1. Let $\langle f, g\rangle$ denote an inner product for functions defined on a real interval $[a, b]$. Typical examples have the form

$$
\langle f, g\rangle \equiv \int_{a}^{b} f(x) g(x) w(x) d x
$$

where $w(x)$ is a positive weight function on (a, b). For example, the choice $w(x) \equiv 1$ gives the ℓ_{2} inner product and $w(x)=1 / \sqrt{1-x^{2}}$ on $[-1,1]$ gives the Chebyshev inner product.
a. Show that polynomials $\left\{\psi_{j} \mid j=1,2, \ldots\right\}$ orthogonal with respect to such an inner product can be defined via a three-term recurrence

$$
\begin{equation*}
\gamma_{j+1} \psi_{j+1}(x)=x \psi_{j}(x)-\delta_{j} \psi_{j}(x)-\gamma_{j} \psi_{j-1}(x) \tag{1}
\end{equation*}
$$

such that ψ_{j} has degree $j-1,\left\|\psi_{j}\right\|=1$ where $\|f\| \equiv\langle f, f\rangle^{1 / 2}$, and $\psi_{0}=0$.
b. Show that for $k+1 \leq n$, the roots of ψ_{k+1} are the eigenvalues of the tridiagonal matrix T_{k} determined by the recurrence (1).
Hint: Consider the characteristic polynomial of T_{k}.
c. The expression (1) resembles the recurrence that defines the Lanczos algorithm for a symmetric matrix A of order n,

$$
\begin{equation*}
\gamma_{j+1} v_{j+1}=A v_{j}-\delta_{j} v_{j}-\gamma_{j} v_{j-1} \tag{2}
\end{equation*}
$$

which produces orthogonal vectors $\left\{v_{j}\right\}$. Derive a variant of (2) of the form

$$
\gamma_{j+1} w_{j+1}=\Lambda w_{j}-\delta_{j} w_{j}-\gamma_{j} w_{j-1}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is the diagonal matrix of eigenvalues of A. d. Show that

$$
\langle p, q\rangle \equiv \sum_{i=1}^{n} p\left(\lambda_{i}\right) q\left(\lambda_{i}\right)\left[w_{1}\right]_{i}^{2}
$$

is an inner product on the space of polynomials defined on \mathbb{R}. What does this tell you about the polynomials from (1) defined using this inner product?
2. Let $A x=b$ be a linear system of equations where A is symmetric and positive-definite. Let x_{k} be the k th iterate generated by the conjugate gradient method (CG). Show that if $x_{k} \neq x$, then the vectors generated by CG satisfy
(i) $\left\langle r_{k}, p_{j}\right\rangle=\left\langle r_{k}, r_{j}\right\rangle=0, \quad j<k$,
(ii) $\left\langle A p_{k}, p_{j}\right\rangle=0, \quad j<k$,
(iii) $\operatorname{span}\left\{r_{0}, r_{1}, \ldots, r_{k-1}\right\}=\operatorname{span}\left\{p_{0}, p_{1}, \ldots, p_{k-1}\right\}$

$$
=\mathcal{K}\left(A, r_{0}\right) \equiv \operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}
$$

Hint: Prove (i) and (ii) simultaneously by induction on k, and use a dimensionality argument for (iii).
3. Let $A x=b$ be as in Problem 2. Starting from an arbitrary initial iterate x_{0}, the steepest descent method generates a sequence of iterates x_{1}, x_{2}, \ldots by the computation

$$
x_{k+1}=x_{k}+\alpha_{k} r_{k},
$$

where r_{k} is the residual $b-A x_{k}$ and α_{k} is a scalar chosen so that the norm $\left\|x-x_{k+1}\right\|_{A}$ is minimal.
a. Explain the name "steepest descent method."
b. Show that the error $e_{k}=x-x_{k}$ satisfies

$$
\left\|e_{k}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{k}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\Lambda / \lambda$ is the condition number of A, that is, the ratio of the largest eigenvalue of A to its smallest eigenvalue.
4. A demo (soon to be) given in class shows the effect damped Jacobi smoothing had on the discrete one-dimensional diffusion equation.
a. Implement this demo yourself. That is, show that a few steps of damped Jacobi smoothing makes the error smooth. You can generate the matrix and right-hand side using the code

```
e1 = ones(n,1);
h = 1/(n+1);
A = spdiags([-e1 2*e1 -e1], [-1,0,1], n, n)/h;
f = h*e1;
```

Reasonable choices for n are 31 or 63 , but feel free to play with anything you like. To make the case, start with a random initial value and then plot the error in one or two figures.
b. Continue this experiment by implementing the two-grid algorithm. This will require construction of the coarse-grid matrix $A_{2 h}$ and the prolongation and restriction operators, P and R. You can then take one step of the two-grid algorithm to consist of two smoothing steps, followed by restriction, coarse-grid correction, and prolongation. Show that this algorithm displays "textbook" multigrid behavior, that is, the number of steps needed for the error to be smaller than a given tolerance is independent of the discretization mesh size.

