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VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC
SYSTEMS OF LINEAR EQUATIONS*

STANLEY C. EISENSTAT,- HOWARD C. ELMANt AND MARTIN H. SCHULTZ"

Abstract. We consider a class of iterative algorithms for solving systems of linear equations where the
coefficient matrix is nonsymmetric with positive-definite symmetric part. The algorithms are modelled after
the conjugate gradient method, and are well suited for large sparse systems. They do not make use of any
associated symmetric problems. Convergence results and error bounds are presented.

1. Introduction. The conjugate gradient method (CG), first described by
Hestenes and Stiefel [9], is widely used for approximating the solutions of large sparse
systems of linear equations

Ax =f
where A is an N N, real, symmetric, positive-definite matrix [2], [3], [5], [13]. CG
can be viewed as a direct method that, in the absence of round-off error, gives the
exact solution in at most N steps; or as an iterative procedure that gives a good
approximation to the solution in far fewer steps (see [14]). A feature of the method
that makes it particularly suitable for large sparse systems is that all references to A
are in the form of a matrix-vector product Av, so that the storage requirements are
usually lower than for direct methods. Another attractive feature is that, unlike most
iterative methods, CG does not require any estimation of parameters. In this paper,
we discuss a class of conjugate-gradient-like descent methods that can be used to
solve nonsymmetric systems of linear equations. Numerical experiments with these
methods are described in [6], [8].

A common technique [9] for solving nonsymmetric problems is to apply the
conjugate gradient method to the normal equations

ATAx a Tf,
in which the coefficient matrix is symmetric and positive-definite. On the ith iteration,
CG computes an approximate solution that is in some sense optimal in .a Krylov
subspace of the form {v, ATAv,..., (ATA)i-lv}. This dependence on ATA tends to
make the convergence of CG slow (see [2], [3]).

Recently, Concus and Golub [4] and Widlund 19] devised a generalized conjugate
gradient algorithm (GCG) for nonsymmetric systems in which the coefficient matrix
has positive-definite symmetric part. Like the conjugate gradient method, GCG gives
the exact solution in at most N iterations. However, on each iteration it requires the
solution of an auxiliary system of equations in which the coefficient matrix is the
symmetric part of A. Also, if the nonsymmetric part is relatively large, then conver-
gence may be slow.

The methods we present depend on a Krylov sequence based on A rather than
ATA, and they do not require the solution of any auxiliary systems. They do require
that the symmetric part of A be positive-definite. In 2, we present four variants that
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differ in their work and storage requirements. In 3 and 4, we present convergence
results and error bounds for each of the four variants. In 5, we discuss several
alternative formulations.

Notation. The symmetric part of the coefficient matrix A is given by M := (A +
AT)/2, and the skew-symmetric part by R :=-(A-AT)/2. Thus A =M-R. The
Jordan canonical form of A is denoted by J := T-1AT.

For any square matrix X, let /min(g) denote the eigenvalue of X of smallest
absolute value, and let ,rnax(X) denote the eigenvalue of largest absolute value. The
spectral radius IAmax(X)l of X is denoted by p(X). The set of eigenvalues of X, also
called the spectrum of X, is denoted by or(X). If X is nonsingular, then the condition
number of X, K (X), is defined as Ilxll=llx- ll=.

Finally, given a set of vectors {p0," ", Pk}, let (P0,’"’ ,Pk) denote the space
spanned by {p0,""’, p}.

2. Descent methods for nonsylnmetrie systems. In this section, we present a class
of descent methods for solving the system of linear equations

(2.1) Ax =f

where A is a nonsymmetric matrix of order N with positive-definite symmetric part.
We consider four variants, all of which have the following general form"

(2.2a) Choose Xo.

(2.2b) Compute ro=f-Axo.
(2.2c) Set po= r0.

For 0 Step 1 Until Convergence Do

(2.2d) ai
(ri, Api

(Api, Api

(2.2e) Xi+l =xi+aiPi

(2.2f) ri+l ri aiApi

(2.2g) Compute pi+l.

The choice of a, in (2.2d) minimizes ]lr,+lllz=llf-A(x +ap,)llz as a function of a, so
that the Euclidean norm of the residual decreases at each step. The variants differ in
the technique used to compute the new direction vector p/l.

A good choice for p/l is one that results in a significant decrease in the norm
of the residual IIr+lllz but does not require a large amount of work to compute. When
A is symmetric and positive-definite, such a vector can be computed by the simple
recurrence relation

(2.3a) Pi+l ri+l + biPi,

where

(2.3b) bi
(Ari+ 1, Api
(Api, Api

The method defined by (2.2) and (2.3) is equivalent to a variant of CG known as the
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conjugate residual method (CR) [17]. The direction vectors produced are A T"A
orthogonal, that is

(2.4) (Api, Apj) 0, for /’,

and xi/l minimizes the functional

E(w):--ll-Awll=
over the affine space x0 + (p0," ’,

If A is nonsymmetric and the algorithm defined by (2.2) and (2.3) is applied to
(2.1), then the orthogonality relation (2.4) does not hold in general. However, a set
of A7"A-orthogonal directions can be generated by using all the previous vectors {Pj}--0
to compute pg+l"

(2.5a) Pi+l ri.l + E bi)P,
=0

where

(i) (Ari+l, Ap)
(2.5b) b (Apj, Ap) f <- i.

The iterate x/l generated by (2.2) and (2.5) minimizes E(w) over x0+(p0,""" ,pi)
(see Theorem 3.1). We refer to this algorithm as the generalized conjugate residual
method (GCR). In the absence of round-off error, GCR gives the exact solution to
(2.1) in at most N iterations (see Corollary 3.2).

The work and storage requirements per iteration of GCR may be prohibitively
high when N is large. Vinsome [18] has proposed a method called Orthomin that can
be viewed as a modification of GCR that is significantly less expensive per iteration.
Instead of making p/l ArA-orthogonal to all the preceding direction vectors {p}--o,
one can make pi/l orthogonal to only the last k (_>-0) vectors

(2.6) Pi+l ri+ + , bj(ip,
j=i-k+l

(i)with {bj }--i-k/l defined as in (2.5b). Only k direction vectors need be saved. We
refer to this method as Orthomin (k) (see [20]). Both GCR and Orthomin (k) for
k-> 1 are equivalent to the conjugate residual method when A is symmetric and
positive-definite.

Another alternative is to restart GCR periodically: every k + 1 iterations, the
current iterate Xk+) is taken as the new starting guess.2 At most k direction vectors
have to be saved, so that the storage costs are the same as for Orthomin (k). However,
the cost per iteration is lower, since in general fewer than k direction vectors are used
to compute pi+. We refer to this restarted method as GCR (k).

For the special case k 0, Orthomin (k) and GCR (k) are identical, with

(2.7) Pi+l=ri+l.

This method, which we refer to as the minimum residual method (MR), has very
modest work and storage requirements, and in the symmetric case resembles the
method of steepest descent (see [11 ]). Because of its simplicity, we consider it separately
from Orthomin (k) and GCR (k).

The first k directions {pj}o are computed by (2.5a), as in GCR.
Here/’ is a counter for the number of restarts. The/’th cycle of GCR (k) produces the sequence of

approximate solutions {xi i(t" 1)
.fi=(i-1)(k +l)+l,
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TABLE
Work per loop (mv denotes a matrix-vector product) and storage requirements.

GCR Orthomin (k) GCR (k) MR

Work/Iteration (3(i + 1) +4)N + 1 mv (3k +4)N + mv ((3/2)k +4)N + mv 4N + mv
Storage (2(i + 2) + 2)N (2k + 3)N (2k + 3)N 3N

In Table 1, we summarize the work and storage costs (excluding storage for A
and f) of performing one loop of each of the methods. We assume that Ap is updated
by

Api+l Ari+ + bi)Apt,
=h

where j 0 for GCR and/’ max (0, i-k + 1) for Orthomin (k). The storage cost
includes space for the vectors x, r, Ar, {Pt}, and {Apt}. For GCR, Ar can share storage
with Ap/. The entries for Orthomin (k) correspond to the requirements after the
kth iteration. The work given for GCR (k) is the average over k + 1 iterations. The
cost of MR is the same as the cost of Orthomin (0) or GCR (0).3

3. Convergence of GCR and GCR (k). In this section, we show that GCR gives
the exact solution in at most N iterations and present error bounds for GCR and
GCR (k). We first establish a set of relations among the vectors generated by GCR.
(See [9] for an analogous result for the conjugate gradient method.)

THEOREM 3.1. /f {Xi}, {r}, and {Pi} are the iterates generated by GCR in solving
the linear system (2.1), then the following relations hoM

(3.1a) (Ap, Api) O, # j,

(3.1b) (ri, Apt)=O, i>f,

(3.1c) (ri, Api) (ri, Ari),

(3.1d) (r, Art) O, >j,

(3.1e)

(3.1f)

(ri, Ap,) (ro, Ap, ), >- f,

(Po, p) (po, Apo, Apo) (ro, ", r),

(3.1g) if ri 0, then pi # 0,

(3.1h) minimizes E(w)= Ilf -Awll2 over the affine space Xo+(po, pg).

Proof. The directions {p} are chosen so that (3.1a) holds.
Relation (3.1b) is proved by induction on i. It is vacuously true for 0. Assume

that it holds for <- t. Then, using (2.2f) and taking the inner product with Apt, we find

(3.2) (rt+, Apt) (rt, Apt)- a,(Apt, Apt).

If ] < t, then the terms on the right-hand side are zero by the induction hypothesis
and (3.1a). If j t, then the right-hand side is zero by the definition of at. Hence
(3.1b) holds for + 1.

Several other implementations are possible. In Orthomin (k) or GCR (k), it may be cheaper to
compute Api by a matrix-vector product for large k. With a third matrix-vector product, h (i)

v. can be
computed as -(ArAri+l, pi)/(Api, Api), and the previous {Api} need not be saved.
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For (3.1c), by premultiplying (2.5a) by A and taking the inner product with ri,

i--1
(i--1) (ri, Api) (ri, Ari),(ri, Api) (ri, Ari) + _, b

=o

since all the terms in the sum are zero by (3.1b).
To prove (3.1d), we rewrite (2.5a) as

j-1

ri Pj Z b ti-lpt.
t=0

Premultiplying by A and taking the inner product with ri (i >/’),

j-1

(r, Ari) (ri, Api) Y’. b j-l (ri, Apt) O,
t=0

by (3. lb).
Relation (3.1e) is proved by induction on i, for <=. It is trivially true when 0.

Assume that it holds for < j. Using (3.2),

(rt+l, Ap) (r,, Ap) at(Apt, Apj) (ro, Ap),

by the induction hypothesis and (3.1a).
Relation (3.1f) is proved by induction on i. The three spaces are identical when

=0. Assume that they are identical for i-<t. Then {pi c (r0," rt/l). But by
(2.5a),

(t)n:.Pt+x rt+l + ., b
/’=0

t+lso that (po,’’’, pt+l) is a subspace of (ro,’", rt+l). By (3.1a), the vectors ’tPjtj=o are
linearly independent. Hence, the dimension of (to,"’, rt/l) is greater than or equal

t+lto t+ 1, which implies that trt=o are linearly independent and (po,"" ,pt+l)
(to,""’, rt+l). Similarly, by (2.2f),

(t),,Pt+ rt atApt + ’. 19
j=o

By the induction hypothesis, r,,Ap,, and {pi};=oS(po, Apo,...,At+lpo), so that
(po, ",pt+t) is a subspace of (po, Apo, , At+lpo). Again, the two spaces are equal
because the {pi} are linearly independent.

The proof of (3.1g) depends on the fact that the symmetric part M of A is
positive-definite. If ri rs O, then by (3.1c),

(ri, Ap) (ri, Ar) (r, Mri) > O,

so that (ri, Ap) rs O, whence p rs 0.
For the proof of (3.1h), note that

x+ Xo + ., aip.
]=0

Thus, E(Xi/l)2 is a quadratic functional in a= (ao,’’’, a)T. Indeed, using (3.1a) to
simplify the quadratic term,

E(xi+l)2 to- a.e4p =(ro, ro)-2 aj(ro, Ap)+ a(Ap,Ap).
=0 2 =0 =0
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Thus, E(w) is minimized over Xo+(po, ", pi) when

(ro, Apj) (rj, Api)
(Api, Apj (Api, Apj

by (3.1e). Q.E.D.
COROLLARY 3.2. GCR gives the exact solution to (2.1) in at mostN iterations.

Proof. If ri 0 for some i<=N-1, then Axg =f and the assertion is proved. If
r 0 for all _-<N-1, then pg 0 for all i<=N 1 by (3.1g). By (3.1a), {pi}/ are
linearly independent, so that (po,"" ", pr-1)= R N. Hence, by (3.1h), xN minimizes
the functional E over R, i.e., x is the solution to the system. Q.E.D.

This result does not give any insight into how close xi is to the solution of (2.1)
for < N. We now derive an error bound for GCR that proves that GCR converges
as an iterative method. Let Pg denote the set of real polynomials qi of degree less than
or equal to such that q(0)= 1.

THEOREM 3.3. /f {r} is the sequence of residuals generated by GCR, then

[ hmin(M)2
(3 3) Ilr, ll2 <-min llq(A)ll=l[ro[12 < 1- Ilroll2.

q,V, Amax(ATm)
Hence, GCR converges. IfA has a complete set of eigenvectors, then

(3.4) [[r, ll2 (T)Mllro[]2,
where

Mi := min max [qi()].
CliPi , eo’(A)

Moreover, ifA is normal, then

(3.5) [Ire 112 _-< Mg 11ro[12.

Proof. By (3.1f), the residuals {rg} generated by GCR are of the form r =qg(A)ro
for some qi Pg. By (3.1h),

(3.6) [Ir, ll2 min Ilq,(A)ro[12.
qi Pi

The first inequality of (3.3) is an immediate consequence of (3.6). To prove the second
inequality of (3.3), note that for ql(z) 1 + az P,

min [[q (a)ll= < [[ql(A) [12 < [[q (A)11’
qi Pi

But
((I + aA)x, (I + aA)x[[q(A)l[ max

o (x,x)

max / 1 + 2a
o t (x, x)

Moreover,

(Ax, Ax (x, A TAx)
(x,x) (x,x)

and, using the positive-definiteness of M,

(x, Ax)
(x,x)

z (Ax, Ax),]
(x,x) J"

Amax(A TA),

(x, Mx
>_ hmin(M) > 0.

(x,x)
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Hence, if a < 0,

Ilql (A)II --< 1 /2min(M)o -I-/max(A TA)o 2.
This expression is minimized by a =-lmin(M)/vmax(ATA), and with this choice of a,

[ hmin(M)2 ]1/2[Iq (A)II= --<
hmax(ATA

which concludes the proof of (3.3).
Recall that the Jordan canonical form of A is given by 3" T-1AT. To prove

(3.4), we rewrite (3.6) as

Ilr, ll= min IlTqe(J)T-roll
qi Pi

qi Pi

Since A has a complete set of eigenvectors, J is diagonal, so that

min IIq,()ll=- min max Iq,(A)],
qiP qiP A etr(A)

whence (3.4) follows.
If A is normal, then T can be chosen to be an orthonormal matrix, which proves

(3.5). Q.E.D.
Since the symmetric part of A is positive-definite, the spectrum of A lies in the

open right half of the complex plane (see [10]). Thus, the analysis of Manteuffel [12]
shows that minq,p, Ilq,(A)ll. and Mi approach zero as goes to infinity, which also
implies that GCR converges.

Theorem 3.3 can also be used to establish an error bound for GCR (k).
COROLLARY 3.4. If (ri) is the sequence of residuals generated by GCR (k), then

(3.7) [Ir/>ll=--< min Ilqk+l(A)ll Ilroll2,
qk+16Pk+l

so that

(3.8) Ilrill -< [1 Amin(M)2 ]i/2Amax(ATA IIr011.

Hence, GCR (k converges. Moreover, ifA has a complete set of eigenvectors, then

(3.9) IIr;(
and ifA is normal, then

(3.10) Ilrj( /)11= --< (Mk /)Jllr011=.
Proof. Assertions (3.7), (3.9), and (3.10) follow from Theorem 3.3. To prove

(3.8), let fk + where 0 <_- < k. Then

IlFjk+tll2

by (3.3), and

ilrlh_<[l_ hmin(M)2 ]ik/2Amax(A rA IIr011=,

by (3.7) and the second inequality of (3.3). Q.E.D.
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4. Convergence o Orthom|n. In this section, we present convergence results for
Orthomin (k) and an alternative error bound for GCR and GCR (k). We also present
an analysis of Orthomin in the special case when the symmetric part ofA is the identity.

The vectors generated by Orthomin (k) satisfy a set of relations analogous to (3.1):
THEOREM 4.1. The iterates {x}, {r}, and {p} generated by Orthomin (k) satisfy

the relations:

(4. la) (Ap, Apt) O,

(4.1b) (r,, Apt) O,

(4. lc) (r, Ap) (r, Ar),

(4.1d) (ri, Ari-1) =0,

(4.1e) (ri, Ap) (r-k, Ap),

(4. If) if ri # O, then pi # O,

(4.1g) fori >-_k,

/’=i-k,...,i-1, i_->k,

j=i-k-1,...,i-1, i->k+l,

j=i-k, ,i, i>=k,

x/ minimizes E(w over the affine space

Xi-k + (Pi-k, Pi).

Corollary 3.4 with k =0 implies that Orthomin (0) (MR) converges. We now
prove that Orthomin (k) converges for k >0. Since the analysis applies as well to
GCR, GCR (k), and MR, we state the results in terms of all four methods. Recalling
that R is the skew-symmetric part of A, we first prove two preliminary results"

LEMMA 4.2. The direction vectors {p} and the residuals {ri} generated by GCR,
Orthomin (k), GCR (k), and MR satisfy

(4.2) (Api, Api) <- (Ari, Ari).

Proof. The direction vectors are given by

(i-
Pi r +Y b pj,

where the limits of the sum are. defined as in (2.5) for GCR and GCR (k), and (2.6)
for Orthomin (k). Therefore, by the ATA- orthogonality of the {pi} and the definition

(i--1)of b.
(-))2(Api, Api)(i- (Ar, Apt) + Y. (bi(Ap, Api) (Ari, Ar) + 2 Y. b

(Ari, Ari)
(Ari, Api)2

(Apt, Api

<-_ (Ari, Ari ). Q.E.D.

LEMMA 4.3. For any real x # 0,

(x, Ax)
>

Amin(M)
(4.3)

(Ax, Ax) =hmin(M).max(m) +P (e)2.

Proof. Letting y Ax,

( A- +A-T

)(x, ax) (y, a-ly) y’ 2 Y [a-l+a-Z
(Ax, Ax) (y, y) (y, y)

/min \ )2



VARIATIONAL ITERATIVE METHODS FOR LINEAR SYSTEMS 353

Thus, it suffices to bound Amin((A -1 -t-A-T)/2). Consider the identity

(4.4) X-1 + y-l= [Y(X + Y)-IX]-I,
which holds for any nonsingular matricesX and Y, provided thatX + Y is nonsingular.
With X 2A and Y 2A, (4.4) leads to

A-I+A-T

For any x # O,

[(2A)T (4M)-1(2A)]-1 [(M-R T)M-1(M-R)]-I

(M +R TM-1R )-1.

(x, (M +R TM-tR )x) (x, Mx + (Rx, M-1Rx > O,

so thatM+RTM-1R is positive-definite. Therefore (A -1 +A-T)/2 is positive-definite
and

But

Hence

A-1 +A-T

) 1
/min

2 Amax(M +R TM-1R )"

I"
Amax(M -bR TM-1R max [

o t (x, x)
(x, RTM-1Rx)](x,x)

max(M) q- max
O,Rx0

(Rx, M-1Rx (Rx, Rx
(Rx, Rx (x, x)

Amax(M) + Amax(M-1)llg TR I1=
A max(M) -1- p (R)2/hmin(M).

A-I +A-r) 1
)2 Q.E.D.min 2 Amax(M) +/9 (g /Amin(M)

The following result proves that Orthomin (k) converges and provides another
error bound for GCR, GCR (k), and MR.

THEOREM 4.4. If {ri} is the sequence ofresiduals generated by GCR, Orthomin (k),
GCR (k ), or MR, then

[ ,min(M)2 ]i/2(4.5a) IIr, ll= -< 1-Amax(ATA) IIr0[12,

and

(4.5b) Ilrill2_-< [1 Amin(U)2
/min(M)/max(M) --t- io (R)2 Ilrolh.

Proof. By (2.2f),

IIr,+ll (ri, ri)- 2ai(ri, Api) +a (Api, Api)

(ri, Api)2 (ri, Api)2

11ril]--2 +
(ap, api (api, api Ilrill-

(ri’Api)2
(Api, Api)"
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Therefore,

(ri, Api) (ri, Api) <- 1
(ri, ri) (Ap, Api)

(ri, Ari) (ri, Ari)
(ri, ri) (Ari, Ari)’

by (3.1c)/(4.1c) and (4.2). But

(ri, Ari)
_> h min(M),

(ri, ri)

and

(ri, Ari)
(Ari, Ari

(ri, ri) (ri, Ari)
>

hmin(M)
(ri, ATAri) (ri, ri) =hmax(ATA)

so that

Amin(M)2 11/2[[ri+ 11]2 1 --ma-a--)j ]]ril[2,

which proves (4.5a). By (4.3),

so that

(ri, Ari)
>

Amin(M)
(Ari, Ar,) hmin(M)max(M) +p(R )’

which proves (4.5b). Q.E.D.

,min(M)2 ]i/2A min(M)/,max(M) -+-/9 (R)2 Ilrill2,

In general, the two error bounds given in Theorem 4.4 are not comparable. They
are equal when M =/, and (4.5b) is stronger when R 0. When R 0, the constant
[(hmax(A)-Amin(A))/,max(A)-[1/2 in (4.5b) resembles the constant [(Amax(A)-
,min(A))/(,.max(A)+/min(A))]1/2 in the error bound for the steepest descent method
(see [11]). Thus, we believe that the bounds in Theorem 4.4 are not strict for k >-1.

If A !-R with R skew-symmetric, then Orthomin (1) is equivalent to GCR,
and we can improve the error bounds of Theorems 3.3 and 4.4.

THEOREM 4.5. If A =I-R with R skew-symmetric, then Orthomin (1) is
equivalent to GCR. The residuals {ri} generated by Orthomin (1) satisfy

(4.6) IIr,/[=-<_2
p(R)’(l+x/l+p(R)Z)

for even t.

Proof. To prove that Orthomin (1) is equivalent to GCR, it suffices to show that
0 in (2.5b) for/" -< i- 1. But the numerator is

(Ari+, Api) (ri +, Api (Rri+, Api ).

By (3. lb),

(ri+l, Apj) -(ri+, Apj) O.

Hence, by the skew-symmetry of R,

(Ar+1, Ap -(ri+ 1, Apj + (r/ 1, RAp -(ri/ 1, A2p).
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But by (2.20,

(ri+l, A2pj) _1 (ri+l, A(rj ri+l)) O,
ai

for f <_-i- 1, by (3.1d).
For (4.6), observe that A =I-R is a normal matrix, so that (3.5) holds. We

prove (4.6) by bounding Mr. Widlund [19] has shown that

(4.7) Mt <- cosh log
(R)

(1 + /1 +O (R)2)

for even t. Let r/= (1/p (R))(1 + /1 +p (R)2). Using

cosh (z) (e + e-),
(4.7) reduces to

2 r/
A’L < -2-t 2t+ +I

from which (4.6) follows. Q.E.D.. Other approaches. In this section, we discuss several methods that are
mathematically equivalent to GCR.

We derived GCR from CR by replacing the short recurrence for direction vectors
(2.3) with (2.5), which produces a set of ArA-orthogonal vectors when A is nonsym-
metric. Young and Jea [20] present an alternative, Lanczos-like method for computing
A7"A-orthogonal direction vectors"

(i)(5.1a) p+l =Ap + Y’. b p,
/’=0

where

i, Apj)(5.1b) b) (A2p’
(Ap;,Ap;)’ j<=i.

If {p} is the set of direction vectors generated by GCR and p =p0, then p =cip for
some scalar c (see [20]). Hence, this procedure can be used to compute directions in
place of (2.5). The resulting algorithm is equivalent to GCR, but does not require the
symmetric part of A to be positive-definite.

Axelsson [1] takes a somewhat different approach. Let Xo, r0 and p0 be as in (2.2).
Then one iteration of Axelsson’s method is given by:

(i)r"(5.2a) Xi+l’-’Xi + E a] P’1,
i=0

(5.2b) ri+l f -AXi+l,

(5.2c) bi
(Ari+ 1, Api
(Api, Api

(5.2d) Pi+l ri+l + biPi,
(i)where the scalars {ai }i=0 are computed so that [Ir+ll[2 is minimized. This requires the

solution of a symmetric’ system of equations of order + 1

Ba(i) g,
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where Bs, (Aps, Apt) and g (rg, Ap). Thus, the solution update is more complicated
than in GCR, but the computation of a set of linearly independent direction vectors
is simpler. Although the direction vectors are not all A rA-orthogonal, (5.2d) and the

(i--l)choice of {a }]=o force

[[ri[[ man []qi (A)r0ll=
qi

to be satisfied, so that this method is equivalent to GCR.
If these methods are restarted every k + 1 steps, then the resulting methods are

equivalent to GCR (k). Both methods can also be modified to produce methods
analogous to Orthomin (k): only the k previous vectors {p}ii=i-k+l are used in (5.1a),

(i)iand only the k vectors {pi}j.=i_k+ are used in (5.2a), with tai j=i-k+l computed to
minimize Ilrg+ll2. The truncated version of (5.2) can be shown to satisfy the error
bounds (4.5a) and (4.5b) (see [7]). However, we have encountered situations in which
the truncated version of (5.1) fails to converge.

In discussing the methods of this paper, we have emphasized their variational
property, i.e., that xg is such that IIrl12 is minimized over some subspace. Saad [15],
[16] has developed a class of CG-like methods for nonsymmetric problems by
restricting his attention to the properties of projection and orthogonality. Let
and {wi}j=o be two sets of linearly independent vectors, and let K := (v0," ’, re) and
Lg := (Wo, , wg). Saad defines an oblique projection method as one that computes
an approximate solution xg+xo+Kg whose residual ri+l is orthogonal to Lg. For
example, GCR is such a method with Kg (p0, , pg) and L (Apo, , Ap).

Saad presents several oblique projection methods in [15], [16]. One of these is
in some sense an alternative formulation of GCR. Let v0 ro/llrolb., and let {vt}i--1 be
defined by

(5.3) h,+l.tvt+ Avt hitvi,
i=0

where {hit}i=o are chosen so that

(vt+,Avi)=O, ]<-t,

and ht+,,, is chosen so that IIv,/ ll= 1. Let a(g be the solution of the system of equations

(5.4) nia(i)= Ilroll=(1, 0,..., 0),
where H is the upper-Hessenberg matrix whose nonzero elements are the hit defined
above, and let

(i(5.5) xi+x Xo + E ai )vi.
i=0

By construction, xi/exo+K, where Ks := <Vo,’’’, vi)=<vo, Avo,’" ,Aivo>. It can
be shown that v+, is proportional to r+,, so that r+, is orthogonal to
Lg := (Avo,"" ,Av,>. It can also be shown that x,+ minimizes IIr,+,ll= over Xo+
(vo, Avo,’" ,Aivo>, so that x/l is equal to the (i + 1)st iterate generated by GCR.

Note that the approximate solution x/x is computed only after {vt}=o have been
computed, so that this method lends itself naturally to restarting. Several other
heuristics can be used to cut expenses (see [15], [16]). In particular, the computation
of the {vt} can be truncated, so that at most k vectors are used to compute vt/,:

(5.6) ht+l,,Vt+l Av,- Z
j=max (0,t-k+l)
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This procedure can then be integrated into an algorithm with restarts every + 1 steps,
for > k. After {vt}t--o have been computed by (5.6), Xg/l is computed as in (5.4) and
(5.5), and the algorithm is restarted. The effect of truncating the computation of the
{vt} is to make Hi a banded upper-Hessenberg matrix with bandwidth k. We do not
know when this method converges.
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