst (or even the whole procedure) is
displayed . Implementations were done by Ruly Arifln ,
Judd Rogers, and Phil Shafer, with experimental test-
ing conducted by Linda Weldon .

Multi-Screen Editors: New editors can be designe d
with the extra viewing space of the multi-scree n
environment in mind . The space can be used to make
working with several files at once very easy . This
makes the reading, comparing etc . of multiple files
much easier as it presents the text In a natural for-
mat; not squeezed Into an unreadably small window .
Such editors make copying parts of one file to anothe r
easier since the programmer sees both the source an d
destination at once .

The editor presents the program text in a cognitivel y
useful manner that does not resemble the forma t
required by the compiler. For example, a procedure ,
the types it uses and all its calls can be presented to
the programmer at once . By opening several screens
for a single file and putting parts of the program text
In each screen, all this Information Is presented at
once . The compiler enforced format can still be evi-
dent to the programmer if line numbers (or som e
other Indication of the actual sequence of the lines)
are put In the display by the editor .

Our two screen editor using a standard IBM PC wit h
a color and a monochrome display was implemente d
by Bob Poliachlk . It supports fusion, Independent
scrolling, copying and synchronized scrolling .

Cooperative Problem Solving : Another use for multi-
ple screens is to have programmers at different site s
view the common screens, with communicatio n
arranged by a network . They can talk by phone an d
use cursors to point at text or graphics .

There are several different levels of Interaction avail-
able . Simple talk programs are common on main-
frames . These programs provide telephone like func-
tion for people logged on to the computer . However ,
talk programs are not as productive as a conferenc e
telephone call . Short conversations are useful but th e
medium Is Inherently too slow for extended conversa-
tions (typed text is not as fast or rich as voice for con-
veying Information) . More productive interaction i s
possible If the people can do more than 'talk' . With
several screens available, conversants can use one (o r
part of one screen) to talk and the others to exchange

files, send copies of screens, or watch a program run .
Gupta Pradeep conducted two experimental evalua-
tions of cooperation modes for program debugging an d
comprehension tasks. Individual variation In ability
dominated the differences, but useful design guidelines
emerged from observation of the subjects .

Some Human Factors Issues For Multi-Screen
Workstations

Working with a multi-screen terminal Introduces a
number of new concepts as well as questions about th e
best way to human factor the system . For example ,
with several screens how does one refer to a particular
screen to direct Input to appear there or to copy Infor-
mation from one screen to another? In a command
language one could refer to screens In the same way
that one refers to other peripherals . For example ,

copy sera: scrb :

would copy the contents of Screen A onto Screen B .

Selection using Icons and menus of actions might b e
powerful but confusing . How do you represent a
screen using an Icon and where do you put It (whic h
screen)? Nevertheless, some Interesting and creativ e
solutions to this problem are no doubt possible. For
example, if a pointing device such as a mouse is used ,
one could display mouse passageways (mouse holes) a t
the sides of the screen . Dragging the cursor throug h
one hole jumps the cursor to another screen . Drag-
ging the cursor through another hole copies the con-
tents of that screen to another . Other passageways
Invoke the operations of fusion, automatic selection,
and Input-filter-output .

In cases were the content of the screens implie s
differences In operations on the screen, some way o f
signifying the difference is needed . For example, I f
one screen is 'live' and another is a copy screen, the
user needs visual feedback as to the state of eac h
screen. One possibility Is to change the shape of the
cursor . Another Is to change the background patter n
or the shape of a border around the screen. Experi-
ments must be run to decide on the best method .

An obvious human factors problem is the physica l
separation between the screens . This can be
extremely disruptive In cases where one needs to com-
pare the contents of one screen with another, line-by-
line . When Information is linked, as in fusion, It may
be better to use a larger screen rather than multipl e
screens. In cases where the Information is for refer-
ence (help screens) or of a different type (input-fllter-
output), the separation does not cause as much of a
problem .

Cognitive Layout in Multi-screen Workstation s

The added information that can be displayed o n
multi-screen workstations can either be beneficial o r
detrimental depending on the lay out . The surfac e
layout of the information on the screens should matc h
the user's expectation . We use the term cognitive lay-
out' to indicate the user's mental picture of the Infor-
mation. With two screens, the user might see th e
information as two pages In a book, the left page and
the right page. Text editing using fusion and syn-
chronized scrolling is likely to evoke this cognitive lay -
out of a linear array of information .

28

	

SIGCHI Bulletin

	

January 1986 Volume 17 Number 3

On the other hand, when one screen is used as a cop y
screen, a short term memory or notepad layout 1s
appropriate . One screen may be viewed as a working
memory, while another is viewed as a temporary
store. The memory storage layout Is particularly
Important for systems that transfer flies from on e
application program to another using concepts such as
a clipboard or a scrapbook .

Such systems currently have limited screen space an d
cannot afford to display temporary storage files durin g
other processes . Consequently, users are not always
sure just what It 1s on the clipboard and must trus t
their own memory . The difficulty is that they have t o
remember what's there while they are changing men-
tal gears to start a new task . Multi-screen worksta-
tions allow constant display of the temporary storag e
file, relieving the user of the burden of rememberin g
the contents .

A hierarchical or 'blow up' layout 1s useful whe n
searching for Information In a database or keepin g
track of position in a lengthy manuscript . One screen
displays the bird's eye view of the world ; the next
zooms In on the details . For example, the left scree n
shows the chapter titles with the current title
highlighted. The right screen displays the text of that
chapter . The user's cognitive model of the layout I s
one of progressively finer detail .

Putting the Concepts Into Actio n

We began our work on multi-screen workstations b y
building a two screen system using the monochrom e
and color displays on an IBM PC . This system, whic h
supports fusion, synchronized scrolling, copying an d
Independent scrolling, was used for several experimen-
tal studies .

Unfortunately, the fonts on the monochrome an d
color displays are very different . The color display' s
font is Inferior to the monochrome's . Most users find
the color display hard to work with. We needed t o
have all monochrome displays to do further research .
While It Is possible to put more than one monochrom e
adaptor In an IBM PC, It Is not useful . Since th e
monochrome adaptors are part of the memory map o f
the PC and there 1s no way to make the adaptors
move to a different part of the memory map, al l
monochrome adaptors on the expansion bus of an IBM
PC will display the same thing . Each adaptor has
four pages of memory that can each hold one scree n
for display. Unfortunately, the current page displaye d
is set by writing a byte to a port on the adaptor .
Since all adaptors on the bus will respond to writing
the byte to the port, there Is no way to get one (and
only one) adaptor to switch pages . The only way t o
change this unfortunate situation Is to modify th e
hardware on the monochrome adaptor . We are very
reluctant to do this .

Since we could not get two useful monochrome
displays on one PC we decided to link two PCs
together . This gives us the two monochrome screens
displaying the different Information that we needed a t
the cost of having to get the two machines communi-
cating . We decided to use RS-232 ports for the com-
munication as the RS-232 technology 1s simple t o
work with and about as fast as we would need .

We made a null modem cable and purchased two RS -
232 cards . The null modem cable switches the RS-232

handshaking signals about so that it appears tha t
there is a pair of modems between the two RS-23 2
ports .

With the hardware connected we proceeded to writ e
the software for the two machines to communicate
and appear as one machine to the person using them .
A copy of the same program runs on each machine .
The copies communicate to keep each other In step .

The programs for our experiments read commands off
of the keyboard and execute them . If one machine
reads the keyboard and sends the other the comman d
It finds, and both programs then execute that com-
mand, neither program can ever get out of step .

We needed a method to send characters from on e
machine to the other. We designed a simple protocol
to exchange single characters across the RS-232 ports .
Simple for us meant easy to code and debug . We did
not worry about the effect of the protocol on speed o f
transmission .

The protocol Is for the two machines to Indicate to
each other that they are running by exchanging DT R
and DSR signals . The machine that 1s writing (run-
ning the procedure that writes a character) Is the dat a
source . The writer sets RTS and waits for the reade r
to set CTS . Once the writer receives CTS the charac-
ter Is written, sent to the reader by the hardware, an d
read. The reader stops setting CTS once It success-
fully reads the character . Both machines now clear
DTR and DSR and the exchange Is over.

There Is a provision for parity checking In the proto-
col . After the reader reads the character and clear s
CTS, the parity 1s checked . If there 1s an error the
reader clears DTR and the procedure exits . If the
character is correct the reader sets CTS, waits a bit ,
clears CTS and then clears DTR and exits . At the
same time, after the writer writes the character, I t
waits for CTS to be cleared by the reader, and the n
waits again for either DTR to be cleared (an error) o r
CTS to be set, then cleared, followed by DTR bein g
cleared .

Although we Included parity checking In our protoco l
we have never had a parity error. We have a short
length of cable and have the machines set up In a
building with no large electrical equipment so there i s
little chance for parity errors .

All the code involved In moving a character from on e
machine to another is In three procedures of 'C' code .
The three procedures are about three pages long .

Once we had character-at-a-time communication I t
was rather simple to modify existing programs to
work In the new environment . A separate implemen-
tation supports cooperative problem solving, using
two PCs also linked by the RS-232 ports. We are
conducting experimental tests of team program debug-
ging, the importance of a telephone voice link, an d
different protocols for controlling cursors .

We find that these new environments are appealing t o
programmers and most users believe that these con-
cepts are beneficial . However, there Is clearly a perio d
of accommodation to these novel approaches before
the productivity benefits accrue . We have attempte d
to keep the commands simple and few In number, s o
as to ease the learning process . During 1988 we will
conduct several experiments to ascertain th e

January 1986 Volume 17 Number 3

	

SIGCHI Bulletin

	

29

effectiveness of these multi-screen concepts for pro-
gramming tasks and refine the designs .

There are attractive opportunitles for expanding th e
horizon of programmers . Multi-screen workstation s
offer the potential of showing more relevant informa-
tion concurrently . Multi-screen systems are relativel y
cheap to build and offer provocative and novel way s

to develop software .

Another effort was the use of the IBM 3290 Plasm a

Display Workstation . One Implementation unde r
XEDIT generated a two column display each havin g

60 lines of 80 characters . Seeing 120 lines of progra m
text on the screen at once leaves a dramatic Impres-
sion and changes the way programmers study pro-
grams .

A second prototype was for a hierarchical browse r
which shows the program's modular representation I n
the upper half of the screen . By pointing at a module ,
the user produces the code in a scrollable window on
the lower half of the screen . This allows the program-
mer to study the code In a more orderly way, easily
jumping through the code to view related modules .
We are enthusiastic about the hierarchical browse r
Idea and are planning empirical tests to assess th e
benefits of several versions .

There is always the danger that more information acts
as a distraction and that extra commands can increase
confusion. Careful attention must be paid to the use r
Interface design .

Our goal Is not to produce software or hardware pro-
ducts, but to develop Ideas and validate thei r
effectiveness as we refine our cognitive models of
human performance with computers .

2) Menu selection

Menu selection as a mode of user control over th e
human/computer interface has been the topic o f
research of a grant supported by Control Data Cor-
poration . This effort has been conducted in collabora-
tion with Prof. Kent Norman of the Department of
Psychology . Although menu selection seems like a
straight forward method of Interaction for novice
users, our research Indicates that there are a numbe r
of important human factors considerations that mus t
be taken Into account . A series of empirical studie s
have been conducted In which menu structures have
been implemented using a menu selection prototyping
system (MSPS) developed here at Maryland .

The first study Investigated training methods in learn-
ing a content free menu system. Subjects wer e
required to find target items in a menu tree with 3
choices at each of three levels . The labels of the alter -
natives at the top and middle levels were meaningless
words (similar to many real world menu systems as
perceived by the novice user) . The results Indicated
that users who studied the global tree of the menu do
somewhat better than users who (a) memorize
sequences of choices, (b) study menu frames, or (c)
traverse the menu in a trial and error fashion .

The second study Investigated training methods an d
distinctiveness in searching for target Items in a com-
mercial timesharing service . The entire menu struc-
ture was Implemented on the MSPS In two forms .
One form was the original system. The other form

changed a number of the alternatives so that the y
would be more distinctive. Again It was found that
the global tree method of training led to the best per-
formance . Distinctiveness had a marginal effect . In
cases where the user searched for a specific targe t
item, times were faster than when searching for a ite m
to meet a requirement or a function . In the latte r
case, additional time is required to determine if th e
found item meets the needs of the user .

A third study investigated the effect of menu struc-
ture on the search process. Previous work indicated
that breadth is superior to depth of the tree . Depth
tends to bury Items and lengthen the path of selec-
tions to get to an Item. However, If the depth of th e
menu Is held constant does It matter If the breadt h
varies along the way? A data base of 256 gift Item s
was generated and clustered into 5 different structure s
with four levels . The number of choices at each leve l
in the 5 structures were as follows: 4-4-4-4, 2-2-8-8 ,
8-8-2-2, 2-8-8-2, 8-2-2-8 . Results to date indicate a
superiority for the 4-4-4-4 and 8-2-2-8 structuress ove r
the others in terms of overall time to find Items an d
number of frames visited .

Other work along these lines has Involved th e
development of a menu evaluation scale In whic h
users assess the degree to which the menu facilitate s
or retards work by Its clarity, speed, efflcieny of path ,
etc . In addition a theory of user search behavior I s
being developed that relies on behavior choice theory
and Information theory . It is hoped that this theory
In conjunction with user assessments of the utility an d
meaningfulness of items will have predictive power I n
terms of evaluating user performance over time .

Future work Is planned along three lines . First, It 1 s
Important to understand the efficient use of menus b y
experienced users . Studies are being planned In whic h
users search behavior will be monitored over extende d
periods of time . Second, the transfer of training fro m
one system to another Is becoming important as user s
are having to learn a number of different systems .
Another study is planned In which users will learn on e
system and then transfer to another having limite d
compatibility . Finally, more and more systems ar e
using Icons In addition to text . Since Icons are highly
recognizable and dlscriminable they may greatly facili-
tate the use of menu systems In which the user does
not need to recall the Item (icon) but merely recogniz e
it in a display of many Icons . Studies are planned in
which icons will be assessed In terms of recognizability
and connotation. An experiment will then b e
designed In which we compare verbal, iconic, an d
iconic plus verbal menus .

3) TIES and OLMM

The Interactive Encyclopedia System (TIES) has bee n
under development at the University of Marylan d
since Fall 1983 . It allows novice users to explore
Information resources In an easy and appealin g
manner . They merely touch (or use arrow keys t o
move a light bar onto) topics that interest them and a
brief definition appears at the bottom of the screen .
The users may continue reading or ask for detail s
about the selected topic. An article about a topic may
be one or more screens long . As users traverse arti-
cles, TIES keeps the path and allows easy reversal ,
building confidence and a sense of control . Advance d
features Include the ability to view an Index of article s
or print out articles of Interest .

30

	

SIGCHI Bulletin

	

January 1986 Volume 17 Number 3

TIES Is attractive for Instruction (and entertainment)
because the author's Ideas and writing style are th e
focus of attention. Through careful human factors
design, the computer aspects have been trimmed to
let the author communicate to the students and to
allow the students to control their learning .

The current version of TIES Is being produced at th e
University of Maryland for the U .S. Holocaust
Memorial Museum and Education Center under con-
tract from the Department of Interior . This version
will Include :

- Novice user browsing softwar e
- Database of approximately 110 articles (100-

500 words each) on "Austria and the Holocaus t
1933-1945", written by Dr. Marsha Rozenblit o f
the History Department .

- Authoring software for composing new articles
and editing

TIES Is appealing to authors because of the explici t
Instructional model, the reduction of computer-relate d
concepts, the focus on content, and the lively user
Interface . It Is an engaging challenge to reformulat e
pedagogic plans Into the network of related articles
that TIES supports. There is a great sense of satisfac-
tion in composing articles and seeing the linkage s
come to life as they are used by students In nove l
ways .

TIES allows authors to create a network of conceptua l
knowledge In which concepts are linked associativel y
and the learner Is free to explore pathways based on
their needs and Interests . Potential
guides for any discipline, travel guidebooks, annotate d
Shakespeare or the Bible, and maintenance manual s
for equipment . Each visitor suggests Intriguing an d
novel applications .

TIES was implemented by Dan Ostroff under the
direction of Ben Shnelderman and Dr. Janis Morarl u
of the College of Library and Information Services . I t
runs on a standard IBM PC (monochrome or color)
and on IBM PCs equlped with touchscreens . We are
attracted to the possibility of eliminating the key-
board while still providing substantial exploratory
power . TIES was first written In APL and has bee n
rewritten In the C programming language . A brief
user's guide and a more extensive author's manual ar e
available in paper form and as TIES databases .

Three experimental studies have been conducted to
test out certain design alternatives (such as demon-
strating the advantage of arrow keys over the mous e
for this system) and observe user behavior . More
than 160 subjects participated In these controlle d
experiments . In addition, more than two hundre d
novices and experts have tried and commented Infor-
mally on the current design .

In the study comparing the arrow keys (maybe bette r
termed "jump" keys because the cursor would jump
to the closest target In the direction pressed) to th e
mouse, the arrow keys proved to be and average o f
15% faster and preferred by almost 90% of the sub-
jects . We conjecture that when there are a small
number of targets on the screen and when jump keys
can be Implemented, they provide a rapid, predict -
able, and appealing mechanism for selection .

In a second study using the TIES technique, subject s
traversed a database with 42 articles about the

University of Maryland Student Union . The embedde d
menus technique reduced the number of screen s
viewed when compared with an explicit menu stra-
tegy. There were significant reductions In the times
for task performance, and the subjective preferenc e
was strongly for the embedded menus .

The embedded menus Idea was also used for tw o
experiments with online maintenance manuals
(OLMM), conducted by Larry Koved and supporte d
by IBM Federal Systems Division . A tree structure d
and linear form of a 52 page maintenance manual was
prepared for screen presentation and In paper form .
Experimental subjects had to perform 12 tasks usin g
one of the manuals . Significant differences were foun d
showing that time was reduced using the paper ver-
sions . No significant differences were found betwee n
the tree and linear versions for speed or error rates .
When a pruning algorithm was applied to the text to
allow users to trim text unrelated to their task, th e
time was cut In half . This latter experiment use d
only the computer condition and demonstrated one o f
the advantages of screens over printed text . This 1s
important, since for many applications printed manu-
als are still easier to use and approximately 30% fas-
ter to read than computer displays .

A field trial was conducted for a week in the B'na 1
Brith Klutznick Museum in Washington, DC using the
touchscreen and arrow key versions . Visitors from 7
to 77 years explored the Austria database and pro-
vided comments on subjective evaluation forms .
Reaction was generally very positive with a stron g
preference for the touchscreen version .

TIES is complete, but there are small refinements an d
many potential extensions which we would like t o
pursue . The software needs further documentatio n
and the authoring guide could be expanded .

Major extensions include support for graphics, video-
disc, or integration with other software. Further test-
ing Is needed to select the optimum touchscreen or
other Input devices and to test alternate screens . W e
are also Interested In further testing with the scree n
mounted horizontally Inside a nicely built woode n
table . We hope to attract the large fraction of th e
population that is anxious about using computers, bu t
could benefit from the Information resources of a com-
puter system .

4) Direct manipulation and DMDO S

Certain computer systems generate feelings o f
enthusiasm, confidence, desire for exploration, clarity ,
competence, and predictability . These positive experi-
ences seem to emerge when the user Is presented wit h
a visual display of the world of action with the object s
of Interest clearly available for intuitively obviou s
manipulation . Operations are accomplished by physi-
cal actions, such as special buttons, joystick, mouse ,
or touchscreen, rather than by typing commands o r
making menu selections . These operations are gen-
erally rapid, incremental (that Is, smooth or continu-
ous), and reversible .

Familiar examples of direct manipulation system s
Include full screen display editor-formatters (What
you see 1s what you get - WYSIWYG), video games ,
VisiCalc and its descendants, some educational games ,
air traffic control displays, and the Macintosh, Lisa ,
and XEROX STAR environments . TIES might also

January 1986 Volume 17 Number 3

	

SIGC'HI Bulletin

	

31

be seen as a direct manipulation system for pursuin g
ideas In textual databases .

To explore the design Issues in direct manipulatio n
systems Osamu Iseki (Visiting Scholar for Nippon
Electric Company In Japan) Implemented a direct
manipulation version of the IBM PC-DOS commands .

Called DMDOS (for Direct Manipulation DOS), I t
displays both the A and B directories simultaneously .
Directory files are selected by pointing and clicking .
The directory can be sorted, sub-directories can be
traversed, and the display can be switched from
WIDE to FULL mode .

Operations supported are comparison of two files ,
copying to a file, copying from a file to the screen ,
copying from the screen to a file, copying from a file
to the printer, comparison of two files, erasing of files ,
execution of programs, and online help .

To copy a file from one disk directory to another ,
merely point (using arrow keys or the mouse) at th e
file, and click (press RETURN or the mouse button) .

Then point and click on the COPY button . Finally ,
point at the free space on the second directory an d
click once . Now, you may type the new file name o r
just click a second time to use the same name . Your
file is copied .

Design refinements have been based on usage experi-
ence, comments from dozens of knowledgeable users ,
and the reactions of 24 subjects In an experimental
comparison . In this experiment non-programmers
were taught either PC-DOS or DMDOS and require d
to carried out a benchmark set of tasks . The subjects
were struggling to absorb the concepts in DOS, suc h
as files, disks, directories, copying, etc ., and DMDO S
users were faster but not at a statistically significan t
level .

We are continuing to refine and test DMDOS t o
understand the relative merits of specific changes . A
macro facility which allows creation of batch files b y
merely carrying out operations is being added . An
empirical test with the mouse and with mor e
knowledgeable users Is being considered .

Directory Display Controls
[Date]

	

[Time]

DOS 2 .10

	

06-05-1985

	

12 :15 .3 0

DRIVE A volume nam e
111

SUB-DIR SORT WIDE DRIVE B work disk SUB-DIR I SORT FUL L

DIR :

	

\
DIR : \BIN \

T 1>DMDOSSUBBAT

	

52

	

05-21-85 1> JUDD BAT 2>

	

TEXTFILT

	

EX E

2> DMDOS BAT

	

99

	

05-21-85 3> PRINT COM 4>

	

RECOVER

	

CO M

3> DM_DOS BAN

	

975

	

05-21-85 5> ASSIGN COM 6>

	

TREE

	

CO M

4> DM_DOS PRM

	

1620

	

05-21-85 7> GRAPHICS COM 8>

	

FIND

	

EX E

5> DM_DOS TBL

	

5504

	

05-21-85 9> EXE2BIN EXE 10>

	

LINK

	

EX E

6> DM_DOS MSG

	

15542

	

05-21-85 11> DEBUG COM 12>

	

BACK

	

BAT

7> DM_DOS COM

	

65024

	

05-21-85 13> PROGFILT EXE 14>

	

BASICA

	

COM

8> DM_DOS 000

	

42240

	

05-21-85 15> BUF128 EXE 16>

	

IC

	

COM

9> DMINTR TXT

	

7552

	

05-21-85 17> DBASE BAT 18>

	

123TUTO

	

BA T

10> DMHELP TXT

	

13696

	

05-21-85- 19> 123 BAT 20>

	

FDISK

	

CO M

V I 1

	

-more (I -more

11

	

File(s) 162816

	

bytes

	

free 36 File(s) 80896 bytes

	

free

COPY COMP EXEC

	

ERASE VIEW PRINT KEY-IN FORMAT

	 *	 A	

Prompt and Error Message Area

	

MACRO HELP

. .

Specia l
Command s

t

DMDOS Scree n

Commands

	

Command s
requiring

	

requirin g
2 arguments

	

I argument

Persona l
Command s

32

	

SIGCHI Bulletin

	

January 1986 Volume l7 Number 3

