Advanced Numerical Linear Algebra Homework 2
AMSC/CMSC 763 Due October 11, 2019, 5PM

Problem 1.
a. Show that the eigenvalues and eigenvectors of the matrix of order n given by
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are {(/\k,v(k)), }, where for k =1,2....,n, A\, = 4sin? (%h), [U(k)]j = sin (krz;),

. 1 y .
with h = <5 and z; = nj?,] =1,...,n.
b. Let D = 2I, the diagonal matrix taken from the diagonal of A, and let
Q= %D be the damped Jacobi smoothing operator. The eigenvectors can be

divided into two sets, one containing “smooth modes” (k < %) and the other
containing “oscillatory modes” (§ < k < n). (For k even, the middle choice
here can be viewed as either the most oscillatory smooth mode or the smoothest

oscillatory mode.)

The optimal damping parameter w is the one for which the damping operator
I —Q'A does an equally good job of reducing the error in the most oscillatory
eigenvector and the smoothest oscillatory one. Derive this optimal parameter.

Problem 2.

a. Given a linear system of equations Az = b where A is nonsingular, show that
for k < n, the kth residual r, = b — Axy, produced using the GMRES method
satisfies

ry = pr(A)ro

where pg(t) is a polynomial of degree k that satisfies pi(0) = 1 and also has the
property that
[7kll2 = min |[pk(A)rol|2
pr€lly

where IIj is the set of all polynomials of degree k that have the value 1 at the
origin.

b. If A is diagonalizable, show that
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7kl < ¢ min max, lpe(M)]ll7oll2

where o(A) is the set of eigenvalues of A and ¢ is independent of k.

c. It may happen that r, = 0 for £ < n. Describe a way this could occur.



Problem 3. Suppose Au = f is a linear system of equations in which the
coefficient matrix A is symmetric and positive-definite. Let Q@ = GG” be a
symmetric positive-definite preconditioner; note that no assumption is made
about the structure of G other than that () admits a factorization of this type.
Given this (formal) factorization, the unpreconditioned conjugate gradient al-
gorithm could be applied to

GtAGTv=G" v=GTu

Use this fact to derive the preconditioned conjugate gradient algorithm (PCG)
given below. This shows that the extra computation required by PCG at each
step is a solution of a system with coefficient matrix (). This may or may not
depend on the factorization.

THE PRECONDITIONED CONJUGATE GRADIENT METHOD
Choose u(®, compute r(® = f — Au® solve Qz(® = r(® set p® = z(
for k= 0 until convergence do

ap = (28, r(*) /(Ap*) pk))

uF D) = gk 4 oy p*)

r*D) = p(k) _ o Ap®)

<Test for convergence>

Solve Qz(kt1) = p(k+1)

B = (zF+D) p(kHD)) /(5(F) (k)

ptD) = z(k+1) 4 g (k)
enddo

0)

Problem 4. The MATLAB code given below generates a system of equations
Au = f corresponding to finite-difference discretization of the Poisson equation

—(Uzz + uyy) =1

on an L-shaped domain 2, subject to boundary conditions u = 0.

numgrid(’L’,n);
delsq(®);

= 1/(n+1);
size(A,1);
h~2*ones(N,1);
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The domain can be visualized using the command spy(G).

For the three values of n = 32, 64 and 128, do the following:

e Solve the linear system using the unpreconditioned conjugate gradient
method. The solver should stop at the first step k for which the residual
norm |7y |2 satisfies ||7x|]2/|| fll2 < 1076.



Solve it using the preconditioned conjugate gradient method with precon-
ditioner D, the diagonal matrix containing the diagonal entries of A.

Solve it using the preconditioned conjugate gradient method using the
incomplete Cholesky preconditioner as defined by the routine ichol in
MATLAB.

On one graph, plot the relative residual norms {||7x|2/l|r0ll2} obtained
for all three problems using the unpreconditioned method, and on a sepa-
rate graph, plot the relative residual norms obtained using the incomplete
Cholesky preconditioner.

Explain what happens with the diagonal preconditioner.

Comment: You may use any software you want to do this problem as long as
you document what you use. It is not necessary to use MATLAB although if you
prefer another language, it might still be easier to generate the problem using
MATLAB.



