
Advanced Numerical Linear Algebra Homework 4
AMSC/CMSC 763 Due November 27, 2019

Problem 1. The paper

C. F. Higham and D. J. Higham, “Deep learning: An introduction for
applied mathematicians,” arXiv:1801.05894v1, 2018.

is an introduction to machine learning and that contains a detailed example
in which an artificial neural network differentiates data in a two-dimensional
domain into two categories (the “oil” and “no-oil” categories discussed in class).

Write a program that implements a neural net with stochastic gradient descent
and tests it on the data given in Listing 6.1 of this paper. For your program, you
can borrow from the one given in the paper, netbp, but your program should
be more general than netbp to allow a variable number of hidden layers as well
as variable numbers of neurons in each layer.

Explore the performance of your network for several (say ∼ 3) different numbers
of layers and for one such choice, several numbers of neurons. Similarly, explore
the impact of the learning rate η. Plot the results in images like Figure 4.
Explore what happens to the output when you add a data point as in Figure 5
of the paper.

Problem 2. Suppose you have a linear system of equation A(ξ)u(ξ) = f where
ξ = [ξ1, ξ2, . . . , ξm]T is a vector of parameters and

A(ξ) = A0 + ξ1A1 + ξ2A2 + · · ·+ ξmAm.

Here, the individual matrices {Aj}mj=0, each of order N , are given, but the
parameter values are not generally known, and the solution u(ξ) will also depend
on the values of these parameters. We are interested in computing statistical
properties of the parameter-dependent solution. This exercise will focus on the
mean. We will also assume that the individual parameters are independent and
uniformly distributed in [−1, 1], so that we want to understand

ū =

∫
[−1,1]m

u(ξ)dξ.

a. One way to estimate ū is by Monte Carlo simulation to compute a sample
mean ūs:

for j = 1 : nξ
sample the m-vector ξ, giving ξ(j)

solve A(ξ(j))u(ξ(j)) = f
end

compute ūs = 1
nξ

∑nξ

j=1 u(ξ(j))



What is the computational complexity of this procedure? State in particular
any assumption you make concerning its dependence on N .

b. A strategy designed to produce an approximation to ū at lower cost is as
follows.

1. Generate a number of sample solutions {u(ξ(j)), j = 1, . . . , ns}, which will
be referred to as snapshots.

2. Find a matrix V with nr ≤ ns columns whose range space represents a
good approximation to span{u(ξ(1)), . . . , u(ξ(ns))}.

3. For any ξ different from those used to generate the snapshots, compute
y(ξ) such that û(ξ) = V y(ξ) whose residual f −A(ξ)û(ξ) is orthogonal to
range(V ).

The idea behind this approach is that the collection of sample solutions from
step (1) should characterize the solution set for all possible values of ξ, and that
there might in fact be more of them then is necessary. In this case, step (2)
reduces the size of the needed set to nr, which we would like to be small. This
methodology has a name, reduced-order models.

Here are some questions about this:

b-Qi. Given the snapshots from item (1), how would you compute V in step
(2)?

b-Qii. Each solution y(ξ) can be computed at cost depending on nr but not N ,
provided certain quantities are precomputed once and saved. Describe a way
to accomplish this and specify the computational costs after the preliminary
computations are done.

b-Qiii. This procedure can be repeated nξ times, giving nξ solutions y(ξ).
These solutions can be then used to construct an estimate ˆ̄usfor the sample
mean. Show that ˆ̄us(ξ) can be computed with complexity O((N + nξ)nr).

c. Returning to step (1) above, another way to use the sample solutions pro-
duced there is to develop a machine learning (ML) model using these results.
Describe what such an ML construction would entail, how it would be used,
and describe an advantage it might have over the method developed in the rest
of part (b).


