
Advanced Numerical Linear Algebra Homework 1
AMSC/CMSC 763 Due September 18, 2019

1. Let 〈f, g〉 denote an inner product for functions defined on a real interval
[a, b]. Typical examples have the form

〈f, g〉 ≡
∫ b

a

f(x)g(x)w(x)dx

where w(x) is a positive weight function on (a, b). For example, the choice
w(x) ≡ 1 gives the `2 inner product and w(x) = 1/

√
1− x2 on [−1, 1] gives the

Chebyshev inner product.

a. Show that polynomials {ψj | j = 1, 2, . . .} orthogonal with respect to such an
inner product can be defined via a three-term recurrence

γj+1ψj+1(x) = xψj(x)− δjψj(x)− γjψj−1(x) (1)

such that ψj has degree j − 1, ‖ψj‖ = 1 where ‖f‖ ≡ 〈f, f〉1/2, and ψ0 = 0.

b. Show that for k + 1 ≤ n, the roots of ψk+1 are the eigenvalues of the
tridiagonal matrix Tk determined by the recurrence (1).
Hint: Consider the characteristic polynomial of Tk.

c. The expression (1) resembles the recurrence that defines the Lanczos algo-
rithm for a symmetric matrix A of order n,

γj+1vj+1 = Avj − δjvj − γjvj−1, (2)

which produces orthogonal vectors {vj}. Derive a variant of (2) of the form

γj+1wj+1 = Λwj − δjwj − γjwj−1,

where Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues of A.

d. Show that

〈p, q〉 ≡
n∑

i=1

p(λi)q(λi)[w1]2i

is an inner product on the space of polynomials defined on R. What does this
tell you about the polynomials from (1) defined using this inner product?

2. Let Ax = b be a linear system of equations where A is symmetric and
positive-definite. Let xk be the kth iterate generated by the conjugate gradient
method (CG). Show that if xk 6= x, then the vectors generated by CG satisfy

(i) 〈rk, pj〉 = 〈rk, rj〉 = 0, j < k,
(ii) 〈Apk, pj〉 = 0, j < k,
(iii) span{r0, r1, . . . , rk−1} = span{p0, p1, . . . , pk−1}

= K(A, r0) ≡ span{r0, Ar0, . . . , Ak−1r0}.



Hint: Prove (i) and (ii) simultaneously by induction on k, and use a dimension-
ality argument for (iii).

3. Let Ax = b be as in Problem 2. Starting from an arbitrary initial iterate x0,
the steepest descent method generates a sequence of iterates x1, x2, . . . by the
computation

xk+1 = xk + αkrk ,

where rk is the residual b − Axk and αk is a scalar chosen so that the norm
‖x− xk+1‖A is minimal.

a. Explain the name “steepest descent method.”

b. Show that the error ek = x− xk satisfies

‖ek‖A ≤
(
κ− 1

κ+ 1

)k

‖e0‖A .

where κ = Λ/λ is the condition number of A, that is, the ratio of the largest
eigenvalue of A to its smallest eigenvalue.

4. A demo (soon to be) given in class shows the effect damped Jacobi smoothing
had on the discrete one-dimensional diffusion equation.

a. Implement this demo yourself. That is, show that a few steps of damped
Jacobi smoothing makes the error smooth. You can generate the matrix and
right-hand side using the code

e1 = ones(n,1);

h = 1/(n+1);

A = spdiags([-e1 2*e1 -e1], [-1,0,1], n, n)/h;

f = h*e1;

Reasonable choices for n are 31 or 63, but feel free to play with anything you
like. To make the case, start with a random initial value and then plot the error
in one or two figures.

b. Continue this experiment by implementing the two-grid algorithm. This will
require construction of the coarse-grid matrix A2h and the prolongation and
restriction operators, P and R. You can then take one step of the two-grid
algorithm to consist of two smoothing steps, followed by restriction, coarse-grid
correction, and prolongation. Show that this algorithm displays “textbook”
multigrid behavior, that is, the number of steps needed for the error to be
smaller than a given tolerance is independent of the discretization mesh size.


