
SIAM J. SCI. COMPUT. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 41, No. 4, pp. A2657--A2680

LOW-RANK SOLUTION METHODS FOR STOCHASTIC
EIGENVALUE PROBLEMS\ast 

HOWARD C. ELMAN\dagger AND TENGFEI SU\ddagger 

Abstract. We study efficient solution methods for stochastic eigenvalue problems arising from
discretization of self-adjoint PDEs with random data, where the underlying operators depend linearly
on the random parameters. With the stochastic Galerkin approach, the solutions are represented as
generalized polynomial chaos expansions. When these solutions can be approximated well by low-
rank objects, we introduce a low-rank variant of the inverse subspace iteration algorithm for com-
puting one or several minimal eigenvalues and corresponding eigenvectors of parameter-dependent
matrices. In the algorithm, the iterates are approximated by low-rank matrices, which leads to sig-
nificant cost savings. The algorithm is tested on two benchmark problems: a stochastic diffusion
problem with some poorly separated eigenvalues and an operator derived from a discrete stochastic
Stokes problem whose minimal eigenvalue is related to the inf-sup stability constant. Numerical
experiments show that the low-rank algorithm produces accurate solutions compared to the Monte
Carlo method, and it uses much less computational time than the original algorithm without low-rank
approximation.
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1. Introduction. Approaches for solving stochastic eigenvalue problems can be
broadly divided into nonintrusive methods, including Monte Carlo methods and sto-
chastic collocation methods [1, 32], and intrusive stochastic Galerkin methods. The
Galerkin approach gives parametrized descriptions of the eigenvalues and eigenvec-
tors, represented as expansions with stochastic basis functions. A commonly used
framework is the generalized polynomial chaos (gPC) expansion [44]. A direct pro-
jection onto the subspace spanned by the basis functions will result in large coupled
nonlinear systems that can be solved by a Newton-type algorithm [5, 13]. Alternatives
that do not use nonlinear solvers are stochastic versions of the (inverse) power meth-
ods and subspace iteration algorithms [16, 17, 28, 38, 42]. These methods have been
shown to produce accurate solutions compared with the Monte Carlo or collocation
methods. However, due to the extra dimensions introduced by randomness, solving
the linear systems, as well as other computations, can be expensive. In this paper,
we develop new efficient solution methods that use low-rank approximations for the
stochastic eigenvalue problems within the stochastic Galerkin approach.

Low-rank methods have been explored for solution of stochastic/parametrized
PDEs and high-dimensional PDEs. Discretization of such PDEs gives large, sparse,
and in general structured linear systems. Iterative solvers construct approximate
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solutions of low-rank matrix or tensor structure so that the matrix-vector products
can be computed cheaply. Combined with rank compression techniques, the iterates
are forced to stay in low-rank format. This idea has been used with Krylov subspace
methods [2, 4, 22, 25] (note that with low-rank compression, these methods become
inexact methods) and multigrid methods [9, 15]. The low-rank solution methods
solve the linear systems to a certain accuracy with much less computational effort
and facilitate the treatment of larger problem scales. Low-rank iterative solvers were
also used in [3] for optimal control problems constrained by stochastic PDEs.

In this study, we use the stochastic Galerkin approach to compute gPC expan-
sions of one or more minimal eigenvalues and corresponding eigenvectors of parameter-
dependent matrices, arising from discretization of stochastic self-adjoint PDEs. Our
work builds on the results in [28, 38]. We devise a low-rank variant of the stochastic
inverse subspace iteration algorithm, where the iterates and solutions are approx-
imated by low-rank matrices. In each iteration, the linear system solves required
by the inverse iteration algorithm are performed by low-rank iterative solvers. The
orthonormalization and Rayleigh quotient computations in the algorithm are also
computed with the low-rank representation. To test the efficiency of the proposed
algorithm, we consider two benchmark problems: a stochastic diffusion problem and
a Schur complement operator derived from a discrete stochastic Stokes problem. The
diffusion problem has some poorly separated eigenvalues, and we show that a general-
ization of Rayleigh--Ritz refinement for the stochastic problem can be used to obtain
good approximations. A low-rank geometric multigrid method is used for solving the
linear systems. For the Stokes problem, the minimal eigenvalue of the Schur com-
plement operator is the square of the parametrized inf-sup stability constant for the
Stokes operator. Each step of the inverse iteration entails solving a Stokes system
for which a low-rank variant of the MINRES method is used. We demonstrate the
accuracy of the solutions and efficiency of the low-rank algorithms by comparison
with the Monte Carlo method and the full subspace iteration algorithm without using
low-rank approximation.

We note that a low-rank variant of locally optimal block preconditioned conju-
gate gradient method was studied in [23] for eigenvalue problems from discretization
of high-dimensional elliptic PDEs. A low-rank Arnoldi method was proposed in [6] to
approximate the posterior covariance matrix in stochastic inverse problems. Another
dimension reduction technique is the reduced basis method. This idea was used in
[11, 18, 27], where the eigenvectors are approximated from a linear space spanned
by carefully selected sample ``snapshot"" solutions obtained via, for instance, a greedy
algorithm that minimizes an a posteriori error estimator. Inf-sup stability problems
were also studied in [19, 36] in which lower and upper bounds for the smallest ei-
genvalue of a stochastic Hermitian matrix are computed using successive constraint
methods in the reduced basis context.

The rest of the paper is organized as follows. In section 2 we review the stochastic
inverse subspace iteration algorithm for computing several minimal eigenvalues and
corresponding eigenvectors of parameter-dependent matrices. In section 3 we intro-
duce the idea of low-rank approximation in this setting and discuss how computations
in the inverse subspace iteration algorithm are done efficiently with quantities in low-
rank format. The stochastic diffusion problem and the stochastic Stokes problem
are discussed in sections 4 and 5, respectively, with numerical results showing the
effectiveness of the low-rank algorithms. Conclusions are drawn in the last section.
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2. Stochastic inverse subspace iteration. Let (\Omega ,\scrF ,\scrP ) be a probability trip-
let where \Omega is a sample space with \sigma -algebra \scrF and probability measure \scrP . Define
a random variable \xi : \Omega \rightarrow \Gamma \subset \BbbR m with uncorrelated components, and let \mu be the
induced measure on \Gamma . Consider the following stochastic eigenvalue problem: Find
ne minimal eigenvalues \lambda s(\xi ) and corresponding eigenvectors us(\xi ) such that

(2.1) A(\xi )us(\xi ) = \lambda s(\xi )us(\xi ), s = 1, 2, . . . , ne,

almost surely, where A(\xi ) is a matrix-valued random variable. We will use a version
of stochastic inverse subspace iteration studied in [28, 38] for the solution of (2.1).
The approach derives from a stochastic Galerkin formulation of subspace iteration,
which is based on projection onto a finite-dimensional subspace of L2(\Gamma ) spanned by
the gPC basis functions \{ \psi k(\xi )\} 

n\xi 

k=1. These functions are orthonormal with

(2.2) \langle \psi i\psi j\rangle = \BbbE [\psi i\psi j ] =

\int 
\Gamma 

\psi i(\xi )\psi j(\xi )d\mu = \delta ij ,

where \langle \cdot \rangle is the expected value and \delta ij is the Kronecker delta. The stochastic Galerkin
solutions are expressed as expansions of the gPC basis functions,

(2.3) \lambda s(\xi ) =

n\xi \sum 
r=1

\lambda sr\psi r(\xi ), us(\xi ) =

n\xi \sum 
j=1

usj\psi j(\xi ).

We briefly review the stochastic subspace iteration method in the case where A(\xi )
admits an affine expansion with respect to components of the random variable \xi :

(2.4) A(\xi ) = A0 +

m\sum 
l=1

Al\xi l,

where each Al is an nx \times nx deterministic matrix, obtained from, for instance, finite
element discretization of a PDE operator. The matrix A0 is the mean value of A(\xi ).
Such a representation can be obtained from a Karhunen--Lo\`eve (KL) expansion [26] of
the stochastic term in the problem (see (4.2)). Let \{ us,(i)(\xi )\} ne

s=1 be a set of approxi-
mate eigenvectors obtained at the ith step of the inverse subspace iteration. Then at
step i+ 1, one needs to solve

(2.5) \langle A(\xi )vs,(i+1)\psi k\rangle = \langle us,(i)\psi k\rangle , k = 1, 2, . . . , n\xi ,

for \{ vs,(i+1)\} ne
s=1 and compute \{ us,(i+1)\} ne

s=1 via orthonormalization. If ne = 1, for
the latter requirement, vs,(i+1) is normalized so that | | us,(i+1)| | 2 = 1 almost surely. If
ne > 1, a stochastic version of the Gram--Schmidt process is applied, and the resulting
vectors \{ us,(i+1)\} ne

s=1 satisfy \langle us,(i+1), ut,(i+1)\rangle \BbbR nx = \delta st almost surely, where \langle \cdot , \cdot \rangle \BbbR nx

is the Euclidean inner product in \BbbR nx . With the iterates expressed as gPC expansions,

for instance, us,(i)(\xi ) =
\sum n\xi 

j=1 u
s,(i)
j \psi j(\xi ), collecting the n\xi equations in (2.5) for each

s yields an nxn\xi \times nxn\xi linear system

(2.6)

m\sum 
l=0

(Gl \otimes Al)v
s,(i+1) = us,(i),

where \otimes is the Kronecker product, each Gl is an n\xi \times n\xi matrix with [Gl]kj = \langle \xi l\psi k\psi j\rangle 
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(\xi 0 \equiv 1 and G0 = I), and

(2.7) us,(i) =

\left(      
u
s,(i)
1

u
s,(i)
2
...

u
s,(i)
n\xi 

\right)      \in \BbbR nxn\xi .

Note that the matrices \{ Gl\} are sparse due to orthogonality of the gPC basis functions
[10, 30]. The initial iterate is given by solving the mean problem A0\=u

s = \=\lambda s\=us and

(2.8) us,(0) =

\left(     
\=us

0
...
0

\right)     .

When the variance of the random parameters in (2.4) is small, the mean problem
provides a good initial value for the algorithm. The complete algorithm is summarized
as Algorithm 2.1. The details of the computations in steps 4 and 7 are given in
sections 3.2 and 3.3.

Algorithm 2.1: Stochastic inverse subspace iteration.

1: initialization: initial iterate us,(0).
2: for i = 0, 1, 2, . . . do
3: Solve the stochastic Galerkin system (2.6) for vs,(i+1), s = 1, 2, . . . , ne.

4: If ne = 1, compute us,(i+1) by normalization. Otherwise, apply a
stochastic Gram--Schmidt process for orthonormalization.

5: Check convergence.

6: end
7: Compute eigenvalues using a Rayleigh quotient.

3. Low-rank approximation. In this section we discuss the idea of low-rank
approximation and how this can be used to reduce the computational costs of Algo-
rithm 2.1. The size of the Galerkin system (2.6) is in general large, and solving the
system can be computationally expensive. We utilize low-rank iterative solvers where
the iterates are approximated by low-rank matrices and the system is efficiently solved
to a specified accuracy. In addition, low-rank forms can be used to reduce the costs
of the orthonormalization and Rayleigh quotient computations in the algorithm.

3.1. System solution. For any random vector x(\xi ) with expansion x(\xi ) =\sum n\xi 

j=1 xj\psi j(\xi ), where each xj is a vector of length nx, let

(3.1) X = mat(x) = [x1, x2, . . . , xn\xi 
] \in \BbbR nx\times n\xi .

Then the Galerkin system
\sum m

l=0(Gl \otimes Al)x = f is equivalent to the matrix form

(3.2)

m\sum 
l=0

AlXG
T
l = F = mat(f).
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(a) \sigma = 0.01 (b) \sigma = 0.1

Fig. 3.1. Singular values (relative to the largest one) of the matrix representations of the
stochastic eigenvectors for the numerical examples in sections 4 and 5 with standard deviations
\sigma = 0.01 and \sigma = 0.1. nc = 5, b = 4.0, m = 11, n\xi = 364.

It was shown in [4] that for a symmetric and positive definite problem where the ma-
trices \{ Gl\} and F have small ranks, the solutionX can be approximated by a low-rank
matrix. For the examples considered in this study, when the variance of the random
parameters is small, the singular values of the solution matrix decay exponentially fast
(see Figure 3.1), and a low-rank approximate solution can be obtained by dropping
the terms corresponding to small singular values in a singular value decomposition
(SVD).

To take advantage of the low rank of the solution matrix, we construct itera-
tive solvers that produce a sequence of low-rank approximate iterates. Let X(i) =
mat(x(i)) be the ith iterate computed by an iterative solver applied to (3.2), and sup-
pose X(i) is represented as the product of two rank-\kappa matrices, i.e., X(i) = Y (i)Z(i)T ,
where Y (i) \in \BbbR nx\times \kappa , Z(i) \in \BbbR n\xi \times \kappa . If this factored form is used throughout the
iteration without explicitly forming X(i), then the matrix-vector product (Gl \otimes Al)x
will have the same structure,

(3.3) AlX
(i)GT

l = (AlY
(i))(GlZ

(i))T ,

and it is only necessary to compute AlY
(i) and GlZ

(i). If \kappa \ll min(nx, n\xi ), this means
that the computational costs of the matrix operation are reduced from O(nxn\xi ) to
O((nx + n\xi )\kappa ). (Note that the matrices \{ Gl\} and \{ Al\} obtained from the stochastic
Galerkin method are sparse.) On the other hand, summing terms with the factored
form tends to increase the rank, and rank compression techniques must be used in

each iteration to force the matrix rank \kappa to stay low. In particular, ifX
(i)
1 = Y

(i)
1 Z

(i)T
1 ,

X
(i)
2 = Y

(i)
2 Z

(i)T
2 , where Y

(i)
1 \in \BbbR nx\times \kappa 1 , Z

(i)
1 \in \BbbR n\xi \times \kappa 1 , Y

(i)
2 \in \BbbR nx\times \kappa 2 , Y

(i)
2 \in \BbbR n\xi \times \kappa 2 ,
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then

(3.4) X
(i)
1 +X

(i)
2 = [Y

(i)
1 , Y

(i)
2 ][Z

(i)
1 , Z

(i)
2 ]T .

The addition gives a matrix of rank \kappa 1 + \kappa 2 in the worst case. Rank compression can
be achieved by an SVD-based truncation operator \~X(i) = \scrT (X(i)) so the matrix \~X(i)

has a much smaller rank than X(i) [22]. Specifically, we compute QR factorizations
Y (i) = QYRY and Z(i) = QZRZ and an SVD RYR

T
Z = \^Y diag(\sigma 1, . . . , \sigma \kappa ) \^Z

T , where
\sigma 1, . . . , \sigma \kappa are the singular values in decreasing order. We can truncate to a rank-\~\kappa 
matrix by dropping the terms corresponding to small singular values with a relative

criterion
\sqrt{} 
\sigma 2
\~\kappa +1 + \cdot \cdot \cdot + \sigma 2

\kappa \leq \epsilon rel
\sqrt{} 
\sigma 2
1 + \cdot \cdot \cdot + \sigma 2

\kappa or an absolute one \~\kappa = max\{ \~\kappa | 
\sigma \~\kappa \geq \epsilon abs\} . In MATLAB notation, the truncated matrix is \~X(i) = \~Y (i) \~Z(i)T with

(3.5) \~Y (i) = QY
\^Y (:, 1 : \~\kappa ), \~Z(i) = QZ

\^Z(:, 1 : \~\kappa )diag(\sigma 1, . . . , \sigma \~\kappa ).

Low-rank approximation and truncation have been used for Krylov subspace
methods [4, 22, 25] and multigrid methods [9]. More details can be found in these ref-
erences. We will use examples of such solvers for linear systems arising in eigenvalue
computations, as discussed in sections 4 and 5.

3.2. Orthonormalization. In Algorithm 2.1, if ne = 1, the solution vs,(i+1)(\xi )
is normalized so that | | us,(i+1)(\xi )| | 2 = 1 almost surely. With the superscripts omitted,
assume u(\xi ) =

\sum n\xi 

j=1 uj\psi j(\xi ) is the normalized random vector constructed from v(\xi ).

This expansion can be computed using sparse grid quadrature \{ \xi (q), \eta (q)\} nq

q=1, where

\{ \eta (q)\} are the weights [12]:

(3.6) uj = \langle u(\xi )\psi j(\xi )\rangle =
\biggl\langle 

v(\xi )

\| v(\xi )\| 2
\psi j(\xi )

\biggr\rangle 
\approx 

nq\sum 
q=1

v(\xi (q))

\| v(\xi (q))\| 2
\psi j(\xi 

(q))\eta (q).

Suppose the ``matricized"" version of the expansion coefficients of v(\xi ) is represented
in low-rank form

(3.7) V = [v1, v2, . . . , vn\xi 
] = YvZ

T
v ,

where Yv \in \BbbR nx\times \kappa v , Zv \in \BbbR n\xi \times \kappa v . With \Psi (\xi (q)) = [\psi 1(\xi 
(q)), \psi 2(\xi 

(q)), . . . , \psi n\xi 
(\xi (q))]T ,

we have

(3.8) v(\xi (q)) =

n\xi \sum 
j=1

vj\psi j(\xi 
(q)) = V\Psi (\xi (q)) = YvZ

T
v \Psi (\xi (q)).

Let U = [u1, u2, . . . , un\xi 
]. Then (3.6) yields

(3.9) [U ]:,j = uj =

nq\sum 
q=1

YvZ
T
v \Psi (\xi (q))

\| YvZT
v \Psi (\xi (q))\| 2

\psi j(\xi 
(q))\eta (q)

and

(3.10) U =

nq\sum 
q=1

YvZ
T
v \Psi (\xi (q))

\| YvZT
v \Psi (\xi (q))\| 2

\Psi (\xi (q))T \eta (q).



LOW-RANK METHODS FOR STOCHASTIC EIGENVALUES A2663

Thus, the matrix U can be expressed as an outer product of two low-rank matrices
U = YuZ

T
u with

(3.11) Yu = Yv \in \BbbR nx\times \kappa v , Zu =

nq\sum 
q=1

\Psi (\xi (q))(\Psi (\xi (q))TZv)

\| Yv(ZT
v \Psi (\xi (q)))\| 2

\eta (q) \in \BbbR n\xi \times \kappa v .

This implies that the expansion coefficients of the normalized vector u(\xi ) can be
written as a low-rank matrix with the same rank as the analogous matrix associated
with v(\xi ). The cost of computing Zu is O((nx + n\xi )nq\kappa v). Since in general nq \gg 
\kappa v, it can be further reduced to O((nx + nq)\kappa 

2
v + n\xi nq\kappa v) by first computing a QR

factorization of Yv and factoring out the orthogonal matrix in the denominator.
In the general case where more than one eigenvector is computed (ne > 1), a

stochastic version of the Gram--Schmidt process is applied to compute an orthonormal
set \{ us,(i+1)(\xi )\} ne

s=1 [28, 38]. With the superscript (i+1) omitted, the process is based
on the calculation

(3.12) us(\xi ) = vs(\xi ) - 
s - 1\sum 
t=1

\chi ts(\xi ) = vs(\xi ) - 
s - 1\sum 
t=1

\langle vs(\xi ), ut(\xi )\rangle \BbbR nx

\langle ut(\xi ), ut(\xi )\rangle \BbbR nx

ut(\xi )

for s = 2, . . . , ne. If we write \chi ts(\xi ) =
\sum n\xi 

k=1 \chi 
ts
k \psi k(\xi ) and assume ut(\xi ) is already

normalized in previous steps, then

(3.13)

\chi ts
k = \langle vs(\xi )Tut(\xi )ut(\xi )\psi k(\xi )\rangle 

\approx 
nq\sum 
q=1

vs(\xi (q))Tut(\xi (q))ut(\xi (q))\psi k(\xi 
(q))\eta (q)

=

nq\sum 
q=1

(\Psi (\xi (q))TZvsY T
vs)(YutZT

ut\Psi (\xi (q)))YutZT
ut\Psi (\xi (q))\psi k(\xi 

(q))\eta (q).

The last line follows from (3.8). Let \zeta ts(\xi (q)) = (\Psi (\xi (q))TZvsY T
vs)(YutZT

ut\Psi (\xi (q)));
then the matrix Xts = [\chi ts

1 , \chi 
ts
2 , . . . , \chi 

ts
n\xi 
] can be expressed in low-rank form Xts =

Y\chi tsZT
\chi ts with

(3.14) Y\chi ts = Yut , Z\chi ts =

nq\sum 
q=1

\Psi (\xi (q))(\Psi (\xi (q))TZut)\zeta ts(\xi (q))\eta (q).

With low-rank representation, the computational cost is O((nx+n\xi )nq max(\kappa vs , \kappa ut)).
Note that in (3.12) the summation will increase the matrix rank, and thus a truncation
operator is applied to compress the rank. In numerical experiments presented below
(see sections 4 and 5), we use an absolute truncation criterion for this compression
with \epsilon abs = 10 - 8.

3.3. Rayleigh quotient. The Rayleigh quotient in step 7 of Algorithm 2.1 is
computed (only once) after convergence of the inverse subspace iteration to find the
eigenvalues. Given a normalized eigenvector u(\xi ) of problem (2.1), the computation
of the stochastic Rayleigh quotient

(3.15) \lambda (\xi ) = u(\xi )TA(\xi )u(\xi )

involves two steps:
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(1) Compute matrix-vector product w(\xi ) = A(\xi )u(\xi ), where w(\xi ) =
\sum n\xi 

k=1 wk\psi k(\xi )
and wk = \langle Au\psi k\rangle . In Kronecker product form,

(3.16) w =

m\sum 
l=0

(Gl \otimes Al)u.

If u has low-rank representation U = YuZ
T
u , then

(3.17) W =

m\sum 
l=0

(AlYu)(GlZu)
T .

This is followed by a truncation operation to compress the matrix rank.
Again, in experiments discussed below, we use an absolute truncation op-
eration with \epsilon abs = 10 - 8.

(2) Compute eigenvalue \lambda (\xi ) = u(\xi )Tw(\xi ), where \lambda (\xi ) =
\sum n\xi 

r=1 \lambda r\psi r(\xi ) and
\lambda r = \langle uTw\psi r\rangle . Equivalently,

(3.18) \lambda r = \langle \~Gr, H\rangle \BbbR n\xi \times n\xi =

n\xi \sum 
j,k=1

[ \~Gr]jkHjk,

where Hjk = uTj wk and thus H = UTW = Zu(Y
T
u Yw)Z

T
w . The matrices

\{ \~Gr\} 
n\xi 

r=1 are sparse with [ \~Gr]jk = \langle \psi r\psi j\psi k\rangle . In fact, if the basis functions
are written as products of univariate polynomials, i.e.,

(3.19) \psi r(\xi ) = \psi r1(\xi 1)\psi r2(\xi 2) \cdot \cdot \cdot \psi rm(\xi m),

then [ \~Gr]jk is nonzero only if | jl - kl| \leq rl \leq jl+kl and rl+ jl+kl is even for
all 1 \leq l \leq m [10]. This observation greatly reduces the cost of assembling
the matrices \{ \~Gr\} . For example, if m = 11, the degree of the gPC basis
functions is p \leq 3, and n\xi = (m+p)!/(m!p!) = 364, then with the above rule,
a total of 31098 nonzero entries must be computed instead of the much larger
number n3\xi = 48228544 if the sparsity of \{ \~Gr\} is not used.

3.4. Convergence criterion. To check convergence, we can look at the mag-
nitude of the expected value of the residual

(3.20) rs(\xi ) = A(\xi )us(\xi ) - \lambda s(\xi )us(\xi ), s = 1, 2, . . . , ne.

Alternatively, without computing the Rayleigh quotient at each iteration, error assess-
ment can be done using the relative difference of the gPC coefficients of two successive
iterates, i.e.,

(3.21) \epsilon 
s,(i)
\Delta u =

1

n\xi 

n\xi \sum 
k=1

\| us,(i)k  - u
s,(i - 1)
k \| 2

\| us,(i - 1)
k \| 2

.

However, in the case of clustered eigenvalues (that is, if two or more eigenvalues
are close to each other), the convergence of the inverse subspace iteration for single
eigenvectors will be slow. Instead, we look at the angle between the eigenspaces [7]
in two consecutive iterations

(3.22) \theta (i)(\xi ) = \angle (span(u1,(i)(\xi ), . . . , une,(i)(\xi )), span(u1,(i - 1)(\xi ), . . . , une,(i - 1)(\xi ))).
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The expected value \BbbE [\theta (i)] is taken as error indicator and is also calculated using
sparse grid quadrature

(3.23) \epsilon 
(i)
\theta = \BbbE [\theta (i)] \approx 

nq\sum 
q=1

\theta (i)(\xi (q))\eta (q).

At each quadrature point, \theta (i)(\xi (q)) is evaluated by MATLAB function subspace for
the largest principal angle.

4. Stochastic diffusion equation. In this section we consider the following
elliptic equation with Dirichlet boundary conditions:

(4.1)

\Biggl\{ 
 - \nabla \cdot (a(x, \omega )\nabla u(x, \omega )) = \lambda (\omega )u(x, \omega ) in \scrD \times \Omega 

u(x, \omega ) = 0 on \partial \scrD \times \Omega ,

where \scrD is a two-dimensional spatial domain and \Omega is a sample space. The uncertainty
in the problem is introduced by the stochastic diffusion coefficient a(x, \omega ). Assume
that a(x, \omega ) is bounded and strictly positive and admits a truncated KL expansion

(4.2) a(x, \omega ) = a0(x) +

m\sum 
l=1

\sqrt{} 
\beta lal(x)\xi l(\omega ),

where a0(x) is the mean function, (\beta l, al(x)) is the lth eigenpair of the covariance
function, and \{ \xi l\} are a collection of uncorrelated random variables. The weak form
is to find (u(x, \xi ), \lambda (\xi )) such that for any v(x) \in H1

0 (\scrD ),

(4.3)

\int 
\scrD 
a(x, \xi )\nabla u(x, \xi ) \cdot \nabla v(x)dx = \lambda (\xi )

\int 
\scrD 
u(x, \xi )v(x)dx

almost surely.
Finite element discretization in the physical domain\scrD with basis functions \{ \phi i(x)\} 

gives

(4.4) K(\xi )u(\xi ) = \lambda (\xi )Mu(\xi ),

where K(\xi ) =
\sum m

l=0Kl\xi l and

(4.5)

[Kl]ij =

\int 
\scrD 

\sqrt{} 
\beta lal(x)\nabla \phi i(x) \cdot \nabla \phi j(x)dx,

[M ]ij =

\int 
\scrD 
\phi i(x)\phi j(x)dx, i, j = 1, 2, . . . , nx,

with \beta 0 = 1 and \xi 0 \equiv 1. The result is a generalized eigenvalue problem where the
matrix M on the right-hand side is deterministic. With the Cholesky factorization
M = LLT , (4.4) can be converted to standard form

(4.6) A(\xi )w(\xi ) = \lambda (\xi )w(\xi ),

where A(\xi ) = L - 1K(\xi )L - T , w(\xi ) = LTu(\xi ).
We use stochastic inverse subspace iteration to find ne minimal eigenvalues of

(4.6). As discussed in section 2, the linear systems to be solved in each iteration are
in the form

(4.7)

m\sum 
l=0

(Gl \otimes (L - 1KlL
 - T ))vs,(i+1) = us,(i), s = 1, 2, . . . , ne.
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Let vs,(i) = (I \otimes LT )\^vs,(i). Then (4.7) is equivalent to

(4.8)

m\sum 
l=0

(Gl \otimes Kl)\^v
s,(i+1) = (I \otimes L)us,(i).

4.1. Low-rank multigrid. We developed a low-rank geometric multigrid me-
thod in [9] for solving linear systems with the same structure as (4.8). The complete
algorithm for solving A (X) = F is given in Algorithm 4.1, where A is a generic
matrix operator and for (4.8), A (X) =

\sum m
l=0KlXG

T
l . All the iterates are expressed

in low-rank form, and truncation operations are used to compress the ranks of the
iterates. \scrT rel and \scrT abs are truncation operators with a relative tolerance \epsilon rel and an
absolute tolerance \epsilon abs, respectively. In each iteration, one V-cycle is applied to the
residual equation. On the coarse grids, coarse versions of \{ Kl\} are assembled while
the matrices \{ Gl\} stay the same. The prolongation operator is P = I \otimes P , where
P is the same prolongation matrix as in a standard geometric multigrid solver, and
the restriction operator is R = I \otimes PT . The smoothing operator S is based on a
stationary iteration and is also a Kronecker product of two matrices. The grid transfer
and smoothing operations do not affect the rank. For instance, for any matrix iterate
in low-rank form X(i) = Y (i)Z(i)T ,

(4.9) P(X(i)) = (PY (i))(IZ(i))T .

On the coarsest grid (h = h0), the system is solved with direct methods.

4.2. Rayleigh--Ritz refinement. It is known that in the deterministic case
with a constant diffusion coefficient, (4.4) typically has repeated eigenvalues [8], for
example, \lambda 2 = \lambda 3. The parametrized versions of these eigenvalues in the stochas-
tic problem will be close to each other. In the deterministic setting, Rayleigh--Ritz
refinement is used to accelerate the convergence of subspace iteration when some ei-
genvalues have nearly equal modulus and the convergence to individual eigenvectors
is slow [40, 41]. Assume that a nx \times nx Hermitian matrix S has eigendecomposition

(4.10) S = V \Lambda V T =
\bigl( 
V1 V2

\bigr) \biggl( \Lambda 1

\Lambda 2

\biggr) \biggl( 
V T
1

V T
2

\biggr) 
= V1\Lambda 1V

T
1 + V2\Lambda 2V

T
2 ,

where \Lambda = diag(\lambda 1, \lambda 2, . . . , \lambda nx) with eigenvalues in increasing order and V = [V1, V2]
is orthogonal. Let the column space of Q be a good approximation to that of V1. Such
an approximation is obtained from the inverse subspace iteration. The Rayleigh--Ritz
procedure computes

(1) Rayleigh quotient T = QTSQ;
(2) eigendecomposition T =W\Sigma WT .

Then \Sigma and QW represent good approximations to \Lambda 1 and V1.
The stochastic inverse subspace iteration algorithm produces solutions \{ usSG(\xi )\} 

expressed as gPC expansions as in (2.3), and sample eigenvectors are easily com-
puted. The sample eigenvalues are generated from the stochastic Rayleigh quotient
(3.15). However, in the case of poorly separated eigenvalues, the sample solutions
obtained this way are not accurate enough. Experimental results that demonstrate
this are given in section 4.3; see Table 4.2. Instead, we use a version of the Rayleigh--
Ritz procedure to generate sample eigenvalues and eigenvectors with more accuracy.
Specifically, a parametrized Rayleigh quotient T (\xi ) is computed using the approach
of section 3.3 with

(4.11) [T ]st(\xi ) = usSG(\xi )
TA(\xi )utSG(\xi ), s, t = 1, 2, . . . , ne.
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Algorithm 4.1: Low-rank multigrid method.

1: initialization: i = 0, R(0) = F in low-rank format, r0 = \| F\| F
2: while r > tol \ast r0 \& i \leq maxit do
3: C(i) = Vcycle(A, 0, R(i))

4: \~X(i+1) = X(i) + C(i), X(i+1) = \scrT abs( \~X(i+1))

5: \~R(i+1) = F  - A (X(i+1)), R(i+1) = \scrT abs( \~R(i+1))

6: r = \| R(i+1)\| F , i = i+ 1

7: end

8: function Xh = Vcycle(Ah, Xh
0 , F

h)
9: if h == h0 then

10: solve A h(Xh) = Fh directly
11: else
12: Xh = Smooth(Ah, Xh

0 , F
h)

13: \~Rh = Fh  - A h(Xh), Rh = \scrT rel( \~Rh)

14: R2h = R(Rh)

15: C2h = Vcycle(A2h, 0, R2h)

16: Xh = Xh + P(C2h)

17: Xh = Smooth(Ah, Xh, Fh)

18: end

19: end

20: function X = Smooth(A,X,F )
21: for \nu steps do

22: \~X = X + S (F  - A (X)), X = \scrT rel( \~X)
23: end

24: end

Then one can sample the matrix T and for each realization \xi (r) solve a small (ne \times 
ne) deterministic eigenvalue problem T (\xi (r)) =W (\xi (r))\Sigma (\xi (r))W (\xi (r))T to get better
approximations for the minimal eigenvalues and corresponding eigenvectors:

(4.12)
\~\lambda sSG(\xi 

(r)) = [\Sigma (\xi (r))]ss,

\~usSG(\xi 
(r)) = [u1SG(\xi 

(r)), u2SG(\xi 
(r)), . . . , une

SG(\xi 
(r))][W (\xi (r))]:,s.

The effectiveness of this procedure will also be demonstrated in section 4.3; see Ta-
ble 4.3.

4.3. Numerical experiments. Consider a two-dimensional domain \scrD =
[ - 1, 1]2. Let the spatial discretization consist of piecewise bilinear basis functions
on a uniform square mesh. The finite element matrices are assembled using the IFISS
software package [34]. The number of spatial degrees of freedom is nx = (2/h  - 1)2,
where h is the mesh size. Define the grid level nc such that 2/h = 2nc . In the KL
expansion (4.2), we use an exponential covariance function

(4.13) r(x, y) = \sigma 2exp

\biggl( 
 - 1

b
\| x - y\| 1

\biggr) 
,

and (\beta l, al(x)) is the lth eigenpair of r(x, y). The correlation length b affects the
decay of the eigenvalues \{ \beta l\} . The number of random variables m is chosen so that
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(a) (b)

Fig. 4.1. (a): Smallest 20 eigenvalues of the mean problem. (b): Reduction of the error

indicator \epsilon 
(i)
\theta for an adaptive multigrid tolerance (4.14) and a fixed tolerance tolmg = 10 - 6. nc = 6,

b = 4.0, m = 11.

(
\sum m

l=1 \beta l)/(
\sum \infty 

l=1 \beta l) \geq 95\%. Take the standard deviation \sigma = 0.01, the mean function

a0(x) \equiv 1.0, and \{ \xi l\} to be independent and uniformly distributed on [ - 
\surd 
3,
\surd 
3]m.

Legendre polynomials are used for gPC basis functions, whose total degree does not
exceed p = 3. The number of gPC basis functions is n\xi = (m + p)!/(m!p!). For the
quadrature rule in section 3.2, we use a Smolyak sparse grid with Clenshaw--Curtis
quadrature points and grid level 3, computed from the SPINTERP toolbox [20]. For
m = 11, the number of sparse grid points is 2069. All computations in this paper are
done in MATLAB 9.4.0 (R2018a) on a MacBook with 4 GB SDRAM.

We apply low-rank stochastic inverse subspace iteration to compute three minimal
eigenvalues (ne = 3) and corresponding eigenvectors for (4.4). The smallest 20 eigen-
values for the mean problemK0u = \lambda Mu are plotted in Figure 4.1(a). For the stochas-
tic problem, the three smallest eigenvalues consist of one isolated smallest eigenvalue
\lambda 1(\xi ) and (as mentioned in the previous subsection) two eigenvalues \lambda 2(\xi ) and \lambda 3(\xi )

that have nearly equal modulus. For the inverse subspace iteration, we take \epsilon 
(i)
\theta in

(3.23) as error indicator and use a stopping criterion \epsilon 
(i)
\theta \leq tolisi = 10 - 5. The low-rank

multigrid method of section 4.1 is used to solve the system (4.8), where damped Jacobi
iteration is employed for the smoothing opeator S = \omega sdiag(A ) - 1 = \omega s(I \otimes K - 1

0 )
with weight \omega s = 2/3. Two smoothing steps are applied (\nu = 2). We also use the
idea of inexact inverse iteration methods [14, 24, 33] so that in the first few steps of
subspace iteration, the systems (2.6) are solved with larger error tolerances than in
later steps. Specifically, we set the multigrid tolerance as

(4.14) tol(i)mg = max\{ min\{ 10 - 2 \ast \epsilon (i - 1)
\theta , 10 - 3\} , 10 - 6\} ,

and truncation tolerances \epsilon 
(i)
abs = 10 - 2 \ast tol(i)mg, \epsilon rel = 10 - 2 [9]. This is shown to be
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Table 4.1
Iterate ranks after the multigrid solve and numbers of multigrid steps required in the inverse

subspace iteration algorithm. nc = 6, b = 4.0, m = 11.

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13

Rank
u1,(i) 11 22 26 32 40 44 44 46 49 49 49 49 49

u2,(i) 17 23 25 33 41 41 41 41 41 41 41 41 41

u3,(i) 17 25 28 37 39 40 40 40 40 40 40 40 40
itmg 3 5 5 6 6 6 6 7 7 7 7 7 7

useful in reducing the computational costs while not affecting the convergence of the
subspace iteration algorithm (see Figure 4.1(b)).

Table 4.1 shows the ranks of the multigrid solutions in each iteration. It indicates
that all the systems solved have low-rank approximate solutions (nx = 3969, n\xi =
364). With the inexact solve, the solutions have much smaller ranks in the first
few iterations. In the last row of Table 4.1 are the numbers of multigrid steps itmg

required to solve (4.8) for s = 1; similar numbers of multigrid steps are required for
s = 2, 3. In addition, in Algorithm 2.1 an absolute truncation operator with \epsilon abs =
10 - 8 is applied after the computations in (3.12) and (3.16) (both require addition
of quantities represented as low-rank matrices in implementation) to compress the
iterate ranks. Rayleigh--Ritz refinement discussed in section 4.2 is used to obtain
good approximations to individual sample eigenpairs.

To show the accuracy of the low-rank stochastic Galerkin solutions, we compare
them with reference solutions from Monte Carlo simulations. The stochastic Galerkin
method produces a surrogate stochastic solution expressed with gPC basis functions
that can be easily sampled. The Monte Carlo solutions are computed by the eigs

function from MATLAB, which uses the implicitly restarted Arnoldi method to com-
pute several minimal eigenvalues [37]. For both methods, we use the same sample
values \{ \xi (r)\} of the random variables to generate sample eigenvalues and eigenvec-
tors. Define the relative errors

(4.15)

\epsilon \lambda s =
1

nr

nr\sum 
r=1

| \lambda sSG(\xi (r)) - \lambda sMC(\xi 
(r))| 

| \lambda sMC(\xi 
(r))| 

,

\epsilon us =
1

nr

nr\sum 
r=1

\| usSG(\xi (r)) - usMC(\xi 
(r))\| 2

\| usMC(\xi 
(r))\| 2

,

where \lambda sSG and usSG denote the stochastic Galerkin sample solutions (they are replaced

by \~\lambda sSG and \~usSG in (4.12) if Rayleigh--Ritz refinement is used), \lambda sMC and usMC are the
Monte Carlo solutions, nr is the sample size, and s = 1, 2, . . . , ne. We use a sample
size nr = 10000.

We examine the accuracy for the three smallest eigenvalues obtained from inverse
subspace iteration when they are computed both with and without Rayleigh--Ritz
refinement. Table 4.2 shows the results (for one spatial mesh size) when Rayleigh--
Ritz refinement is not used. It can be seen that (the poorly separated) eigenvalues
\lambda 2 and \lambda 3 are significantly less accurate than \lambda 1 and that the eigenvectors u2 and
u3 are highly inaccurate. In contrast, Table 4.3 (with results for three mesh sizes)
demonstrates dramatically improved accuracy when refinement is done. In all cases,
convergence takes 13 iterations.

There are several things to consider in order to assess the efficiency of the low-rank
algorithm. First, note that the stochastic Galerkin method depends on two separate
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Table 4.2
Relative differences between low-rank stochastic Galerkin solutions (without Rayleigh--Ritz re-

finement) and Monte Carlo solutions. nc = 6, b = 4.0, m = 11.

\epsilon \lambda 1 4.8752\times 10 - 10 \epsilon u1 2.2318\times 10 - 7

\epsilon \lambda 2 5.1938\times 10 - 4 \epsilon u2 5.2216\times 10 - 1

\epsilon \lambda 3 5.1872\times 10 - 4 \epsilon u3 5.2215\times 10 - 1

Table 4.3
Relative differences between low-rank stochastic Galerkin solutions (with Rayleigh--Ritz refine-

ment) and Monte Carlo solutions. b = 4.0, m = 11.

nc 6 7 8

\epsilon \lambda 1 4.8753\times 10 - 10 4.8789\times 10 - 10 4.8777\times 10 - 10

\epsilon \lambda 2 1.7339\times 10 - 9 1.7996\times 10 - 9 1.7856\times 10 - 9

\epsilon \lambda 3 1.6481\times 10 - 9 1.7122\times 10 - 9 1.7189\times 10 - 9

\epsilon u1 1.1390\times 10 - 7 1.8687\times 10 - 7 3.8855\times 10 - 7

\epsilon u2 8.2047\times 10 - 6 8.3449\times 10 - 6 8.5969\times 10 - 6

\epsilon u3 8.2795\times 10 - 6 8.4110\times 10 - 6 8.6885\times 10 - 6

computations: the inverse subspace iteration algorithm to compute the surrogate
stochastic solution and the repeated evaluation of the surrogate solution, to be done
in a simulation. (The associated costs are denoted as tsolve and tsample, respectively.)
In the parlance of reduced basis methods [43], the first part can be viewed as an offline
computation and the second part as an online computation. One issue is how the
costs of each of these steps for the low-rank algorithm compare with a more standard
version of inverse subspace iteration that does not use low-rank constructions, which
we refer to as the full-rank version. In contrast, each step of the Monte Carlo method
requires the solution of a single eigenvalue problem. The cost of this computation
will be much smaller than that of the offline computation required for the stochastic
Galerkin method, but each step of a Monte Carlo simulation will be more costly than
when a surrogate approximation is used.

Thus, the efficiency of the low-rank algorithm is demonstrated by comparison
with (i) stochastic inverse subspace iteration with the full-rank stochastic Galerkin
method, with the same tolerances tolisi and tolmg, and (ii) the Monte Carlo method.
For the latter method, each deterministic eigenvalue problem is now solved by a lo-
cally optimal block preconditioned conjugate gradient (LOBPCG) method [21], pre-
conditioned with one V-cycle of an algebraic multigrid method (AMG) of the mean
matrix K0, using a stopping tolerance 10 - 3 for the norm of the eigenvalue residual
\| K(\xi (r))uMC(\xi 

(r)) - \lambda MC(\xi 
(r))MuMC(\xi 

(r))\| 2, chosen so that LOBPCG produces sam-
ple solutions of accuracy comparable to that obtained using the stochastic Galerkin
approach.1

Computational costs are shown in Table 4.4. It can be seen that the low-rank
approximation greatly reduces both tsolve and tsample for the stochastic Galerkin ap-
proach, especially as the mesh size is refined. Moreover, the total time required by

1There are choices for the deterministic solver used for Monte Carlo. We also tried eigs with a
mild stopping tolerance. For this (diffusion) problem, we found the costs of eigs and LOBPCG to
be similar; however, LOBPCG is more efficient for the Stokes problem considered in section 5 below
since it does not require solving linear systems associated with BK(\xi (r)) - 1BT for each sample \xi (r).
We used LOBPCG for all cost assessments.
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Table 4.4
Time comparison (in seconds) between stochastic Galerkin method and Monte Carlo simulation

for various nc. b = 4.0, m = 11, n\xi = 364, nr = 10000.

nc 6 7 8
nx 3969 16129 65025

low-rank SG
tsolve 265.63 792.06 2971.15
tsample 4.16 15.41 66.17

full-rank SG
tsolve 452.11 1898.85 19699.92
tsample 25.29 94.70 426.99

MC 385.39 1989.60 8897.27

Table 4.5
Computational times (in seconds) of low-rank Galerkin method with a CG solver for various

nc. Stopping tolerance tol
(i)
cg = tol

(i)
mg and truncation tolerance \epsilon 

(i)
rel = 10 - 2 \ast tol

(i)
cg for all rank-

compression computations required by CG. b = 4.0, m = 11, n\xi = 364.

nc 6 7 8
nx 3969 16129 65025

low-rank SG tsolve 153.84 604.29 3242.29

the low-rank stochastic Galerkin method is much less than that for the Monte Carlo
method with a sample size nr = 10000, whereas the full-rank counterpart can be more
expensive than Monte Carlo. This will be discussed further in section 5 below (see
Figure 5.2). Also, as a reference, we include in Table 4.5 the computational times
tsolve of the low-rank method if instead of Algorithm 4.1, a low-rank conjugate gradi-
ent (CG) method [22] with a mean-based preconditioner G0 \otimes K0 = I \otimes K0 is used
for solving the linear systems (4.8). The results are similar to those in Table 4.4, but
the timings for low-rank CG increase more rapidly than those for low-rank multigrid
as the mesh is refined.

Table 4.6 shows the performance of the stochastic Galerkin approach for vari-
ous n\xi , the number of degrees of freedom in the stochastic part. As expected, the
Monte Carlo method is basically unaffected by the number of random variables in the
KL expansion, whereas the cost of the stochastic Galerkin method increases as the
number of parameters m increases. In the cases where m is moderate, the low-rank
approximation reduces the computational cost of the stochastic Galerkin approach so
that the computing time becomes smaller than that for the Monte Carlo simulations.
The low-rank algorithm is also effective for m = 16, where the full-rank stochastic
Galerkin method becomes too expensive or requires too much memory.

More details on the computational costs of the low-rank stochastic Galerkin
method are given in Table 4.7 for various nx and n\xi . The table shows the per-
centages of tsolve used for the low-rank multigrid solver (tmg), the Gram--Schmidt
process (tgs), the convergence criterion (terr), and the Rayleigh quotient (trq) in the
stochastic inverse subspace iteration algorithm. It is clear that the dominant cost is
that associated with solving the linear systems. As n\xi increases, the percentages of
time for the Gram--Schmidt process and the Rayleigh quotient both increase, although
they are still much smaller than that for system solves.

We briefly comment on the storage costs. For an approximate solution of rank
\kappa , the relative storage requirements of the low-rank and full-rank solutions are (nx +
n\xi )\kappa /(nxn\xi ); for u

1,(i), as shown in Table 4.1, \kappa \leq 49, which is slightly less than 15\%.
However, some iterates within the multigrid solver, especially after the matrix-vector
product computation in (4.8) (which involves a sum of m+1 terms), may have higher



A2672 HOWARD C. ELMAN AND TENGFEI SU

Table 4.6
Time comparison (in seconds) between stochastic Galerkin method and Monte Carlo simulation

for various m. nr = 10000.

m(b) 8(5.0) 11(4.0) 16(3.0)
n\xi 165 364 969

low-rank SG
tsolve 296.51 792.06 3198.15
tsample 11.56 15.41 22.56

full-rank SG
tsolve 642.16 1898.85 12229.23
tsample 45.77 94.70 260.40

MC 1963.53 1989.60 1809.25

(a) nc = 7, nx = 16129

m(b) 8(5.0) 11(4.0) 16(3.0)
n\xi 165 364 969

low-rank SG
tsolve 1137.60 2971.15 10720.43
tsample 39.95 66.17 86.19

full-rank SG
tsolve 4673.44 19699.92 out of
tsample 194.66 426.99 memory

MC 7515.48 8897.27 8536.08

(b) nc = 8, nx = 65025

Table 4.7
Time consumption percentages for different parts of computations in the low-rank stochastic

Galerkin method for various nc and m.

m(b) 8(5.0) 11(4.0) 16(3.0)
n\xi 165 364 969

tmg 79.84\% 76.57\% 72.46\%
nc = 7 tgs 5.93\% 8.11\% 9.10\%

nx = 16129 terr 10.49\% 11.68\% 9.98\%
trq 1.62\% 2.60\% 8.02\%

tmg 76.27\% 74.54\% 74.35\%
nc = 8 tgs 6.50\% 8.59\% 8.84\%

nx = 65025 terr 11.30\% 12.97\% 12.05\%
trq 1.96\% 2.05\% 3.48\%

ranks than n\xi and thus require more storage than the full-rank method. We also note
that the storage requirements for Monte Carlo simulation are much smaller (O(nx))
since only deterministic subproblems are solved. These are also true for the Stokes
problem discussed below.

5. Stochastic Stokes equation. The second example of a stochastic eigenvalue
problem that we consider is used to estimate the inf-sup stability constant associated
with a discrete stochastic Stokes problem. Consider the following stochastic incom-
pressible Stokes equation in a two-dimensional domain,

(5.1)

\Biggl\{ 
 - \nabla \cdot (a(x, \omega )\nabla \vec{}u(x, \omega )) +\nabla p(x, \omega ) = \vec{}0 in \scrD \times \Omega 

\nabla \cdot \vec{}u(x, \omega ) = 0 in \scrD \times \Omega ,

with a Dirichlet inflow boundary condition \vec{}u(x, \omega ) = \vec{}uD(x) on \partial \scrD D \times \Omega and a Neu-
mann outflow boundary condition a(x, \omega )\nabla \vec{}u(x, \omega )\cdot \vec{}n - p(x, \omega )\vec{}n = \vec{}0 on \partial \scrD N\times \Omega . Such
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problems and more general stochastic Navier--Stokes equations have been studied in
[31, 39]. As in the diffusion problem, we assume that the stochastic viscosity a(x, \omega )
is represented by a truncated KL expansion (4.2) with random variables \{ \xi l\} ml=1. The
weak formulation of the problem is the following: Find \vec{}u(x, \xi ) and p(x, \xi ) satisfying

(5.2)

\left\{       
\int 
\scrD 
a(x, \xi )\nabla \vec{}u(x, \xi ) : \nabla \vec{}v(x) - p(x, \xi )\nabla \cdot \vec{}v(x) dx = 0\int 

\scrD 
q(x)\nabla \cdot \vec{}u(x, \xi ) dx = 0

almost surely for any \vec{}v(x) \in H1
0 (\scrD )2 (zero boundary conditions on \partial \scrD D) and q(x) \in 

L2(\scrD ). Here \nabla \vec{}u : \nabla \vec{}v is a componentwise scalar product (\nabla ux1
\cdot \nabla vx1

+\nabla ux2
\cdot \nabla vx2

for two-dimensional (ux1
, ux2

)). Finite element discretization with basis functions

\{ \vec{}\phi i(x)\} for the velocity field and \{ \varphi k(x)\} for the pressure field results in a linear
system in the form

(5.3)

\biggl( 
K(\xi ) BT

B 0

\biggr) \biggl( 
\vec{}u(\xi )
p(\xi )

\biggr) 
=

\biggl( 
f
g

\biggr) 
,

where K(\xi ) =
\sum m

l=0Kl\xi l and

(5.4)

[Kl]ij =

\int 
\scrD 

\sqrt{} 
\beta lal(x)\nabla \vec{}\phi i(x) : \nabla \vec{}\phi j(x)dx,

[B]kj =  - 
\int 
\scrD 
\varphi k(x)\nabla \cdot \vec{}\phi j(x)dx,

for i, j = 1, 2, . . . , nu and k = 1, 2, . . . , np. The Dirichlet boundary condition is
incorporated in the right-hand side.

We are interested in the parametrized inf-sup stability constant \gamma (\xi ) for the dis-
crete problem. Evaluation of the inf-sup constant for various parameter values plays
an important role for a posteriori error estimation for reduced basis methods [29, 43].
For this, we exploit the fact that \gamma (\xi ) has an algebraic interpretation [8]

(5.5) \gamma 2(\xi ) = min
q(\xi ) \not =0

\langle BK(\xi ) - 1BT q(\xi ), q(\xi )\rangle \BbbR np

\langle Mq(\xi ), q(\xi )\rangle \BbbR np

,

where M is the mass matrix with [M ]ij =
\int 
\scrD \varphi i(x)\varphi j(x), i, j = 1, 2, . . . , np. Thus,

finding \gamma (\xi ) is equivalent to finding the smallest eigenvalue of the generalized eigen-
value problem

(5.6) BK(\xi ) - 1BT q(\xi ) = \lambda (\xi )Mq(\xi )

associated with the stochastic pressure Schur complement BK(\xi ) - 1BT . This can be
written in standard form as

(5.7) L - 1BK(\xi ) - 1BTL - Tw(\xi ) = \lambda (\xi )w(\xi ),

where M = LLT is a Cholesky factorization and w(\xi ) = LT q(\xi ).
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The eigenvalue problem (5.7) does not have exactly the same form as (2.1) since
it involves the inverse of K(\xi ). If we use the stochastic inverse iteration algorithm to
compute the minimal eigenvalue of (5.7), then each iteration requires solving

(5.8) \langle L - 1BK - 1BTL - T v(i+1)\psi k\rangle = \langle u(i)\psi k\rangle , k = 1, 2, . . . , n\xi ,

for v(i+1)(\xi ). We can reformulate (5.8) to take advantage of the Kronecker prod-
uct structure and low-rank solvers. Let s(\xi ) =  - K(\xi ) - 1BTL - T v(i+1)(\xi ), and let
\^v(i+1)(\xi ) = L - T v(i+1)(\xi ). Then (5.8) is equivalent to the coupled system

(5.9) \langle (Ks+BT \^v(i+1))\psi k\rangle = 0, \langle Bs\psi k\rangle = \langle  - Lu(i)\psi k\rangle , k = 1, 2, . . . , n\xi .

As discussed in section 2, the random vectors are expressed as gPC expansions. Thus,
(5.9) can be written in Kronecker product form as a discrete Stokes system for coef-
ficient vectors s, \^v(i+1),

(5.10)

\biggl( \sum m
l=0(Gl \otimes Kl) I \otimes BT

I \otimes B 0

\biggr) \biggl( 
s

\^v(i+1)

\biggr) 
=

\biggl( 
0

 - (I \otimes L)u(i)

\biggr) 
,

and v(i+1) = (I \otimes LT )\^v(i+1).
In addition, for the eigenvalue problem (5.7), computing the Rayleigh quotient

(3.15) requires solving a linear system. In the first step of (3.15), for the matrix-vector
product, one needs to compute w(\xi ) = K(\xi ) - 1\^u(\xi ), where \^u(\xi ) = BTL - Tu(\xi ). For
the weak formulation, this corresponds to solving a linear system

(5.11)

\Biggl( 
m\sum 
l=0

Gl \otimes Kl

\Biggr) 
w = \^u.

5.1. Low-rank MINRES. We discuss a low-rank iterative solver for (5.10).
The system is symmetric but indefinite with a positive-definite (1, 1) block. A low-
rank preconditioned MINRES method for solving A (X) = F is used and described
in Algorithm 5.1. The preconditioner is block-diagonal,

(5.12) M =

\biggl( 
M11 0
0 M22

\biggr) 
.

We use an approximate mean-based preconditioner [30] for the (1, 1) block: M11 =
G0 \otimes \^K0 = I \otimes \^K0. Here, \^K - 1

0 is defined by approximation of the action of K - 1
0 ,

using one V-cycle of AMG. For the (2, 2) block, we take M22 = I \otimes \^M , where the
action of M - 1 is approximated by 10 steps of Chebyshev iteration [35]. As in the
multigrid method, all the quantities are in low-rank format, and truncation operations
are applied to compress matrix ranks. Algorithm 5.1 requires the computation of inner
products of two low-rank matrices \langle X1, X2\rangle \BbbR nx\times n\xi . Let X1 = Y1Z

T
1 , X2 = Y2Z

T
2 , with

Y1 \in \BbbR nx\times \kappa 1 , Z1 \in \BbbR n\xi \times \kappa 1 , Y2 \in \BbbR nx\times \kappa 2 , Z2 \in \BbbR n\xi \times \kappa 2 . Then the inner product can
be computed with a cost of O((nx + n\xi + 1)\kappa 1\kappa 2) [22]:

(5.13) \langle X1, X2\rangle = trace(XT
1 X2) = trace(Z1Y

T
1 Y2Z

T
2 ) = trace((ZT

2 Z1)(Y
T
1 Y2)).

We apply the low-rank MINRES method to the matricized version of (5.10) and
represent the components of the solution vector, s and \^v(i+1), as two separate low-rank
matrices S and \^V (i+1). This representation is suitable for computing matrix-vector
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products. For instance, the first equation becomes
\sum m

l=1KlSG
T
l + BT \^V (i+1)IT = 0.

Other computations in Algorithm 5.1, including vector additions and truncations, are
applied to each low-rank matrix component of the iterates.

Algorithm 5.1: Low-rank preconditioned MINRES method.

1: initialization: V (0) = 0, W (0) = 0, W (1) = 0, \gamma 0 = 0. Choose X(0),

compute V (1) = F  - A (X(0)). P (1) = M - 1(V (1)), \gamma 1 =
\sqrt{} 
\langle P (1), V (1)\rangle . Set

\eta = \gamma 1, s0 = s1 = 0, and c0 = c1 = 1.
2: for j = 1, 2, . . . do
3: P (j) = P (j)/\gamma j
4: \~R(j) = A (P (j)), R(j) = \scrT rel( \~R(j))

5: \delta j = \langle R(j), P (j)\rangle 
6: \~V (j+1) = R(j)  - (\delta j/\gamma j)V

(j)  - (\gamma j/\gamma j - 1)V
(j - 1), V (j+1) = \scrT rel( \~V (j+1))

7: P (j+1) = M - 1(V (j+1))

8: \gamma j+1 =
\sqrt{} 
\langle P (j+1), V (j+1)\rangle 

9: \alpha 0 = cj\delta j  - cj - 1sj\gamma j

10: \alpha 1 =
\sqrt{} 
\alpha 2
0 + \gamma 2j+1

11: \alpha 2 = sj\delta j + cj - 1cj\gamma j
12: \alpha 3 = sj - 1\gamma j
13: cj+1 = \alpha 0/\alpha 1, sj+1 = \gamma j+1/\alpha 1

14: \~W (j+1) = (P (j)  - \alpha 3W
(j - 1)  - \alpha 2W

(j))/\alpha 1, W (j+1) = \scrT rel( \~W (j+1))

15: \~X(j) = X(j - 1) + cj+1\eta W
(j+1), X(j) = \scrT rel( \~X(j))

16: \eta =  - sj+1\eta 
17: Check convergence

18: end

5.2. Numerical experiments. Consider a two-dimensional channel flow on
domain \scrD = [ - 1, 1]2 with uniform square meshes. Let \partial \scrD D = \{ (x1, x2) | x1 =
 - 1, or x2 = 1, or x2 =  - 1\} and \partial \scrD N = \{ (x1, x2) | x1 = 1\} . Define grid level nc
so that 2/h = 2nc , where h is the mesh size. We use the Taylor--Hood method for

finite element discretization with biquadratic basis functions \{ \vec{}\phi i(x)\} for the velocity
field and bilinear basis functions \{ \varphi k(x)\} for the pressure field. For the velocity field
the basis functions are in the form

\bigl\{ \bigl( 
\phi i(x)

0

\bigr) 
,
\bigl( 

0
\phi i(x)

\bigr) \bigr\} 
, where \{ \phi i(x)\} are scalar-value

biquadratic basis functions. The number of degrees of freedom in the spatial dis-
cretization is nx = nu + np, where nu = 2((2nc+1 +1)2  - n\partial \scrD D

), n\partial \scrD D
is the number

of Dirichlet boundary nodes, and np = (2nc + 1)2. Assume the viscosity a(x, \xi ) has
a KL expansion with the same specifications as in the diffusion problem. For the
quadrature rule in section 3.2, we use a Smolyak sparse grid with Clenshaw--Curtis
quadrature points and grid level 3.

We use the stochastic inverse iteration algorithm to find the minimal eigenvalue
of (5.6). The eigenvalues of BK - 1

0 BT q = \lambda Mq are plotted in Figure 5.1(a) with
nc = 3. It shows that the minimal eigenvalue is isolated from the larger ones. For

the inverse iteration, we take \epsilon 
(i)
\theta in (3.23) as error indicator and use a stopping

criterion \epsilon 
(i)
\theta \leq tolisi = 10 - 5. The error tolerance for the MINRES solver tol

(i)
minres

is set as in (4.14). Figure 5.1(b) shows the convergence of the low-rank MINRES
method for different relative truncation tolerances \epsilon rel. It indicates the accuracy
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(a) (b)

Fig. 5.1. (a): Eigenvalues of BK - 1
0 BT q = \lambda Mq. nc = 3. (b): Reduction of the relative

residual for the low-rank MINRES method with various truncation criteria. Solid lines: relative
tolerance \epsilon rel; dashed lines: relative tolerance \epsilon rel with rank \kappa \leq n\xi /4. nc = 4, b = 4.0, m = 11.

Table 5.1
Iterate ranks after the MINRES solve and numbers of MINRES steps required in the inverse

iteration algorithm. nc = 4, b = 4.0, m = 11.

(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Rank
s 4 12 13 13 17 18 21 24 28 31 30 31 30 30 31 30

\^v(i) 7 12 13 16 19 25 31 38 44 49 49 49 50 49 50 50
itminres 22 35 35 37 37 39 39 41 42 43 43 43 43 43 43 43

that MINRES can achieve is related to \epsilon rel. In the numerical experiments we use

\epsilon 
(i)
rel = 10 - 1\ast tol(i)minres. In addition, we have observed that in many cases the truncations
in lines 4, 6, and 14 of Algorithm 5.1 produce relatively high ranks, which increases the
computational cost. To handle this, we impose a bound on the ranks \kappa of the outputs
of these truncation operators such that \kappa \leq n\xi /4 (in general nx \geq n\xi ). It is shown in
Figure 5.1(b) that the convergence of low-rank MINRES is unaffected by this strategy.

Table 5.1 shows the ranks of the MINRES solutions s and \^v(i) in (5.10) and
numbers of MINRES steps itminres required in each iteration. The solution matrices
S and \^V (i) have sizes nu \times n\xi and np \times n\xi (for nc = 4 and m = 11, nu = 1984,
np = 289, n\xi = 364), whereas their respective ranks are no larger than 31 and 50.
In the Rayleigh quotient computation, the system (5.11) is solved by a low-rank
conjugate gradient method [22] with a relative residual smaller than 10 - 8.

As in the diffusion problem, we show the accuracy of the low-rank stochastic
Galerkin approach by comparing the results with the reference solutions from Monte
Carlo simulations using eigs. Let m = 11, p = 3, n\xi = 364. We use a sample size
nr = 1000. Table 5.2 shows the accuracy of the stochastic Galerkin solutions where
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Table 5.2
Relative difference between stochastic Galerkin solutions and Monte Carlo solutions. b = 4.0,

m = 11, n\xi = 364.

nc 4 5 6

\epsilon \lambda 1 5.8903\times 10 - 9 6.8722\times 10 - 9 7.6883\times 10 - 9

\epsilon u1 4.4363\times 10 - 5 5.1253\times 10 - 5 5.3235\times 10 - 5

Table 5.3
Time comparison (in seconds) between stochastic Galerkin method and Monte Carlo simulation

for various nc. nr = 1000.

nc 4 5 6
np 289 1089 4225
nx 2273 9153 36737

low-rank SG
tsolve 269.84 1006.36 4382.16
tsample 0.11 0.13 0.25

full-rank SG
tsolve 324.74 1264.05 6272.26
tsample 0.11 0.22 0.97

MC 122.58 417.62 1594.47

(a) b = 4.0, m = 11, n\xi = 364

nc 4 5 6
np 289 1089 4225
nx 2273 9153 36737

low-rank SG
tsolve 79.48 323.40 1557.33
tsample 0.06 0.07 0.09

full-rank SG
tsolve 132.63 538.44 2636.93
tsample 0.07 0.07 0.40

MC 128.16 411.34 1539.16

(b) b = 5.0, m = 8, n\xi = 165

\epsilon \lambda 1 and \epsilon u1 are defined in (4.15) (no Rayleigh--Ritz procedure is used here). In all
cases, convergence of the inverse iteration takes 16--18 steps.

As we did for the diffusion problem, we assess the the efficiency of the low-rank
stochastic Galerkin method by comparison with the full-rank method and Monte
Carlo simulation. For the latter, we use an LOBPCG solver preconditioned with the
pressure mass matrix M , and the action of M - 1 is again approximated by 10 steps of
Chebyshev iteration. In this case, a stopping tolerance of 10 - 6 is used for LOBPCG
to produce solutions with accuracy comparable to those obtained using the stochastic
Galerkin approach. Table 5.3 shows the comparative costs of these methods when 1000
samples are used in a simulation. It is clear that the low-rank stochastic Galerkin
method is more efficient than its full-rank counterpart, and the simulations using the
surrogate solution obtained from the stochastic Galerkin approach are very cheap
compared with Monte Carlo simulation. If we take the total cost of the stochastic
Galerkin method to be the sum of tsolve and tsample, then the comparison depends on
the number of samples used, and in this measure, for 1000 samples it is cheaper to
perform Monte Carlo simulation. This issue is explored in more detail in Figure 5.2,
which interpolates the costs from timings using 1000, 5000, and 10000 samples and
shows ``crossover"" sample sizes for which the stochastic Galerkin methods will be more
efficient than Monte Carlo methods; these are approximately 2500 for the low-rank
version and 4000 for the full-rank one.
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Fig. 5.2. Computational time required by the low-rank stochastic Galerkin method, the full-
rank stochastic Galerkin method, and the Monte Carlo method to generate large numbers of sample
solutions. nc = 6, b = 4.0, m = 11, nr = 1000, 5000, 10000.

6. Summary. We studied low-rank solution methods for stochastic eigenvalue
problems. The stochastic Galerkin approach was used to compute surrogate approx-
imations to the minimal eigenvalues and corresponding eigenvectors, which are sto-
chastic functions with gPC expansions. We introduced low-rank approximations to
enhance efficiency of the stochastic inverse subspace iteration algorithm. Two detailed
benchmark problems, the stochastic diffusion problem and an operator associated with
a discrete stochastic Stokes equation, were considered for illustrating the effectiveness
of the proposed low-rank algorithm. It was confirmed in the numerical experiments
that the low-rank solution method produces accurate results with much less comput-
ing time, making the stochastic Galerkin method more competitive compared with
the sample-based Monte Carlo approach.
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comments.
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