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FAST NONSYMMETRIC ITERATIONS AND PRECONDITIONING FOR
NAVIER-STOKES EQUATIONS*

HOWARD ELMANt AND DAVID SILVESTER

Abstract. Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsym-
metric indefinite linear system of equations. In this paper, we introduce preconditioning techniques for such systems
with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size
used in the discretization. We confirm and supplement these analytic results with a series of numerical experiments
indicating that Krylov subspace iterative methods for nonsymmetric systems display rates of convergence that are
independent of the mesh parameter. In addition, we show that preconditioning costs can be kept small by using
iterative methods for some intermediate steps performed by the preconditioner.
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1. Introduction. Consider the steady-state Navier-Stokes problem: given data f, find
the velocity u and pressure p satisfying

1
(1.1) -vV2u + u(div u) + u. Vu + grad p f in f2

divu =0

subject to boundary conditions, typically, specified velocity u g on Of2; f2 C R2 or g2 C R3.
Here, the scalar v is the inverse of the Reynolds number or the ratio of convection to diffusion
in the system. In the diffusion dominated case, (v --+ oo) (1.1) tends to a linear self-adjoint
system of equations known as the Stokes problem.

There are two ways of calculating solutions to the system (1.1). A popular approach is to
compute "true" steady-state solutions of the time-dependent Navier-Stokes equations. There
are many ways to do this: one way is to make use of the "characteristics" associatedwith the
hyperbolic part ofthe Navier-Stokes operator via a Lagrange-Galerkin approach (for example,
see [13]). The associated transpose-diffusion splitting leads to absolutely stable temporal
discretizations so that large time steps can be taken. At each time step, a symmetric indefinite
matrix system corresponding to a time-discretized Stokes-like system must be solved. These
systems can be solved efficiently by iterative methods, for example, if a multigrid solver
is used to precondition the primary (Laplacian) operator. There are, however, a number of
disadvantages to the time-dependent approach. Simple time discretization methods based
on the/2-projection onto the discretely divergence-free subspace [10] have an O(h) CFL
restriction on the time step, which impinges on efficiency. On the other hand, absolutely
stable schemes like the method of backward characteristics are known to be sensitive to
implementation issues (e.g., the need to perform quadrature; see 13]). Even with fixed grids,
efficiency is often limited by the costs associated with interpolation.

In this work, we consider the alternative approach of attacking the system (1.1) directly.
Applying a fixed point (or Picard) iteration, the system (1.1) reduces to solving a sequence of
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linear Oseen problems of the following form: given some velocity field w, find the velocity u
and pressure p satisfying

1
(1.2) -vV2u + u(div w) + w. Vu + grad p f in Q

div u 0

subject to the same boundary conditions.
For this methodology to be effective it is necessary to solve the discrete versions of (1.2)

efficiently. Finite element discretization of (1.2) leads to the matrix problem

(vA + N B u(1.3)

where A A represents diffusion (for example, -X72) and hence is a positive definite matrix
of order nu; N represents convection (1/2div w + w. X7); and the ne x nu matrix B represents
the coupling between the discrete velocity u and the pressure p. Note that the representation
of the quadratic convection term in (1.1) ensures that if velocity is specified everywhere on
the boundary then N -Nt; that is, the discrete form of the convection operator is skew-
symmetric [10, p. 53]. Note that with these boundary conditions the system (1.3) is singular;
pressure is only unique up to a (hydrostatic) constant. We assume in the following analysis
that the pressure solution is uniquely specified in this case, e.g., by insisting that its mean is
zero.

Working in a conventional mixed finite element framework, we will further assume that
the underlying velocity and pressure approximations are (div-)stable (see, e.g., [2, p. 57], [10,
pp. lOff], and [19]); i.e., defining a mesh parameter h, a velocity space Vh, ,and a pressure
space Ph, there exist constants V, F, independent of h, such that

(1..4) y2 <
(P, BA-1Btp)

< i-,2 YP Ph.
(P, Qp)

Here, Q is the pressure mass matrix, or alternatively the Grammian matrix of basis functions
defining Ph. The lower bound , is the so-called inf-sup constant. The relation (1.4) is crucial
to the success of iterative solvers for solving discrete Stokes problems because it implies
that, using a quasi-uniform mesh, the Schur complement BA-1B has a condition number
bounded independently of h. It is also known from our previous work 16] that when v
"optimal" preconditioners for the Laplacian subblocks give rise to "optimal" preconditioners
for the Stokes problem in the sense that the spectra of the underlying discrete operators are
contained in small clusters, which are bounded independently of h. A consequence of this
is that the asymptotic convergence rate, with respect to the preconditioned residual norm, of
Krylov subspace methods applied to discrete Stokes problems is also independent of h.

In this paper, we derive analogous results for eigenvalues in the general Oseen case. We
introduce two preconditioners for the Oseen problem such that, for any value 0 < v < o,
the eigenvalues of the preconditioned Oseen operator are bounded independently of the mesh
size. These observations apply to arbitrary discretizations satisfying (1.4). In addition, in a
series of numerical experiments we show that these bounds on eigenvalues are predictive of
the performance of Krylov Subspace iterative methods for solving the preconditioned Oseen
equations. Ofcourse, it is well known that when convection dominates (i.e., when v is "small"
relative to h and Ilwll ), the standard Galerkin approximation deteriorates. Oscillations in the
discrete velocity are apparent if the local mesh Reynolds number Reh h llwll/v is greater
than unity. In such situations, the addition of streamwise diffusion to the discrete system is
known to give added stability, both theoretically and numerically; see [3] and [12]. In our
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experiments, we demonstrate the effectiveness of the ideas using both a standard Galerkin
discretization on a set of quasi-uniform grids and a streamline-upwind scheme on a set of
uniform grids.

The remainder of the paper is divided into three sections. Our main theoretical results
are presented in 2, and results of numerical experiments confirming and augmenting the
theoretical analysis are given in 3. In 4, we considermore practical preconditioning strategies
and present a perturbation analysis and additional numerical experiments demonstrating their
effectiveness.

2. Preconditioning strategies. In this section, we introduce two preconditioning tech-
niques for (1.1) and present an analysis showing that the spectra of the preconditioned systems
are bounded independently of the discretization mesh size h. Throughout the section, we will
be concerned with the eigenvalues ofpreconditioned matrices; these matrices can be viewed as
being ofthe form 4A/[- 1, where 4 is the original matrix and A/[ is the preconditioner. Equiva-
lently, we are concerned with the solution of the generalized eigenvalue problem Av .A//v.
All the matrices in question are implicitly parameterized by h. For simplicity, we state our
results under the assumption that B of (1.3) has full rank.

The first idea is derived from a method developed in 14], 16], [20] for the discrete Stokes
equations, where the coefficient matrix has the form

Consider the preconditioner

for (2.1). The eigenvalues of the preconditioned operator are then given by the solution to the
generalized eigenvalue problem

(2.2) ( Bt u uo)( t
One solution is . 1, of multiplicity nu -np, for which the eigenvectors have the form ()
where Bu 0; i.e., u is "discretely divergence free." The remaining eigenvalues come from
the solution of the quadratic equation ) 0 1) =/z, where/x is a generalized eigenvalue of
the Schur complement associated with (2.1),

(2.3) BA-1 B p lz Qp

Equivalently,

(2.4) )
1 4- /1 +4/z

Since (1.4) implies that as h 0 the solutions to (2.3) remain bounded above and below, it
follows that the eigenvalues of (2.2) are also bounded. The preconditioned conjugate residual
method can then be used to solve (2.1), with a convergence rate independent of h 14], 16].

A natural generalization for the discrete Oseen equations uses the block preconditioner

(2.5) (F 0)0 Q
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where F vA + N. As above, the generalized eigenvalues for

(2.6) (FB Bt u (F 0 ) (p
are either ) or (2.4), where/z is now a solution to the generalized eigenvalue problem

(2.7) Sp Iz Q p,

with S BF-1Bt, the Schur complement for the discrete Oseen operator. The following
result, which generalizes the analysis for the Stokes operator in 19], provides a bound.

THEOREM 1. The eigenvalues ofthe generalized Schur complementproblem (2.7)for the
Oseen operator are contained in a rectangular box in the right halfplane whose borders are
bounded independently of h.

Proof. Let C B ( F-l+2F-f) B’ denote the symmetric part of S, and let R B ( F-1-2 F-t ) Bt
denote its skew-symmetric part, so that S C + R. By Bendixson’s theorem ([17, p. 418]),
any eigenvalue/z of the problem (2.7) satisfies

(p, Cp) (p, Cp) I(P, Rp)I
(2.8) minp (P, 1Qp) -< Re(/z) < maXp (P, -vl Qp)

IIm(/z)l < maXp (p, 1Qp)
To construct bounds on these Rayleigh quotients, it will be convenient to refer to S

BA-1Bt, the Schur complement for the Stokes operator. For the symmetric part C in (2.8),
we use the relation

(p, Cp) (p, Cp) (p, Sp)

1Soop (p, Qp)
(2.9)

(p, QP) (p, -In light of (1.4), we need only consider the first quotient on the fight in (2.9). Note that

(2.10)

F-1 +F-t --F-I(F+Ft)F-t2
(vA + N)-1 (vA) (vA N)-1

A-1/2(vI ]2)-1
A-l2,

where/ A-1/2NA- 1/2. Consequently,

]2)-1 A-1/2Bt(p, Cp) (p, BA /2 (vI - p)
1BA_B p) (v, v)(p, Sp) (p,

(V,(I--2)-lv)

where v A-1/2B p. But/ is skew-symmetric, so that the eigenvalues of __/r2 are real and
nonnegative. Moreover, since N and A are first-order and second-order operators, respectively,
the eigenvalues of are uniformly bounded in modulus by a constant 3 that is independent
of h [5]. Therefore, the spectrum of I /2 is contained in the interval [1, 1 + 32/v2], or,
equivalently,

v2 (p, Cp)
< <1.

32 + v2 (p, - Sp)Combining this with (1.4) and (2.9) gives

’21)2 (p, Cp)
t2 -Jr" 132 p - Qp
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For the skew-symmetric part R in (2.8), the analogue of (2.9) is

(p, lop) (p, lop) (p, sp)

(p,-Qp) (p,- Sop) (p, Qp)

and as in (2.10), we have

F-1 F-t
-A-1/2 (vl + ])-1 )Q (pl [)-1 A-1/2

Therefore

(p, Rp) v(v, v)
(2.11)

1Sp) (v, (v2I N:Z)v)(P -where v (vI -/)- A-1/2BTp. The skew-symmetric matrix/ admits a decomposition
of the form UAU/, where A is a real diagonal matrix and U is unitary. Consequently,
[2 _UA2UH, and the modulus of the Rayleigh quotient on the right side of (2.11) can be
expressed in the form

(w, (u:ZI + A2)to)

This is bounded by

max max
-d<)< 1)2 -[.- ,2 o<.<d 1)2 ..]_ ,2

It follows from elementary calculus that this maximum is , obtained when . 1), giving

I(p, Rp)
(p, - Qp) 2

Corollary 1 follows immediately from Theorem 1 and (2.4).
COROLLARY 1. The eigenvalues of the discrete Oseen operator preconditioned by (2.5)

consist of ) of multiplicity nu np, together with four sets consisting ofpoints of the
form 1 + (a 4- bi) and -a 4- bi. These sets can be enclosed in two rectangular regions that

whose borders are bounded independently ofhare symmetric with respect to Re (,) ,
[ v ]The inclusion regions for these eigenvalues consist of the image of the box -, 1" x

[--, - under the mapping x - .(x) given by (2.4). It can be shown that the rectangular
regions of this result are contained in

1 + Smin 1 -+- Smax 1 Smax 1 Sminx[-t t] and x[-t t]
2 2 2 2

in the right and left half sides, respectively, of the complex plane, where

4),,21)2 ) 1/2
Smin 1 -- t2 "+" 1)2

t=
(1 + )1/2

)]1/2(1 + 4rz + 41 + 8y2 -+- 20Smax
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The fact that the eigenvalues for the preconditioned system derived from (2.5) lie on both
sides of the imaginary axis is a potential disadvantage of this idea. An alternative that avoids
this problem is the block triangular operator

(
0

For this choice, the preconditioned eigenvalue problem is

Again, one solution is ) 1, now of multiplicity nu. If ) : 1, then premultiplying the first
block row of (2.13) by BF-1 and using the relation Bu -.(-Q)p leads to equation (2.7)
for the other eigenvalues. Thus, we have the following result.

THEOREM 2. The eigenvalues of the discrete Oseen operator preconditioned by (2.12)
consist of 1 together with the generalized eigenvalues of S in (2.7). Therefore, the
eigenvalues are bounded independently ofh.

Remark 1. Use of either preconditioning operator (2.5) or (2.12) entails the computation
of the action of F-1 at each step of an iterative procedure. F is a discrete convection-diffusion
operator and applying F-1 to a vector using direct methods will be expensive. An alternative
is to replace this computation with an approximation obtained by iterative solution of the
convection-diffusion equation. We will examine this approach in 4.

Remark 2. Both preconditioners also require the action of Q-l, which may also be
expensive, depending on the choice ofpressure discretization. In this case, however, it is known
that Q can be replaced by some approximation 0 without affecting asymptotic convergence
properties; only the constants , and F of (1.4) change [21 ]. In the experiments discussed in

3 and 4, we replace Q with a diagonal matrix consisting of the main diagonal of Q.

3. Numerical results I: Exact convection-diffusion solves. In this section, we present
the results of numerical experiments indicating that the analysis of 2 is predictive of the
performance of iterative methods for solving (1.3). Computations were performed using
MATLAB 4.1 on a variety of computing platforms.

Our test problem is a "leaky" two-dimensional lid-driven cavity problem in a square
domain (-1 < x < -1 < y < 1). The boundary conditions are Ux Uy 0 on the three
fixed walls (x -1, y -1, x 1), and Ux 1, Uy 0 on the moving wall (y 1). The
hydrostatic pressure is not explicitly specified, so that all the linear equation systems we solve
below are singular with a one-dimensional nullspace. The convective "wind" is a circular
vortex as illustrated in Fig. 1, and is given by

Wx 2y(1 x2),
wy -2x(1 y2).

The fact that there is no dominant flow direction makes this a challenging test problem. Note
that in the comers and in the center of the flow region the driving flow is stagnant.

Unless otherwise specified, we consider values of the viscosity parameter u between 1
and 1/100. When v we have diffusion dominated (essentially Stokes) flow, whereas as

This is actually not a linearization ofthe Navier-Stokes equations since w and u do not satisfy the same boundary
conditions; this fact does not affect the demonstration of the solution algorithms. Also, note that div w 0 so that
the term 1/2 u(div w) in (1.2) is identically zero.
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FZG. 1. Magnitude and direction ofthe convectingflow.

Streamlines’equally spaced Streamlines "selected

FZG. 2. Uniform 64 x 64 grid: v 1.

v --+ 0 the flow becomes dominated by the "wind." Typical flow solutions are illustrated
in Figs. 2 and 3. Note that as the viscosity is decreased, the center of primary recirculation
moves to the fight (the Stokes flow solution is perfectly symmetric about the line x 0), and
secondary vortices are generated in the two bottom comers.

To discretize (1.2), we take a finite element subdivision based on n x n grids of rectan-
gular elements. Bearing in mind the nature of the flow solution being computed, we present
results for two representative discretizations here: a conventional Galerkin approach using
a quasi-uniform sequence of grids and a streamline-upwind method using uniform grids of
square elements of size h 2In. In either case, the mixed finite element used was the
div-stable "Taylor-Hood" method based on continuous bilinear pressure with a continuous
bilinear velocity field defined on four element macroelements (see, e.g., [10, p. 30]).

For the Galerkin discretization, the quasi-uniform grids are chosen to resolve the details
of the flow in the four comers of the domain: they are symmetric about x 0 and y 0, and
in each quadrant the grid lines become more dense near the boundary. The 64 x 64 grid is
shown in the pressure solution plot in Fig. 4. The analytic pressure solution is singular at the
top comers where the imposed velocity is discontinuous.
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FIG. 3. Nonuniform 64 x 64 grid: v / 100.
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FIG. 4. Pressure solutionfor v / 10.

The streamline-upwind discretization is as described in 12, p. 185]. In this case, the block
convection-diffusion operator F is perturbed by a symmetric positive semidefinite matrix Aw.
That is, F --yAh + Aw + N, where Ah is the discrete Laplacian obtained from the usual
Galerkin formulation. Aw is the discrete form of a stabilizing term c (w. Vu, w. Vv) that adds
ot O(h) diffusion along the streamlines. For our experiments with streamline upwinding,
we took c hi4. Note that the perturbation does not affect the skew-symmetric part of
the convection-diffusion operator, so that the analysis of 2 holds; only the definition of the
"diffusion matrix" A is changed, from --Ah to --Ah / Aw.

We first consider the bounds of Theorem 1. Table shows the extreme real parts and
maximum imaginary parts of the generalized eigenvalues (2.7) of the Schur complement
operator, for v 1 / 10 and 1 ! 100 with the streamline-upwind discretization, on three meshes.
The small changes in all values are in accordance with the analysis, although it appears that
finer meshes would be needed to produce constant values. The analysis also shows that the
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TABLE
Eigenvalues ofthe Schur complementfor streamline-upwind discretization.

v- 1/10
Grid Min Re Max Re Max Im

16 16 7.17E-2 1.11 0.46
32 32 8.75E-2 1.64 0.71
54 54 9.08E-2 2.00 0.87

v 1/100
Min Re Max Re Max Im
1.66E-2 1.07 0.20
1.33E-2 1.11 0.50
1.14E-2 1.37 0.74

10

F:: 10
.2

E
E

10
.3

10
2

10
nu

FIG. 5. Minimum real parts ofeigenvalues ofthe Schur complement,for streamline-upwind discretization on a
54 64 grid.

real parts and largest imaginary parts of the eigenvalues are bounded independently of v; the
bound for the smallest real part is proportional to v2. The data in Table 1 are in agreement
with the upper bounds. Figure 5 plots the smallest real parts on a logarithmic scale for the
streamline-upwind discretization on a 64 x 64 grid and u 1/20, 1/40, 1/80, and 1 / 160.
The results indicate that the lower bound is also tight.

We test the preconditioners here with two Krylov subspace methods for solving non-
symmetric systems: the generalized minimum residual method (GMRES) [15] and a simple
implementation ofthe quasi-minimum residual method (QMR) [8] based on coupled two-term
recurrences without look-ahead. GMRES demonstrates the performance of the precondition-
ers with the optimal (with respect to the residual norm) Krylov subspace solver. This method
is impractical for large problems because its work and storage requirements grow with the
iteration count; QMR is a nonoptimal alternative that avoids this difficulty. Some additional
experiments with restarted GMRES are presented in 4. In all cases we use right-oriented
preconditioning, and our convergence criterion is a reduction of 10-6 in the 12-norm of the
residual. The action of F-1 and F-t is computed using the LU-factorization in MATLAB.
We start from a zero initial guess. Using random initial guesses gave comparable iteration
counts in all cases.

We first discuss the performance of GMRES. Table 2 shows the iteration counts obtained
for three values of v using the block triangular preconditioner (2.12) in the case of Galerkin ap-
proximation on the quasi-uniform grid sequence, and Table 3 shows the iteration counts for uni-
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TABLE 2
GMRES iteration countsfor Galerkin discretization with block triangular preconditioner.

Grid
v=l

v 1/10
v 1/50

16 x 16
18
25
45

32 x 32 64 x 64 128 x 128
19 17 14
31 32 31
69 93 110

TABLE 3
GMRES iteration countsfor streamline-upwind discretization with block triangular preconditioner.

Grid 16 x 16 32 x 32 64 x 64 128 x 128
v 21 22 21 19

v--- 1/10 32 36 35 33
v 1/50 48 72 97 111

TABLE 4
QMR iteration countsfor Galerkin discretization with block triangular (diagonal) preconditioner.

Grid 16 x 16
v 22 (43) 22 (43)

v 1/10 28(51) 36(68)
v 1/50 51 (100) 78 (155)
v 1/100 73(143) 126(246)

32 x 32 64 x 64 128 x 128
22(41)
39(78)
112(223)
189(375)

16
36
127
253

form grids with streamline-upwind discretization. The results suggest that grid-independent
convergence is observed even on relatively coarse grids if the flow is diffusion dominated, that
is, eigenvalues are indeed predictive of performance. If convection dominates (as v tends to
zero), then the iteration counts increase, as might be expected from the analytic bounds of 2.
For the smallest value of v considered here, 1/50, the iteration counts grow as the mesh is
refined; although for fine enough grids the counts become close to constant. We believe that
for "small" v, the asymptotic grid independence will be visible only for sufficiently fine grids.

GMRES with the block diagonal preconditioner (2.5) gives an identical picture. Indeed,
we find that for the grid sizes and values of v in Tables 2 and 3 (only n < 64 was tested),
GMRES requires precisely 2k 1 iterations to reach the tolerance where k is the iteration
count from Table 2 or 3. Moreover, the behavior of GMRES using (2.5) mirrors its behavior
with the triangular preconditioning, in the sense that the odd iterates at step 2i 1 are close
to those obtained in the triangular case at step i, and the norms of the even iterates stagnate.
A rigorous explanation for this behavior can be given by relating the optimal polynomials
implicitly generated by GMRES. In particular, it follows from the analysis in [6] that for
a particular starting guess (not zero), the th GMRES polynomial for the triangular case is
identical to the (2i 1)st GMRES polynomial for the diagonal case.

Tables 4 and 5 show analogous iteration counts for QMR. The tables contain data for
both the triangular and (in parentheses for n < 64) diagonal preconditioners. Note that the
iteration counts in the first three rows of Tables 4 and 5 are close to the corresponding entries
of Tables 2 and 3, respectively; i.e., the performance in QMR is close to optimal. Results for
v 1 ! 100 are included to get a sense of the behavior of the preconditioners as v becomes
small; it appears that the asymptotic behavior is not seen for the grid sizes used.

Note that the cost per step of the block triangular preconditioner is only slightly higher
than that of the block diagonal preconditioner (only an extra multiplication by B is needed);
hence (2.12) is more efficient. However, for the Stokes problem (v -- cx), the preferred
choice of preconditioner is less obvious since the inherent symmetry is destroyed if (2.12) is
used in place of (2.5).
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TABLE 5
QMR iteration countsfor streamline-upwind discretization with block triangular (diagonal) preconditioner.

Grid 16 x 16
v 25 (49) 27 (51)

v 1/10 36(78) 44(91)
v 1/50 61 (127) 91 (175)
v 1/100 76(157) 133(249)

32 x 32 64 x 64 128 x 128
25 (47)
42 (80)
117 (234)
190(382)

22
37
130
229

Remark 3. In addition to the implementation of QMR with a coupled two-term recur-
rence (QMR2) discussed above, we tested a version without look-ahead based on a three-term
recurrence (QMR3) [7], and the definitive (Fortran) implementation of a two-term QMR with
look-ahead (QMRz) from the QMRPAK directory in Netlib. For the preconditioners dis-
cussed above, the performances of the three variants were virtually identical. However, with
the inexact preconditioners of the next section, we found QMR2 to be much more robust than
QMR3.

4. Numerical results II: Inexact convection-diffusion solves. The dominant costs of
the preconditioners of2 and 3 come from applying the action of F-1 and for QMR, F-t, to
some vector v at each step of the iteration. In this section, we show that this operation can be
replaced by an inexpensive one derived from an approximation to F-1, with little degradation
of performance of the Krylov subspace methods. The idea is to replace the preconditioning
operators (2.5) and (2.12) with

(4.1) and
0 a 0-Q

respectively, where/ F. Our choice of f will be implicitly determined by the use of
iterative methods to compute approximate solutions to the systems Fw v and Ftw v,
although the methodology is not restricted to this choice. We will refer to the preconditioners
that use the exact action of F-1 as the exact versions, and those based on approximations as
in (4.1) as inexact versions.

Some insight into the effects of the inexact preconditioners is derived from matrix per-
turbation theory. Let Q Q. The preconditioned matrix for the exact block diagonal
preconditioner (2.5) is

AD ( Bt -1 t [ BtQ-I)
and that derived from the inexact version is

( )_1AD (Fn nt) P 0 -"4D-D0 0 Q

where, with E =/ F,

go=-
BF 1El-1

0
0

Similarly, the preconditioned matrices for the exact and inexact block tridiagonal precondi-
tioners (2.12) satisfy .At Ar + $r, where

(I 0 ) (E-1 E-IBtQ- ),AT BF-1 BF-1BtQ-I gr
BF-1E-1 BF-1E-IBtQ-
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We have the following bounds on the eigenvalues of the preconditioned systems using inexact
preconditioners.

THEOREM 3. If4o )2DAD)2 is diagonalizable, thenfor any eigenvalue lz E cr(o),

min I)-/zl _< IIE-lllco0) max(l, llnF-Xllo).

If.AT ’)TAT)} is diagonalizable, thenfor any eigenvalue lz tr(eT),

min I;-/z] _< IlE/-lllco(;7-)(1 + ]lntQ-11l)max(1, IInF-1llo).

Proof. The result is an immediate consequence of the Bauer-Fike theorem [9, p. 342],
which states that for diagonalizable 4 )2A)2-1, any/z 6 cr(4 + ) satisfies minxes(at) IX
zl _< c 0;)I111, where I1" is any lp-norm.

Thus, if/ is a good enough approximation to F, i.e., if enough inner iterations are used,
then E/-1 will be small and the eigenvalues ofD and T will be close to those of
and 4T, respectively. We state the result in terms of the/-norm only because the bounds
then have a simple form.

Remark 4. We have computed the condition numbers c (;) for .AT and found them to be
large, on the order of 103 or higher, for the three values of v, with streamline upwinding and
h 1/16. However, the presence of K (V) in these bounds is an artifact of the proof of the
Bauer-Fike theorem; there are more subtle analyses ([9, pp. 344ff]), as well as bounds that
do not require diagonalizable matrices [11]. We have observed that the eigenvalues of 4T
are insensitive to perturbations, and we believe that the presence of K ()2) is pessimistic. This
supposition is supported by the experimental results described below.

To demonstrate that inexact preconditioning is effective, we consider versions of it based
on two line-oriented splittings of F. The first uses a horizontal line Gauss-Seidel relaxation:
Let F H R denote a horizontal line Gauss-Seidel splitting of the block convection-
diffusion operator F derived from the one-line natural left-to-right, bottom-to-top ordering of
the velocity grid. Thus, H is a block lower triangular matrix consisting of the block diagonal
of F (a tridiagonal matrix) together with the strict block lower triangular part of F. (See 18],
[22] for further details.) The horizontal line Gauss-Seidel method for Fw v performs the
iteration

1/30 --0, W + 11)i "JI- H v Fw

For k steps of this iteration, the approximating matrix is/ F(I (H-1R)k)- 1.
It has been observed that the performance of relaxation methods of this type can be im-

proved if the sweep direction follows the underlying direction of flow [4]. Our benchmark
problem has a circular flow, so that no simple line relaxation can mimic the flow direction
throughout ft. A slightly more sophisticated idea is to use an alternating line relaxation.
For this, let F V T denote a vertical line Gauss-Seidel splitting of F; that is, if P
is a permutation matrix associated with the mapping from the natural horizontal line or-
dering of grid points to the natural vertical line ordering, then pTvP is the block lower
triangular part of pTFp. One iteration of alternating line relaxation consists of two line
Gauss-Seidel steps, one using the horizontal splitting, followed by one using the vertical
splitting:

W0 0, 1/)i+1/2 11)i "- n-l(v Fwi), Wi+l Wi+l/2 + v-l(u FWi+l/2).
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FIG. 6. Performance ofblock tridiagonal inexact preconditionersfor 32 x 32 grid.

Figure 6 shows results of using the inexact block tridiagonal preconditioners with a ver-
sion of GMRES with restarts every ten steps (denoted GMRES(10)) and with QMR. The
test problem is discretized by streamline upwinding on a 32 x 32 grid. Results for inexact
block diagonal preconditioners were similar, except that, as with the exact preconditioners,
convergence was slower. We used four steps of horizontal line relaxation or two steps of alter-
nating line relaxation, so that both inexact preconditioners perform four sweeps. The figure
also shows the performance of the exact preconditioner, whose cost per step is significantly
more expensive. For example, with an n x n velocity grid, direct solution using a bandsolver
requires O(n4) operations, whereas each inner iteration is an O(n2) computation. We see that
the use of inexact preconditioners in place of the exact versions leads to little degradation of
performance ofthe Krylov subspace methods. For example, in the convection-dominated case
v 1/100, QMR with alternating line relaxation requires roughly 25% more iterations than
with the exact preconditioner. For the diffusion dominated case v 1, roughly three times as
many outer iterations are required with the inexact preconditioners, which still leads to a less
costly computation. Not surprisingly, alternating relaxation is more effective than horizontal
relaxation, especially for convection-dominated problems. We remark that our goal here is
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only to demonstrate "proof-of-concept"; many other techniques for approximating the action
of F-1 are possible, for both diffusion-dominated and convection-dominated flow. See, for
example, 1], [4], 14], 16], [20].

Remark 5. Although we do not make a detailed comparison of Krylov subspace methods,
we briefly comment on the behavior of the two choices used here. QMR requires twice as
many preconditioned matrix-vector products per step as GMRES(10), and since matrix-vector
products are the dominant cost, each QMR step is roughly twice as expensive. Thus, these
results indicate that GMRES(10) is more efficient than QMR for large v, but QMR becomes
more effective as convection becomes dominant. The storage requirements ofthe two methods
are comparable.

Acknowledgments. We thank Oliver Ernst, Roland Freund, and Marlis Hochbruck for
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