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A Temporal Pattern Search Algorithm for
Personal History Event Visualization

Taowei David Wang, Amol Deshpande, and Ben Shneiderman

Abstract—We present Temporal Pattern Search (TPS), a novel algorithm for searching for temporal patterns of events in 
historical personal histories. The traditional method of searching for such patterns uses an automaton-based approach over a 
single array of events, sorted by time stamps. Instead, TPS operates on a set of arrays, where each array contains all events of 
the same type, sorted by time stamps. TPS searches for a particular item in the pattern using a binary search over the 
appropriate arrays. Although binary search is considerably more expensive per item, it allows TPS to skip many unnecessary 
events in personal histories. We show that TPS’s running time is bounded by O(m2n lg(n)), where m is the number of items in a 
search pattern, and n is the number of events in a history.  Although the asymptotic running time of TPS is inferior to that of a 
non-deterministic finite automaton (NFA) approach (O(mn)), TPS performs better than NFA under our experimental conditions.  
We also show TPS is very competitive with Shift-And, a bit-parallel approach, with real data. Since the experimental conditions 
we describe here subsume the conditions under which analysts would typically use TPS (i.e. within an interactive visualization 
program), we argue that TPS is an appropriate design choice for us. 

Index Terms— Pattern matching, temporal event data, information visualization, graphical user interfaces 
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1 INTRODUCTION

EMPORALLY ordered events can often reveal interest-
ing information. Understanding whether a particular 

pattern occurs, how frequently certain patterns occur, and 
whether one pattern occurs more often than the others are 
common questions an analyst would pursue. There has 
been much attention from both academia and industry to 
develop analysis tools focused on temporal events and 
their temporal patterns in a variety of domains: health 
care and electronic health records (EHR) [27], [4], business 
intelligence [25], web server log analysis [14], financial 
applications [29] and so on.  
In particular, electronic health records have gained much 
attention in recent years. Clinicians recruiting participants 
for clinical trials often screen candidates by reviewing 
their records. In the initial stages, they would issue que-
ries to find participants with certain features. These fea-
tures include patient attributes such as age and gender, 
but also often include temporal event patterns. Some 
query patterns are as simple as finding participants who 
"had a stroke after a heart attack". Some may involve ne-
gation, e.g., "diagnosed with breast cancer without having 
a prior mammogram", and some may be even more com-
plex, e.g., "with no prior history of heart problem, later 
diagnosed with hypertension, received no treatments, and 
finally experienced a heart attack". 

While the typical model to do these tasks is to perform 
the search using a command line language such as SQL, 
and then review the results in an analysis tool, there are 
high costs associated with this approach. Because domain 
analysts often do not know the query language, and are 

unwilling to learn it, they have to rely on one of two ap-
proaches. First, they could partner with an additional SQL 
expert to formulate the queries. The collaboration turna-
round may take hours, if not days. In the situation where 
an analyst is iteratively refining a query for the purpose of 
exploratory analysis, the multiple turnarounds are detri-
mental to the process.  Secondly, interfaces exist to cir-
cumvent the learning curve of query languages. In these 
situations, analysts can issue higher level commands and 
the interface translates them into SQL queries. However, 
more often than not, the interfaces reduce the expressive-
ness of the underlying language in favor of usability and 
learnability. In particular, searching for temporal patterns 
is often unsupported by the interface, in favor of the simp-
ler Boolean or conjunctive queries. The inflexibilities often 
frustrate our physician/clinician collaborators using state-
of-the art electronic health record database interfaces such 
as Amalga [16] or i2b2 [18].  

Finally, searching temporal patterns on personal histo-
ries that have hundreds or thousands of events with tens 
of thousands of histories in a database can take a long 
time. Our experience in building a query interface exten-
sion for Amalga revealed some performance problems 
using SQL [15] [22]. A temporal pattern query in SQL is 
not feasible for the hospital’s database of thousands of 
patients because of prohibitively high number of self-join 
operations. Only after building additional indices and 
preprocessing (which itself can take hours) could a tem-
poral pattern query be managed [15]. Even so, the running 
time increases exponentially with the number of elements 
in the pattern. It is unrealistic to perform tailored optimi-
zation techniques for each potentially different temporal 
pattern search. Instead, we have found that it is more ef-
fective to break down a temporal pattern search into two 
stages. We would first issue a conjunctive SQL query to 
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find patients who have events A, B, and C, which can be 
executed efficiently. Temporal pattern search (e.g., A fol-
lowed by B followed by C) can then take place in an anal-
ysis tool, where data can be further structured to better 
support these searches. However, not all analysis tools 
provide the features to search for temporal patterns.

Lifelines2, our interactive visualization tool, is one that 
does. It visualizes each electronic health record as a hori-
zontal stripe on a time line (Figure 1). Within each record, 
the events of the same type are placed on the same hori-
zontal line. Event types are differentiated by color. To cla-
rify, by record (as in electronic health record) we mean a col-
lection of event histories associated with an entity (such as 
a patient in the context of an electronic health record) and 
not tuples as in the database literature.  

Lifelines2 provides several ways for analysts to filter 
records by their features. One way is via an event se-
quence filter, where analysts specify a pattern that de-
scribes a sequence of temporally ordered events as search 
criteria. Previous research suggested that complex inter-
faces that support full control of all temporal constraints 
among items in a pattern often overwhelm analysts [6]. 
Instead, we decided on a simplified temporal pattern spe-
cification interface. Although more restricted, it can still 
specify all the aforementioned example medical queries. 
We allow analysts to specify a temporal pattern such that 
each item in the pattern can be a presence item or an ab-
sence item (negation). These items are selected from a list 
of combo boxes (Figure 2). The ordering of the combo 
boxes determines the temporal ordering. We do not allow 
other additional temporal constraints (e.g. a Stroke oc-
curs within 3 days after a Heart Attack) in this interface.  
However, this kind of temporal constraints can be speci-
fied via temporal summaries in our interface [28]. Once a 
pattern is specified, Lifelines2 finds all records that con-
tain this pattern and visually filters out the rest. 

We made a few decisions on how we internally 
represent the event histories in Lifelines2. As these deci-
sions were made to support existing features of the tool 
and before we designed our Temporal Pattern Search 
(TPS) algorithm, the constraints represent interesting de-
sign challenges. In Lifelines2, each record is represented as 

a set of sorted arrays of events. There is one array for each 
event type. All events of the same type are sorted by their 
time stamps in their array. This decision comes from the 
following constraints: 

1. Data Constraint: It seems most straight-forward to 
store all events on a single sorted array regardless 
of type. However, for events that have the same 
time stamp, this scheme can create conflicts, mis-
lead analysts, and produce wrong results. Using 
one array for each event type allows us to circum-
vent this problem. The frequency of an event shar-
ing the same time stamp with another depends on 
datasets.  Table 1 shows a list of sample clinical da-
ta we have been supplied with by our collabora-
tors.  The proportion of events that have the same 
time stamp can range from less than 0.5% to almost 
50%. However, we assume events that have the 
same type and the same time stamp are the same 
event in order to merge events that are in fact the 
same but come from two siloed datasources.  While 
this assumption is practical and reasonable for per-
sonal records, it may not apply to all temporal 
event data. 

2. Drawing Constraint: Lifelines2 maintains a draw-
ing order of events by event types. Events of the 
same type are drawn together (on the same hori-
zontal space). Lifelines2 maintains the z-order by 
event types to avoid visual inconsistencies that can 
potentially disrupt analytical tasks. The separated 
arrays would allow the drawing algorithm an effi-
cient way to access events of the same type. 

3. Interface Constraint: While searching for temporal 
patterns is important, it is not all that Lifelines2 
does.  Other operators designed for exploratory 
analysis (such as alignment, rank, and summariza-
tion) benefit from this separate arrays approach. In 
addition, it is useful to analysts to hide event types 
that are not of interest. These interface features in-
volve finding event data of a specific type. Separat-
ing events into different arrays by type would al-
low Lifelines2 to afford these features most effi-
ciently. 

 
Fig. 1. A partial screen shot of Lifelines2 display. Two electronic health 
records for fictional heart disease patients are shown here. The color-
coded triangles represent each individual event (diagnosis, interven-
tion, chief complaints, etc.), and events of the same type are drawn in 
the same horizontal line within a record. 

 
Fig. 2. This is the user interface widget in Lifelines2 for specifying tem-
poral patterns. Each item in the pattern is specified via a combo box.
The top-most combo box specifies the first item in the pattern, and the 
bottom-most specifies the last. This screen shot describes the pattern
query: “find all patients who have experienced a stroke and followed by 
a bypass surgery without having complained about chest pain during 
that period.”  
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These constraints present certain challenges to search-
ing temporal event histories, but also present a unique 
opportunity to explore and exploit this data structure. 
This paper focuses on our exploration in designing a tem-
poral pattern search algorithm in the presence of these 
constraints, particularly the first constraint. We first de-
scribe the problem more formally, provide related work, 
and present the TPS algorithm. We then analyze the 
worst-case running time of the algorithm, discuss its ex-
tensibility to common situations, and evaluate its perfor-
mance against existing common approaches. 

2 PROBLEM DESCRIPTION

An event e is defined, and uniquely identified by an event 
type eT T  and a time stamp et t . A personal record 
consists of a set of k sorted arrays. Each array corresponds 
to an event type 

ie
T , where [1 ]i k , and contains all 

events of that type in the person’s history, sorted by their 
time stamps. 

A temporal pattern contains temporally ordered events 
as items, and each item may be a presence or absence (ne-
gation) item. More formally, a temporal pattern P is 

1 2 3 mp pP p p  where each ip  is an event type 
ip

T or its 

negation 
ip

T . In this paper, we use the word negation and 

absence interchangeably. In the case that a temporal pat-
tern contains only positive items (no negation), the pattern 

1 2 3
1 2 3

m
m p p p p

P p p p p T T T T  matches a personal 

record if and only if 1 2 3, , , , me e e e  such that 
i ie p

T T  

and 
1

[1... 1]
i ie e
t t i m  in the record. In other words, 

the event types in the specified search pattern exist in the 
record, and that they occur in the order the pattern speci-
fies. 

If a negation exists, e.g., 
1 2 3

1 2 3 p p p
p p p T T T , then the 

pattern matches a record if and only if 1 3,e e  such that 

1 1e p
T T and 

3 3e p
T T  and 

1 3
t
e e

t  and 2e  such that 

2 2e pT T  and 
1 2 3e e et t t . If there exist contiguous nega-

tion items such as 
1 2 3 41 2 3 4 p p p pp p p p T T T T , then the pat-

tern matches a record if and only if 1 4,e e  such that 

11e pT T  and 
4 4e pT T  and 

1 4e et t and 2 3,e e  such that  

2 2
( e pT T and

1 2e et t and 
2 4

)e et t  or 
3 3

( e pT T and 

1 3e et t and 
3 4

)e et t .  The semantics of the temporal pat-

terns we discuss in this paper can be mapped into regular 
expressions. For example, 

1 2 3 4p p p pP T T T T  can be trans-

lated into the equivalent regular expression 

1 2 3 4
. * [ ] * .*p p p pT T T T , where “.” is the wildcard charac-

ter, “*” the Kleene star, “^” the negation, and “[…]” indi-
cates a class of symbols. A direct application of the regular 
expression would be fine if our data were amenable to be 
structured as a single string.  The problem we have is how 
to search for records that match the specified pattern giv-
en our constraints. 

3 RELATED WORK

At the first glance, string matching is an obviously related 
area. However, there are some fundamental differences to 
searching for temporal patterns. There are three main dif-
ferences in classical string matching problems: (1) a pat-
tern is wholly specified (“abc” as opposed to “a” followed 
by “b” followed by “c”), (2) no two characters can occur at 
the same position in a string, and, (3), negations are not 
usually considered. Nevertheless, it would be useful to 
examine these clever algorithms to see if their approaches 
can be generalized for our purposes: Knuth-Morris-Pratt 
(KMP) [12], Boyer-Moore (BM) [2], and Rabin-Karp (RK) 
[11]. KMP preprocesses a given pattern to build a prefix 
table that tells the algorithm when and how far ahead (in 
number of characters) it can skip, avoiding unnecessary 
scans. Likewise, BM builds two tables based on the pat-
tern which tells the algorithm how much it can safely skip 
ahead. Finally, RK utilizes the fact that a string can be 
viewed as a number, where each character is represented 
by a digit (in radix = size of the alphabet), and one can use 
modulo equivalences to speed up checking for matches. 

These string matching algorithms all exploit the fact 
that a string is contiguous. Every character (except for the 
first one and the last one) has only one predecessor and a 
successor, and the characters are indexable. This informa-
tion, along with the known pattern, can be used to reduce 
the number of scans in the text. Sadri et al. used this fact to 
optimize sequential searches in SQL-TS over data streams 
by using a variant of KMP [24]. The drawback is that the 
items in the pattern must be contiguous as if they are cha-
racters in a string, limiting the expressiveness of their 
search patterns. To search for the type of temporal pat-
terns as we have defined, we cannot simply apply these 
string matching algorithms.  

The traditional method to match regular expressions in 
strings utilizes either deterministic or non-deterministic 
finite automata (DFA or NFA) [26]. Given a text of length 
n and a pattern of length m, a DFA can perform a search in 
O(n) time, but building a DFA can take up to O(2m) space 
[23]. This makes the DFA approach useful for applications 

TABLE 1 
SAMPLE DATASETS AND THEIR STATISTICS

Dataset Name #Records #Events #Events w/same time 
stamp 

Creatinine* 3598 32134 16 
Heparin* 841 65728 31251 
Heart attack 9361 196581 93610 
Transfer 51006 207187 51318 
Bipap 6583 135951 14650 

* Dataset was reported in a previous publication [28]. 
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CODE LISTING 1
STARTING FUNCTION AND INITIALIZATION OF GLOBAL VARIABLES

0 IS_A_MATCH(R,P)
1     //backtrack flag
2  T[P.length]  //matched times
3    //last pos item
4  //next neg item time
5    //if has neg item before
6       //current index
7  -     //current time
8  -1    //last pos item
9   
10   < P.length)
11   -1)
12    return FALSE
13   
14    HANDLE_ABSENCE(R,P)
15   else
16    HANDLE_PRESENCE(R,P)
17 return TRUE;

where building a DFA is infrequent or can be done offline, 
such as network intrusion detection systems [30], [13], [7]. 
On the other hand, an NFA can compactly represent an 
equivalent DFA in space O(m) [10]. Although the running 
time is bounded by O(mn), the overall approach lends 
itself better for iterative query refinement in an interactive 
environment. 

Given the tradeoff between DFAs and NFAs, many sys-
tems choose to use NFAs or extensions of NFAs, e.g., [1], 
[5]. These approaches tend to have an expressive pattern 
language where negations, Kleene closures, and temporal 
constraints are included. They are more expressive than 
regular expressions. These systems are geared towards 
fast processing over continuous event streams, where an 
event is more complex, and contains additional attributes. 
Our approach focuses on a simpler problem where events 
do not have additional attributes, and this allows us to 
design simpler algorithms. For example, in [1], searching 
with negation of events is supported by first finding all 
positive events and then pruning off the results that con-
tain negation events in the wrong temporal ordering. In 
contrast, our algorithm searches for negations in-place. 

Newer string match approaches such as the Shift-And, 
Shift-Or, or the Backward Nondeterministic Dawg Match-
ing algorithm can be more easily adapted to deal with 
classes of characters, optional and repeatable characters 
that classical string match algorithms cannot handle [19], 
[20], [21]. The basic idea behind these algorithms is to use 
bits to represent the states of an NFA.  When a symbol is 
read, all states can be updated in parallel by cleverly using 
bitwise operators. When there are w bits in a computer 
word, these algorithms are expected to perform w times 
faster than an equivalent NFA. Today when most con-
sumer machines are either 32 or 64 bits, this can be a sig-
nificant performance advantage. When more than w states 
are required to represent the pattern, multiple words can 
be used. In this case, the performance of these algorithms 
suffers because of the overhead of using an array of integ-
ers instead of a single integer to represent the states. For 
example, the best worst case time for Shift-And becomes 
O(mn/w). However, unlike real NFA or DFA approaches, 
these algorithms are difficult to extend to handle, for ex-
ample, value constraints associated with input symbols, 
while our algorithm is easily amenable to these exten-
sions. Finally, both the automaton and the bit-parallel ap-
proaches assume the inputs to be a single string, and can-
not be applied to our use cases. 

Harada et al. developed a query language and algo-
rithm to search for patterns in multiple personal histories. 
Their approach assumes a grouping over a column of data 
(e.g., customer ID) and an ordering by a second column 
(e.g., time stamp) in the data structure, and performs pat-
tern search algorithms over this structure [8], [9]. They do 
not use an NFA approach to perform this search. Instead, 
they developed an algorithm that resembles building a 
topological graph. The expressiveness of their language 
allows the specification of only limited negation. For ex-

ample, let a, b, c, d be event types, their approach can 
define patterns that have the same semantics as the regu-
lar expression .*a.*[^bd].*c.*, but not 
.*a[^bd]*c.*, whereas our approach does. This limita-
tion means that their algorithm never has to backtrack. 
There was no reported run time analysis for their algo-
rithm. 

4 TPS ALGORITHM DESCRIPTION

Code Listing 1 shows the pseudo code for the TPS algo-
rithm. IS_A_MATCH(R, P) takes a record R, and a tem-
poral pattern P. A record R is a table of arrays, indexed by 
event types. Each array contains events of the same type 
T, and can be accessed by R[T]. Each event e has a time 
stamp e.Time and a type e.Type.   

P is an array of pattern items. Each item includes an 
event type item.Type, and a flag indicating whether it is 
a negation item item.isNeg. Table 2 shows a trace of the 
TPS algorithm with example P and R. Even though we 
have specifically defined a record to be a set of sorted ar-
ray of events, for the ease of narration, we have 
represented the input record R as an array in Table 2 and 
refer to its ith element using the array notation R[i] in the 
following discussions. 

In addition to the details that are shown, we assume 
that there exists the following function NEXT(R[T],t), 
where R is a record, T is an event type, and t is a time 
stamp. NEXT(R[T],t) returns an event e of type T in R 
such that e.TIME > t and that there is not another event 
d of type T in R such that d.TIME < e.TIME. If no such 
event e exists, the function returns NIL. In other words, 
NEXT(R[T],t) returns the event of type T that occurs 
after and closest to the given time stamp t, if it exists. Since 
all event arrays in records are sorted by time stamps, we 
assume the NEXT(R[T],t) uses efficient binary searches. 
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CODE LISTING 2
THE HANDLE_ABSENCE FUNCTION

18 HANDLE_ABSENCE(R,P)
19  minTime
20  numAbs
21  for (i ) 
22   item
23   if (NOT item.isNeg) break
24   numAbs
25   absEvent
26   if (absEvent == NIL)
27    continue
28   minTime MIN(absEvent.Time, minTime)
29  if (minTime == NIL)
30   -1)
31    
32   else
33    -1]
34   
35  else
36   P.length)
37    nItem P[ ] 
38    nEvent
39    TRUE
40    if (nEvent == NIL OR
41    nEvent.Time > minTime)
42     
43     
44      
45      minTime-1 
46     TRUE
47    else
48     
49     minTime
50     -1 
51     
52     
53     nEvent.Time
54   else
55    
56    
57    minTime-1 
58 TRUE

CODE LISTING 3
THE HANDLE_PRESENCE FUNCTION

56 HANDLE_PRESENCE(R,P)
57  event
58  if (event == NIL)
59   -1 
60  else
61   backtrackingMore
62   
63    
64     badTime -1]
65    else
66     badTime
67    if (badTime < event.Time)
68     
69     -1 
70     
71     backtrackingMore
72   if (backtrackingMore) return
73   
74   
75   
76   
77   
78   

4.1 Overview
The main loop IS_A_MATCH(R,P) processes an item 

from the pattern P one at a time. The variable  keeps 
track of which item in the pattern is current. When all 
items in the pattern have been found, and no constraints 
from negation events are violated, TPS returns TRUE. If  
is set to be -1, it means that there is no match and the main 
loop returns FALSE.  

When processing an item in the pattern, if it is a pres-
ence item, IS_A_MATCH(R,P) calls HAN-
DLE_PRESENCE(R,P), which attempts to find an event 
that satisfies the current item. If it is an absence item, TPS 
calls HANDLE_ABSENCE(R,P), which finds the next ab-

sence event, and checks to see if that absence event occurs 
between the previous presence item match and the next 
presence item match. If it does, then a constraint is vi-
olated, and the algorithm backtracks. Backtracking means 
TPS tries to look for an alternative to one or more of its 
previously made matches. The algorithm increments the 
variables  (the current item on pattern) and  (the current 
time) when processing the search. When backtracking 
occurs, TPS rolls back these variables, among others, ap-
propriately to restart a previous search. 

The first thing to notice is that there would be no need 
for backtracking if there were no absence events. Fur-
thermore, when TPS backtracks, it backtracks only to the 
closest previous presence item (never to an absence item). 
The characteristics on how the algorithm backtracks de-
termine what states we need to keep track of.  

We use Greek letters to denote global variables. Capital 
letters represent arrays, and lower case ones represent 
scalar variables. Aside from  and , Code Listing 1 also 
shows the initialization of T, , , , , and . They de-
scribe the states TPS is and save previously-done work to 
reduce unnecessary backtracking.  is a boolean, and indi-
cates whether we are backtracking.  represents the index 
of the previously matched presence item (while  is the 
current index).  is an array of length [P.length], and it 
keeps track of the index of the last presence item for each 
item in the pattern. So [i] indicates the index of the last 
presence item for the ith item in the pattern (i.e.,  is an 
array of ’s). T is another array of the same length, and 
keeps track of the time stamps for all previously-matched 
presence items.  
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For each item in the pattern,  keeps track of the 
known time for the next event if the next item is an ab-
sence event. This allows TPS to skip some fruitless 
matches during backtracking. Suppose we are searching 
for pattern P ABC  in AAAAAAABAC. P[0] will initially 
match the first A in the record. Upon encountering B in 
the record and backtracking to P[0] = A, the next search 
should start from the time stamp of the known next ab-
sence event B (instead of from the time stamp of the 
known bad A) to avoid the multiple, unnecessary matches 
to all of the A’s before B in the record.  has length 
P.length+1. The extra space at the end is used when a 
pattern starts with a negation, and needs a default place to 
remember that absence item. Finally, for each item in the 
pattern,  keeps track of whether it has an absence item 
immediately before that item. [i] = FALSE indicates that 
there is no absence item prior to the ith item in the pattern. 
When this is the case, and TPS finds an alternative match 
for the ith item in backtracking, the algorithm need not to 
check whether this alternative match might violate an ex-
isting constraint.  is not necessary, but makes our narra-
tion easier. 

We introduce the term absence block in a search pattern. 
An absence block is a contiguous block of absence event 
items in the search pattern, generally surrounded by pres-
ence events on either end (except when the block is the 
leading or the ending part of the pattern). For example, 
the pattern 

2 3 4 5 61p p p p p pT T T TT TP  consists of two absence 

blocks 
2 3p pT T  and 

5p
T , of size 2 and 1 respectively. 

When the current item in the pattern P[ ] is an ab-
sence item, HANDLE_ABSENCE(R, P) (Code Listing 2) is 
called. In lines 21-28, TPS looks for events described in the 
absence block. For each event type in the absence block, 
the algorithm finds the next event of that type in the 
record, and saves the minimum time stamp value over all 
such events as minTime.  If minTime does not exist, then 
that means there are no events of these types in the record, 
and we can safely increment  and remember that these 
events do not exist by saving this fact in  (lines 30-34). 
Otherwise, we look ahead for the next presence item, find 
a matching presence event in the record, and compare its 
time stamp with minTime.  If the presence event occurs 
before minTime (no violation), then we can move to the 
next item in the pattern and update our states (lines 48-
53). However, if it occurs after minTime, we have to back-
track (lines 42-46). 

When we backtrack, TPS set  to TRUE to indicate that 
it is in backtrack mode. When in backtrack mode, any sub-
sequently matched item will require an additional check 
to see if a prior constraint is violated. For example, in Ta-
ble 2, the C in pattern P FABCDE  is originally matched 
to R[1] = C in stage 2. A backtrack occurs in stage 3, forc-
ing a C to be matched with R[4] in stage 4.  

 However, making that choice violates ABC  because 
R[3] = B, causing another backtrack. This is the reason 
why this additional check is required in backtrack mode. 
When a violation like this occurs, TPS sets the local varia-

ble backtrackingMore to be TRUE in HAN-
DLE_PRESENCE(R, P), line 71. In our example, this 
causes TPS to backtrack additionally to P[0] = A in stage 5 
in Table 2, which eventually leads to matching P[0] to R[5] 
= A. Code listing for HANDLE_PRESENCE(R, P) shows 
how TPS deals with presence items and, additionally, 
backtracks when •  is true. 

When handling a presence item, TPS finds the first oc-
currence of the given  
(line 57). If there is no such event, TPS immediately sets 
the  to -1 (lines 59), which subsequently causes 
IS_A_MATCH(R, P) to return FALSE, terminating the 
search. If there is a match and TPS is in backtrack mode, 
the algorithm checks to see if the match violates a pre-
vious constraint (line 63). This check is performed by 
comparing the matched event’s time with the time of the 
closest known absence event in the future (badTime) that 
follows the match of the previous presence item (line 67). 
If the violation exists (matching event time is greater than 
badTime), TPS sets backtrackingMore to TRUE, and 
updates several variables to backtrack more (lines 68-71). 
If there is no violation (or that we are not in backtrack 
mode to begin with), TPS updates the variables to advance 
on the pattern (lines 73-78): current time  is updated to 
the newly matched event’s time, and this new time is also 
stored in T for future reference. The current index  is 
stored in last index , and  is accordingly updated.  is 
incremented by 1 to advance on the pattern. Finally,  is 
set to FALSE to exit backtracking mode. 

4.2 An Example
Table 2 shows a trace of TPS searching for the pattern P = 
A B C DE F in the record R = ACEBCACDCF. Again, note 
that we are using an array notation to describe R for ease 
of narration even though R is indeed a set of sorted arrays 
of events of the same type. Each event in R is associated 
with a time stamp. 

The first column shows the iteration number of the 
main loop in Code Listing 1. The second column shows 
the value of the two most important variables  and  at 
the beginning of each loop. The third column shows the 
events in R that are being matched with item(s) in P in 
that loop. The fourth column indicates which lines of code 
are reached to assign the values to the state variables on 
the right portions of the table. 

The first row of Table 2 shows 0th loop, where all va-
riables are initialized. We describe the entire trace, but 
focus on loops 1-6 in detail. Loops 1 and 2 demonstrate 
how presence and absence items are handled if there are 
no backtracks. Loops 3 and 4 are examples that show how 
negation items can trigger multiple backtracks. Loop 6 
shows how TPS handles negation items when there are no 
such events in the record. 

In the 1st loop, TPS attempts to find a match for the 
first item in the pattern P[0] = A. The event A at time 0 is 
matched. The current index on the pattern e-
mented to indicate that it will try to match the second  
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item in the pattern. the 
next search will begin, is also updated to 0, the time stamp 
of the matched event.  updated to remember the index 
(0) of a previously-matched presence item on P. 
as FALSE as we do not need to backtrack. 

 The 2nd loop shows how TPS deals with an absence 
event in P[1] = B .  TPS uses binary searches to find the 
first event for each event type in the absence block (in this 
case there is only one ( B )) and the first presence event (C) 
after the previously matched positive event (A). Because 
the first B TPS finds in R[3] does not violate the absence 
event criteria, no backtrack is necessary (  is unchanged). 
TPS remembers the time stamp of the first B found in [0], 
where 0 is the index of the previous presence event.  
is set to TRUE to indicate that the item P[2] follows at least 
one absence item. 

 In the 3rd loop, TPS again deals with an absence block 
and its trailing presence event: DEF . This time, however, 
because both the first D and E occur between the pre-
viously matched P[2] = C and the upcoming P[5] = F,  is 
set to TRUE to indicate that TPS will backtrack.  rolled 
back to 2 so TPS will find a new match for P[2].  
be right before the time stamp of the first known absence 

event of the absence block. In this case, it is R[2] = E, 
which has time stamp of 20. TPS - 1 = 19, 
where 1 is the smallest time granularity in consideration 
(usually milliseconds). This way if a C in the record has 
the time stamp of 20, the binary search functions would 
not miss it. 

In backtracking mode in the 4th loop, TPS attempts to 
match P[2] = C to R[4]. Since P[2] trails an absence block, 
TPS checks to see if matching P[2] to R[4] violates a con-
straint. In this case, it does violate A B C, for there exists a 
B in R[3]. This means TPS needs to backtrack again, to 
P[0]. TPS decrements , but increments  to right before 
the time stamp of R[3] (29). 

TPS finds a match for P[0] = A in R[5] in loop 5 and 
updates other variables normally as in loop 1, and sets  = 
FALSE. When processing P[1] = B in loop 6, TPS finds no 
B’s in R after the current time  = 50. This means the con-
straint of A B C will not be violated for any C that occurs 
after. This fact is stored in [1].  is of course incremented 
by 1. Because the lack of B in the record, TPS only 
processes the absence block that contains P[1] in this loop. 
The following presence event is left for the next loop. 

In the 7th loop, TPS finds R[6] = C to match P[2]. How-
ever, in the 8th loop, TPS finds a R[7] = D between the pre-

TABLE 2
TRACE OF THE TPS ALGORITHM USING EXAMPLE RECORD R AND PATTERN P 

 
index: 0 1 2 3 4 5 6 7 8 9          

time: 0 10 20 30 40 50 60 70 80 90  index: 0 1 2 3 4 5  
Record R = A C E B C A C D C F  Pattern P = A B C D E F  

                     
 

 
Binary Search Performed in 
matching pattern with data 

Code 
Line # 

 T       

0  initialization  FALSE [ ] [ ] [ ] [ ] 0 -  -1 

1 - matching P[0] = A … R[0] (73-78) FALSE [0] 0 [0]  -1   1 0 0 

2 matching P[1] = B  … R[3] 
matching P[2] = C … R[1] 

(48-53)  [2] 10 [2] 0 [0] 30 [2] TRUE 3 10 2 

3 0 matching P[3] = D … R[7] 
matching P[4] = E … R[2] 
matching P[5] = F … R[9] 

(42-46) TRUE    [5] TRUE 2 19 0 

4 matching P[1] = B … R[3] 
matching P[2] = C … R[4] 

(68-70) TRUE     0 29 -1 

5 matching P[0] = A … R[5] (73-78) FALSE [0] 50 [0]  -1   1 50 0 

6 matching P[1] = B … NIL (30-34)   [1]   2   

7 matching P[2] = C … R[6] (73-78) FALSE [2] 60 [2] 0   3 60 2 

8 matching P[3] = D … R[7] 
matching P[4] = E … NIL
matching P[5] = F … R[9] 

(42-46) TRUE    [5] TRUE 2 69 0 

9 matching P[2] = C … R[8] (73-78) FALSE [2] 80 [2] 0   3 80 2 

1 matching P[3] = D … NIL 
matching P[4] = E … NIL 

(30-34)   [2]   5   

11 matching P[5] = F … R[9] (73-78) FALSE [5] 90 [5] 5   6 90 5 
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viously found C and the next available F in R[9], and 
another backtrack occurs. This forces TPS to re-search for 
another match for C. Variables are updated exactly in the 
same manner as in loop 3. 

Fortunately, an alternative is found in R[8] = C in loop 
9, and this match does not violate any existing constraints. 
In loop 10, TPS fails to find another E or D in the remaind-
er of the record. Finally, TPS matches the last item in the 
pattern P[5] = R[9], and returns TRUE, terminating the 
execution. 

5 ANALYSIS

If the search pattern contains no negations:

1 2 31 2 3 mm p p p pp p p T TP Tp T , its running time is 

1 2
(lg(| |) lg(| |) lg(| |)

mp p pO T T T , where 
1

| |
p
T  denotes 

the number of events of type 
1p

T  in a personal record. 

This is because the algorithm uses binary search to find an 
event when a presence item is encountered. If there are no 
events to be found, the algorithm immediately terminates 
and returns FALSE.  On the other hand, if such a pattern 
exists, then the running time is bounded by ( lg( ))O m n , 
where n is the total number of events (regardless of type) 
in the record. 

When the search pattern contains absence items, TPS 
may need to backtrack when absence events are encoun-
tered, and the worst case analysis is based on (1) how 
many backtracks can there be, and (2) how much work is 
done when a backtrack occurs. In general, the input data 
triggers a backtrack when an absence block in the pattern is 
not satisfied, e.g., a 

2p
T  occurs between a 

1p
T  and a 

4p
T  

for the pattern
2 3 4 5 61p p p p p pT T T TT TP . The maximum 

number of absence blocks in a search pattern is 
2
m  , where 

m is the length of the pattern. The algorithm works so that 
when an event that violates an absence block specified in 
the pattern, the event’s time is recorded in the array , 
and the algorithm will start at that event’s time when 
backtracking. For this reason, we only have to consider 
non-overlapping presence-absence events in the data as 
potential backtrack points from the data. Therefore, for a 

record containing n events, there can be at most 
2
n  non-

overlapping presence-absence event patterns, where 2 is 
the length of the smallest possible presence-absence pat-

tern. For each such pattern, it can cause up to 
2
m back-

tracks. Putting everything together, the total number of 

backtracking opportunities is 
2 2

·
4

m n mn . 

The amount of extra work resulting from a backtrack is 
related to the size of the absence blocks. The pseudo code 
indicates that each backtrack results in a constant number 
of variable assignments, but the real work lies in the occa-

sions when TPS re-performs its search on the failed part of 
the pattern. A backtrack is always triggered by an absence 
block, and a new search is required to find a matching 
presence event immediately before the absence block, all 
absence events in the absence block, and the trailing pres-
ence event (if there is one specified in the pattern). This 
means ((2 | |) lg( ))O ab n  work is performed, where ab is the 
size of the largest absence block. This expression is max-
imized when |ab| = m, resulting in ( lg( ))O m n , where m is 
the length of the search pattern. 

The worst case running time would then be the number 
of backtracking opportunities times the work done in a 
backtrack situation. However, a search pattern cannot 
both have the largest absence block and the most number 
of absence blocks at the same time. Let m be the size of the 
search pattern, and x be the largest absence block size. We 
want to find the x that maximizes the running time func-

tion ·( ) ( )( lg( ))
2 2
n m x

f x x n , where m and n here are con-

sidered constants. Its second derivative ''( ) 1f x  shows 
that f(x) is concave down. By the second derivative test, 
and the fact that its first derivative equals to zero when

2
mx  , 

2
m

x  must be a global maximum. This means 

that the worst case patterns are the ones that have a larg-
est absence block equaling half the length of the search 
pattern, and the other half of the pattern consists of only 
alternating (positive-negative) patterns to increase back-

track opportunities. Substituting 
2
m

x  in f(x), we obtain 

the worst case bound 
2

2( lg( )) lg ))
8

((mO n O mn n n . In addi-

tion, TPS uses ( )O m  space for the state-keeping arrays. 

6 ALGORITHM EXTENSIONS

The basic TPS algorithm presented can be extended to 
handle a variety search constraints.  Here we present a 
straight-forward modification to TPS that handles tem-
poral range constraints and value range constraints, and 
discuss extension involving event type inheritance. 

Temporal range constraints specify how an event must 
temporally relate to others.  Each item on the temporal 
pattern can have multiple temporal constraints.  For ex-
ample, for the pattern 1 2 3 mp pp pP  we can addition-

ally specify that 3p must occur between 5 to 10 days after

1p and within 3 hours after 2p . It is sufficient to consider 
only temporal constraints of an item related to previously 
matched items as constraints related to yet-to-be matched 
items can be converted to this form.  It is worth noting 
that the temporal constraints work for both positive and 
negative items.  When temporal constraints are used on a 
negative item, they specify the time spans when event 
must not match. 
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CODE LISTING 4
MODIFIED NEXT FUNCTION

79 NEXT(A, t, M, D, V) 
80  idnex BIN_SEARCH(A, t)
81  if (index == -1)
82   return NIL
83  else
84   while(!(DURATION_CHECK(A[index],D)
85  AND VALUE_CHECK(A[index],V)))
86    index = index + 1
87    if (index>A.length-1)
88     return NIL
89 return A[index]

The value range constraints, on the other hand, specify 
that the matching events must have values within a cer-
tain range in order to be considered a match.  For exam-
ple, physicians may look for patients who had a heart at-
tack followed by a heart surgery followed by a systolic 
blood pressure reading of 140 or greater.  More complex 
value range constraints can involve higher dimensional 
data, or data values relative to previously matched items. 

These constraints change how TPS works because 
matching on event types is now conditional on their time 
stamp and values.  The basic idea to handle these con-
straints is to selectively filter the events that can be 
matched in the steps of the algorithm.  Since he basic 
structure of TPS guarantees the correct backtracking, the 
simplest way to handle these constraints is to extend 
NEXT(R[T],t). That is, after a binary search is per-
formed on an event type array A, and an index is deter-
mined, the temporal constraints and the value constraints 
for that item are checked.  If first event fails the check, 
subsequent events on the array can be tested until one 
passes or no more events can be tested. 

Code Listing 4 shows the modified function, where M 
is the array of currently matched events.  D and V are, 
respectively, arrays representing the temporal range and 
value range constraints.  The modified function requires 
the binary search function as before, and additionally 
functions that check whether an event passes the con-
straints. This direct extension makes the worst case bound 

2 2( )O m n , where  is the amount of work needed to run 
DURATION_CHECK(…) and VALUE_CHECK(…).  These 
functions can have high complexity as there can be at 
most i-1 duration constraints for each ith item on a pattern 
of length m.  Additionally, the values may be multidimen-
sional or of other complex data structures. 

 When the event type structure is a hierarchy instead of 
a list and search patterns include supertypes (types that 
have descendents), the NEXT(R[T],t) function needs to 
be further extended to use binary search on each of the 
subtype’s array, and return the one closest to current time 
t. Caching of the results of the binary searches can im-
prove performance. Since each NEXT(R[T],t) can take 
up to O(klg(n)) to perform, the over all worst-case bound 

for TPS becomes 2 lg(( ))O k nm n , where k is the number of 
event types. 

7 EVALUATION

There are several regular expression implementations we 
considered comparing TPS to. We first tested the standard 
Java regular expression engine in java.util.regex, and 
a faster (though more limited) implementation that uses 
deterministic finite automata: (dk.brics.automaton) 
[17]. However, initial tests revealed that the standard Java 
regular expression engine runs in time exponential to the 
length of the search pattern in the worst case. We used a 
fixed input string of 500 characters, and search patterns of 
varying lengths (m = 2,3,4,5). The string is chosen so that 
the patterns will not match. The regular expression pat-
terns are obtained by converting positive-only patterns de-
scribed in our discussions to its equivalent regular expres-
sion form. For example, ABCBD is converted to 
.*A.*B.*C.*B.*D.*. Table 3 illustrates this exponential 
behavior of matching positive-only patterns (no negation) 
of varying length against a single string of size 500. This 
behavior is due to the fact that each .* presents a choice 
point for java.util.regex, and combinatorially, there 
are (2 )mO  choice points in a search pattern consisting of 
all positive items of length m [3]. For the particular appli-
cation and type of patterns we consider, .* is unavoida-
ble, and occurs very frequently (grows linearly with re-
spect to the number of items in the search pattern in the 
worst case). Therefore the very poor performance of ja-
va.util.regex means that it is not a good choice for 
our purposes or this comparison.  

The DFA approach [17], on the other hand, has a simi-
lar problem. So long as the search pattern sizes are kept 
reasonable, the performance is very good. However, when 
the search pattern grows longer than 30 items, the expo-
nential space the DFA requires in preprocessing makes the 
DFA approach infeasible (it fails to construct the DFA 
when all memory has been allocated to the Java Virtual 
Machine). 

Instead, we compared our Temporal Pattern Search al-
gorithm to more scalable approaches. We include, first, a 

TABLE 3
EXPONENTIAL BEHAVIOR FOR java.util.regex

Search Pattern Length Time (sec) 
2 0.024 
3 0.272 
4 31.193 
5 3099.675 

 
Using java.util.regex to perform searches exhibits exponen-
tial behavior. The time reported is time taken to match a pattern 
over a single string. The input string size is 500, while the search 
pattern length varies. The strings are chosen so that there is no 
match for the patterns, thus requiring java.util.regex to ex-
haust all possibilities before returning false. This behavior is due to 
the fact that the patterns contain many .*, which can require expo-
nential number of search paths. 
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simple NFA that handles the wild card character (.), 
Kleene Star (*) over single symbols, and negation over a 
set of symbols ([^xyz]), where xyz are symbols) (Figure 
3), and secondly, the bit-parallel Shift-And algorithm de-
scribed in [19]. 

The NFA keeps a set of states that it is currently in. In-
itially only the start state – indicated by the black triangle 
in the figure – is in the set of current states. As the NFA 
reads one symbol at a time from the input string, it checks 
with all the current states it is in and sees if any of state’s 
transition rules fire to bring in a set of new current states. 
When all input are consumed, the NFA checks to see if the 
accepting state (indicated by the double circle in the fig-
ure), is in the set of current states. If it is, then the NFA 
returns TRUE to indicate that a match has been found; 
FALSE otherwise. For a search pattern of length m, there 
are at most m states in its corresponding NFA (each posi-
tive term translates to a state, and each negative block, 
regardless with length, also translates to one state). For an 
input string of size n, the running time for the NFA is 
bounded by ( )O mn  because the NFA may be in all m 
states for each of the n symbols. 

Due to the limited expressiveness of the search patterns 
under consideration here, the NFA does not need to wait 
until all inputs have been consumed to check for the ac-
cepting state. In our implementation, the NFA checks for 
the accepting state after each symbol has been consumed, 
except when the last item on the pattern is a negations (in 
which case, the NFA does need to consume all inputs to 
ensure that there are no violations). This small optimiza-
tion increases the NFA performance by a significant 
amount in practice. 

The Shift-And algorithm used here differs from [19] in 
that it models the first state so that the first state is not 
assumed to be active at all times (needs to be inactive 
when the pattern starts with a negation, and that negated 
event is encountered in the search). Since we are using 32-
bit Java Runtime Environment, the length of the computer 
word w = 32. The Shift-And used here is extended to han-
dle patterns that produce more than 32 states. The exten-
sion uses an array of integers to represent more than 32 
bits (e.g., 2 integers are used for up to 64 states), and han-
dles the necessary bitwise operations (shift, and, or, xor, 
negation) correctly over the array. The extended version, 
however, carries an overhead for the array representation.  
In the evaluation below, when the number of states for the 

Shift-And algorithm remains under 32, the original algo-
rithm is used. When the number of states is greater than 
32, the extended algorithm is used. When the number of 
states for Shift-And is less than or equal to 32, the search 
algorithm performs in O(n). If greater than 32, the algo-
rithm performs in O(mn/32).  The implication is that on a 
64-bit platform, the original Shift-And algorithm would be 
twice as fast as its 32-bit counterpart.  The 64-bit version 
would also be able to represent up to 64 states, although 
beyond that, an extended version like our implementation 
needs to be used.  Like the NFA implementation described 
above, the Shift-And algorithm also terminates imme-
diately when a match has been found. 

7.1 Method 
The NFA and Shfit-And approaches most naturally work 
with a temporally ordered string of events. TPS works 
over a set of type-separated, temporally ordered arrays. 
The aim of this evaluation is to see if we had the most ap-
propriate data support for each approach, whether TPS 
has any advantage over NFA or Shift-And. That is, we 
attempt the answer the question “if we had implemented 
our visualization tool in the most appropriate way to use 
an NFA (or Shift-And) search, would it perform faster?” 
We structure our evaluation as follows. (1) We guarantee 
that the input event history data does not have events that 
have the same time stamp. This means the NFA or Shift-
And do not need to be modified to handle this case, and 
that the input data will be semantically equivalent in the 
evaluation. (2) The input data is transformed into a single 
string for the NFA and Shift-And approaches to process. 
(3) In all our reported results, we do not include the time it 
takes for preprocessing. That is, the time used to build the 
NFA and the bit masks for Shift-And is not included. The 
time required to build an NFA is O(m), and the time re-
quired to for Shift-And preprocessing is O(mk/w), where k 
is the number of event types, and w is the number of bits 
in a computer word. The preprocessing time is fairly light 
although it would still be reflected in the interface when 
analysts construct a pattern query. 

Let k designate the number of event types in a set of 
records. We randomly generated a set of 5000 records for 
each k = 2,3,…,9 and k = 10, 20, 30, 40, 50. Each record in 
the set has 500 events. Each event in a record occurs with 
uniform probability. We also randomly generated a set of 
search patterns for each dataset, where each event type 
occurs in the pattern also with uniform probability. In the 
search pattern input file, there are three types of patterns: 
(1) patterns that contain only positive items, (2) patterns 
that contain alternating positive and negative item (half 
with leading positive terms, half with leading negative 
terms) and (3) patterns that represents the theoretical 
worst-case scenario, given length of the pattern m and size 
of the event types k. These worst-case scenario patterns 
are like the alternating patterns, but with a large absence 

block of size min( , )
2
mk  inserted at a randomly chosen po-

 
Fig. 3. An NFA corresponding to .*A[^BC]*D.*, which is the regular 
expression equivalent to the search pattern ABCD . The black triangle 
denotes the starting state, and the double circle indicates the accept-
ing state. any represents the set of all input symbols.  
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sition according to a uniform distribution. These patterns 
are designed to illicit the worst performance in TPS. 

For each input set of records, the script parses the 
records, constructs the appropriate data structures for 
TPS, NFA, and Shift-And, and constructs the NFA and 
Shift-And supporting data structures. Clock is then set to 
collect only the search time for each approach. Each pat-
tern for each dataset is performed 10 times for each ap-
proach. The average is then presented here. The perfor-
mance numbers are obtained by running our script in Java 
1.6 32-bit environment on Windows Vista 64-bit with a 
dual core CPU (2.5GHz) and 4GB of RAM. 

7.2 Results
We look at the results from two perspectives. First, we 
inspect how the length of a search pattern impacts the 
performance of the three algorithms. We do this by sum-
ming up the time taken to execute all patterns of one type 
across all alphabet sizes and compute the average time it 
takes to perform a search on all records. 

Figure 4 shows the performance graph when all search 
patterns include only positive items. The x-axis is the 
length of the search pattern, and the y-axis is time in 
seconds and on logarithmic scale. First, TPS performs con-
sistently better than both NFA and Shift-And. TPS is more 
than one order of magnitude faster than NFA, and nearly 
one order of magnitude better than Shift-And when m>15. 
In the Shift-And algorithm, each .* is modeled as a sepa-
rate state, so a pattern length of m in all-positive patterns 
has 2m states. This is why the performance hit occurs 
when m>16, as opposed to m>32 in other pattern types. 
The sharp decrease in performance represents the over-
head required to support arbitrarily long search patterns. 
Secondly, the running time increases as the length of the 
pattern increases. We had expected the TPS to outperform
NFA on the positive-only pattern portion of the evaluation 
as TPS’s search over positive- only events is bounded by

( lg( ))O m n , that is, this is the “best-case” scenario. How-

ever, we are a bit surprised by its (slight) advantage over 
Shift-And when the number of states is fewer than 32.

Next, we look at the results for the alternating patterns. 
Unlike the positive-only patterns, these patterns provide 
many opportunities for backtracking, and we expect to see 
the TPS performance to be worse than the previous graph. 
Figure 5 shows the performance graph over a variety of 
search pattern lengths. We see that TPS still consistently 
outperforms NFA, but the gap is less than an order of 
magnitude. The Shift-And approach outperforms TPS for 
patterns whose length is at most 32, but has similar per-
formance as NFA when the length is greater. We also see 
that both NFA and TPS approaches have a fairly flat per-
formance curve even as the length of the search pattern 
grows. The reason why NFA’s curve is much calmer than 
the positive-only patterns case is that the number of states 
has been reduced by half, and that the number of states 
currently active is reduced when an event matches a state 
that deals with negation. 

Fig. 4. Performance comparison of TPS, NFA, and Shift-And for
search pattern lengths m = 10, 15, …, 100 for positive-only patterns. 
The vertical axis is logarithmic in time. TPS outperforms the other two 
approaches, and betters NFA consistently by one order of magnitude. 
The sharp increase of time required at m = 20 for Shift-And reflects 
the use of using multiple integers to represent more than 32 states. 

Fig. 6. Performance comparison of TPS, NFA, and Shift-And for
search pattern lengths m = 10, 20, …, 100 for worst-case patterns. 
The vertical axis is logarithmic in time. Like two previous cases, TPS
consistently outperforms NFA, but the differences are considerably 
smaller than in the comparison for positive-only patterns. Shift-And 
handily outperforms the other two for m < 40, but loses to TPS (signif-
icantly for m > 60) otherwise. 

Fig. 5. Performance comparison of TPS, NFA, and Shift-And for
search pattern lengths m = 10, 20, …, 100 for alternating patterns.
The vertical axis is logarithmic in time. Similar to the case of positive-
only patterns, TPS consistently outperforms NFA for these search 
patterns by roughly an order of magnitude. However, the Shift-And 
approach is faster when the m is at most 32. 
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In the worst-case patterns scenario, we expect TPS to lose 
most of its edge while NFA performs similarly to the al-
ternating patterns scenario. NFA does indeed perform 
similarly to the alternating patterns scenario, except with an 
initial growth when m grows from 10 to 30, which TPS 
also experiences (Figure 6). In this scenario, TPS’s perfor-
mance gets closer the NFA’s, taking nearly one second to 
perform a search over all the records. However, it still 
beats NFA in all of our test cases, and we do not observe a 
growth adhering to the m2 term in the worst-case bound. 
Similar to the alternating cases, the Shift-And approach is 
very fast for m up to 30. However, it loses its performance 
edge to TPS with m > 40. 

To study why TPS is performing relatively well when 
its worst case running time is comparatively bad, we plot 
the average time it takes to perform a search over all 
records when the number of event types is varied. While 
the event type size does not affect the asymptotic bound, 
because TPS examines an event on a need-to basis, if the 
number of events is large compared to the number of 
event types present in the search pattern, TPS can ignore 
most of events. On the other hand, both NFA and Shift-
And are required to, in general, examine all the events. 
We focus on the two more difficult cases: alternating and 
worst-case.  In Figure 7, we see that initially TPS and NFA 
have similar performance (m = 2).  However, as k increas-
es, both NFA’s and Shift-And’s performances remain 
roughly in the alternating patterns scenario.  On the other 
hand, TPS’s performance steadily improves as k increases. 
Figure 8 shows a similar trend with worst-case patterns sce-
nario. The difference here is that the Shift-And approach 
also enjoys some performance gain when k is at least 10, 
though not as dramatic as TPS’s. 

On the flip side of the coin, if TPS is required to look at 
all of the events, TPS’s performance is not expected to per-
form better than NFA. To show this, we fix the search pat-
tern to be ...AB ABC , and the events in records to be AB-
ABAB…ABC. This combination results in a search that 
requires TPS to look at every event in the record, creating 

very large number of backtracks, and eventually returns 
FALSE. We vary n = 100, 200,…, 1000 to show the effects 
of n. We performed this experiment for m = 3, 5, 7, 9, 11, 
31, 41, 51, 61. Figure 9 shows the average performance for 
m = 3, 5, 7 for the three approaches on 5000 records for 
each n.  n affects the running times linearly for n = 100,…, 
1000. TPS and NFA have identical performance, while 
Shift-And outperforms them by an order of magnitude.  
When the same experiment is performed for larger m (m = 
41, 51, 61), Shift-And’s performance edge becomes very 
small (Figure 10). 

7.3 Evaluation with Real Data
The experiments with random data above show the 
strengths and weaknesses of TPS. They give a reasonably 
clear picture on the situations where TPS is expected to 
perform well or badly.  However, the evaluation would 
not be complete if these algorithms are not applied to real 
scenarios.  We used the datasets listed in Table 1 and the 
search patterns our physician collaborators are interested 
in to evaluate how the three algorithms perform in real 

Fig. 9. Comparison of the performance of TPS, NFA and Shift-And by 
varying the number of events in a record n = 100, 200, …, 1000. The 
search pattern is fixed to be AB...ABC .  The graph shows the aver-
age performance over small patterns:m = 3, 5, 7. The records are 
fixed to ABABAB…ABC.  This guarantees n/2 backtracks for record. 
There are 5000 records for each n. TPS and NFA have similar per-
formance, while the Shift-And algorithm outperforms the other two.  

Fig. 8. Performance comparison of the three algorithms by varying
the number of event types k = 2,3, …, 9 and 10, 20, …, 50 over all
lengths of worst-case patterns. The performance graph is similar to
Figure 7, with the only exception that Shift-And also improves in
performance as the number of event types increases past 9. 

Fig. 7. Performance comparison of TPS, NFA, and Shift-And by vary-
ing the number of event types k = 2, 3, …, 9, and 10, 20, … 50 over 
all lengths of alternating patterns. The vertical axis is logarithmic in
time in seconds. TPS performs similarly to NFA initially, but gets dra-
matically better thatn both NFA and Shift-And as the number of event 
types grows. 
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scenarios. The datasets in Table 1 contain events that share 
the same time stamp. We had to modify these datasets to 
ensure that these events do not exist since neither the NFA 
nor the Shift-And approaches can handle them.  We used 
the same method as described in Section 7.1 to make sure 
this is the case and converted the data to its equivalent 
and appropriate form for each of the three algorithms.  

Table 4 shows the number of temporal patterns our col-
laborators are interested in for each dataset, the average 
length of the patterns, and how much time they took each 
algorithm to perform.  We did not perform the evaluation 
for one of the datasets (Heart Attack) in Table 4 because 
our users had no temporal patterns they wanted to search 
for.  TPS outperforms the other two approaches in all but 
the Creatinine dataset. Although Shift-And has its biggest 
advantage in randomized evaluation when the pattern 
lengths are small, TPS outperforms Shift-And here. 

7.4 Discussion
While we have shown that the worst-case asymptotic 
bound for the TPS algorithm is worse than that of a NFA, 
the empirical evaluations show that TPS consistently out-
performs the NFA approach under our experimental con-
ditions with randomly generated inputs and in the real 
scenarios. The experimental conditions are chosen to re-
flect the situations under which we expect analysts to be 
using Lifelines2. In working with our collaborators in the 
medical field, the highest number of events in a single 
patient record is usually in the hundreds, and the lowest 
can be only a handful. The number of types of events is 
typically between 10-35 (although one dataset, not listed, 
has over 1000 event types). In practice, we do not encoun-
ter cases where k is so small and TPS performs only mar-
ginally better than NFA. We also do not encounter cases 
where TPS’s advantage over NFA is greater than one or-
der of magnitude because k > 50. 

One the other hand, the Shift-And algorithm has a 
great speed advantage when m is at most 32 and consis-
tently outperforms TPS in the experiments with random 
data.  When it is not, its performance is slightly worse 
than that of TPS on average. TPS also has a slight perfor-
mance edge in the evaluation with real data and search 
patterns.  While the NFA approach and TPS are both easi-

ly extensible to handle additional constraints, the bit-
parallel approaches are not.  These approaches rely on bit 
masks built in the pre-processing stages so that when a 
symbol is read, the masks can be retrieved in constant 
time and applied.  However, when these additional con-
straints are present, the masks can no longer be pre-built.  
The masks that need to be applied would be conditional 
upon the values in addition to each of the symbols read. 

For n  1000, the performance growth is roughly linear 
even in cases where the maximum number of searches 
and backtracks are required (Figure 9). In Figure 1, 2, and 
3, we also did not observe a quadratic growth for m  100, 
although the asymptotic bound for TPS contains an m2 
term. While we do not expect analysts to specify a pattern 
query of these extreme lengths, it is comforting to know 
that TPS would be able to handle it.   

The implications of these results are that while we can-
not recommend TPS for all situations, we argue it is the 
appropriate choice for our application Lifelines2. In addi-
tion, other analysis tools focused on temporal categorical 
data such as [4], [25], [14] can benefit from TPS to provide 
sequential search capabilities. In addition, TPS can be used 
as an external function in database applications where 
searching for temporal patterns is required. 

8 CONCLUSIONS AND FUTURE WORK 

We present the novel algorithm TPS, and show that its 
running time is bounded by 2 lg(( .))nO m n  Although the 
bound is less attractive than that of the NFA approach, 
TPS performs favorably in our experiments against NFA.  
TPS also performs competitively with the Shift-And algo-
rithm in real scenarios. TPS utilizes binary searches over a 
set of time-sorted event arrays, and is able to skip many 
irrelevant events. We show that TPS saves significant 
amount of time in comparison to NFA when there are 
many event types, and that TPS is more easily extensible 
than bit-parallel algorithms such as Shift-And. Since the 
randomized experimental conditions we described here 
subsume the conditions under which we expect analysts 
to be using in our visualization tool, we expect the per-
formances shown here to hold. Finally, we argue that us-
ing TPS in our application is a design success, and other 
similar applications may benefit from TPS. 

The future directions of TPS include how we can ex-
pand the expressiveness of TPS to further support visual 
exploratory tasks. One immediate extension is to tie the 
pattern search with the visual operator alignment to en-

Fig. 10. Same comparison as Fig.9, except this graph shows the 
average performance over large pattern length: m = 41, 51, 61.  The 
advantage of Shift-And is far less prominent when m is large. 

TABLE 4 
REAL SCENARIO EVALUATION

Dataset Name #Pat-
terns 

Ave. 
Length 

Time (milliseconds) 

TPS NFA Shift-And 

Creatinine 5 3.2 51 325 20 
Heparin 5 4.6 12 260 20 
Heart attack - - - - - 
Transfer 5 3 93 981 99 
Bipap 9 3.89 66 711 82 
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hance the experience for search and browse. Another 
would be to study how TPS can be modified to perform a 
search for multiple patterns at the same time or search for 
all instances of match events in a record. 
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