Problem 1.

a. Let $X=U \Sigma V^{T}$ where $U \in \mathbb{R}^{m \times \ell}$ and $V \in \mathbb{R}^{\ell \times n}$ each have orthogonal columns, $\Sigma=\operatorname{diag}\left[\sigma_{1}, \ldots \sigma_{\ell}\right]$ with $\sigma_{1} \geq \cdots \geq \sigma_{\ell} \geq 0$, and $\ell \leq \min (m, n)$. Show that $\|X\|_{2}=\sigma_{1}$. Use this result to show that $\|A\|_{2}=\left\|A^{T}\right\|_{2}$ when A is a rectangular matrix.
b. For symmetric matrices M and N, the notation $M \preceq N$ means that $N-M$ is positive semi-definite. Show that if M and N are both positive semidefinite, then $M \preceq N$ implies that $\|M\|_{2} \leq\|N\|_{2}$.

Problem 2. An orthogonal projector on \mathbb{R}^{n} is a symmetric matrix P that satisfies $P^{2}=P$.
a. Show that if P is an orthogonal projector, then $0 \preceq P \preceq I$.
b. Show that all the singular values of P are either 1 or 0 .
c. Show that P is uniquely determined by its range.

Hint: If Q is another orthogonal projector with the same range, then use the singular value decompositions of P and Q to show that $P=Q$.

Problem 3. Implement the following randomized SVD algorithm and explore how it works for the matrix in the file hw5.mat. Test it for $q=0,1$ and 2 . In particular, compare the singular values obtained by this method to those obtained from the true SVD, and examine the (norm of the) difference between the true left singular matrix U and the one obtained by this method.
The algorithm comes from p. 227 of Halko, et al., SIAM Review 53, pp. 217-288, 2011.

Stage A:

1. Generate an $n \times 2 k$ Gaussian test matrix Ω.
2. Form $Y=\left(A A^{T}\right)^{q} A \Omega$ by multiplying alternatively with A and A^{T}.
3. Construct a matrix Q whose columns form an orthonormal basis for the range of Y.

Stage B:

4. Form $B=Q^{T} A$.
5. Compute an SVD of the small matrix, $B=\widetilde{U} \Sigma V^{T}$
6. Set $U=Q \widetilde{U}$.
