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SUMMARY

Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable
discretizations a variety of numerical methods have been proposed that have rates of convergence independent of
the mesh size used in the discretization. In this paper we compare the performance of four such methods, namely
variants of the Uzawa, preconditioned conjugate gradient, preconditioned conjugate residual and multigrid
methods, for solving several two-dimensional model problems. The results indicate that multigrid with smoothing
based on incomplete factorization is more efficient than the other methods, but typically by no more than a factor
of two. The conjugate residual method has the advantage of being independent of iteration parameters.
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1. INTRODUCTION
Consider the system of partial differential equations
—Au+Vp=f and —divu=0 onQ,
u=0 ondQ,

[p=e
Q

where Q is a simply connected bounded domain in R?, d = 2 or 3. This system, the Stokes equations, is
a fundamental problem arising in computational fluid dynamics (see e.g. References 1-4); u is the d-
dimensional velocity vector defined in €, and p represents pressure.

Discretization of (1) by finite difference or finite element techniques leads to a linear system of

equations of the form
T
(5 2)G)G) @

where A is a set of uncoupled discrete Laplacian operators and C is a positive semidefinite matrix. We
consider here only stable discretizations, i.e. those for which the condition number of the Schur
complement matrix B4~!BT + C is bounded independently of the mesh size used in the discretization.
For finite element discretizations with C = 0 this is a consequence of the inf-sup condition and upper
bound

1)

i (g, divy) (g, divv)|
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where y and I are independent of the mesh size. Here |-|; and ||-||, denote the H'-seminorm and
Euclidean norm respectively on the discrete velocity and pressure spaces and the bounds are taken over
all v and ¢ in the appropriate discrete spaces.'™

In recent years a variety of iterative algorithms have been devised for solving the discrete Stokes
equations. In this paper we compare the performance of four such methods:

(i) a variant of the Uzawa method

(ii) a preconditioned conjugate gradient (PCG) method applied to a transformed version of (2)
(iii) a preconditioned conjugate residual (PCR) method
(iv) multigrid (MG).

The Uzawa method is the first among these to have been devised® and is often advocated as an efficient
solution technique (see e.g. References 1-3). The convergence factor associated with it is proportional
to (x — 1)/(x + 1), where k is the condition number of the Schur complement B4~' BT + C (see Section
2.5). The conjugate gradient method, developed by Bramble and Pasciak,® has a convergence factor
proportional to (/x —1)/(/x+ 1) but a larger cost per step than the Uzawa method. The
preconditioned conjugate residual method was developed by Rusten and Winther’ and Silvester and
Wathen®” and its convergence behaviour is determined by the properties of the indefinite matrix. For
multigrid we consider versions derived from two smoothing strategies: a variant of the distributive
Gauss—Seidel (MG/DGS) method of Brandt and Dinar'® and a technique based on incomplete
factorization (MG/ILU) studied by Wittum.!!

These methods all have the property that for an appropriate choice of preconditioners (or, for
multigrid, smoothers) their convergence rates are independent of the mesh size used in the
discretization. The actual costs of using them depend on both the convergence rate and the cost per
iteration. Our goal in this paper is to compare the costs, in operation counts, of using each of the
methods to solve four discrete versions of (1). For convergence to be independent of mesh size, the first
three methods (Krylov subspace methods) require a preconditioning operator spectrally equivalent to the
discrete Laplacian. In an effort to unify the comparison of these ideas with multigrid, we also implement
this preconditioner using a multigrid method for the associated Poisson equation. The benchmark
problems are derived from the Stokes equations (1) on the two-dimensional unit square, discretized by
either finite differences or one of three low-order mixed finite element schemes.

Our main observations are as follows. For problems where it is applicable, one version of multigrid,
using incomplete factorization, requires the fewest iterations and operations, but it is only marginally
faster, i.e. by factors of approximately 1-5-2, than the Krylov subspace methods and the distributive
Gauss—Seidel method. Among the Krylov subspace methods the conjugate residual method is slightly
slower than the conjugate gradient method and in some cases the Uzawa method, but it has the
advantage of not requiring any parameter estimates.

An outline of the rest of the paper is as follows. In Section 2 we present the solution algorithms and
give an overview of their convergence properties. In Section 3 we specify the benchmark problems and
the computational costs per iteration of each of the solution methods. In Section 4 we present the
numerical comparison.

2. OVERVIEW OF METHODS

In this section we present the four algorithms under consideration and outline their convergence
properties. The first three methods depend on a preconditioning operator O, that approximates the
matrix 4 of (2). We assume that O, is symmetric positive definite (SPD) and that
(v, Av)
S Y S 1 3
m (U, QA v) n; ( )
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where #, and 7, are independent of the mesh size used in the discretization. In addition, finite element
discretizations of (1) have a mass matrix M associated with the pressure discretization.* The
preconditioner will also include an SPD approximation Q,, of M. Discussions of computational
costs will be made in terms of various matrix operations together with inner products and ‘AXPYs’, i.e.
vector operations of the form y <« ax + y.

2.1. The inexact Uzawa method

We use the following ‘inexact’ version of the Uzawa algorithm'? which starts with u, = 0 and an
arbitrary initial guess py:

for i = 0 until convergence, do
U =4+ Q0y'[f — (Au; + B'p)
Pir1 =pi + 203 (Bu; 4 — Cp))
enddo

Here a is a scalar parameter that must be determined prior to the iteration.

In the ‘exact’ version of this algorithm, O, = 4 and the first step is equivalent to solving the linear
system Au;,, =f — BTp,. When Q,, = I, the exact algorithm is then a fixed parameter first-order
Richardson iteration applied to the Schur complement system (BA~!'BT + C)p = BA~!f; Q,, is a
preconditioner for this iteration. The inexact Uzawa algorithm (4) replaces the exact computation of
A~!(f — B"p,) with an approximation.

2.2. A preconditioned conjugate gradient method
Let o/ denote the coefficient matrix of (2). Premultiplication of (2) by the matrix

g = ' 0
BO! ~I
produces the equivalent system

g,'4 0,'8" u a.\f
-1 -1 5T = —1p ] ®)
BO'A—B BQ B +CJ \p BO, f

Let .# =Jxf denote the coefficient matrix of this system. The conjugate gradient method (CG)
developed in Reference 6 requires that the bilinear form

[(2)-(2)] = @-eomw+@.a ®

define an inner product. Equivalently, the preconditioning operator 0, must satisfy (3) withn, > 1. Itis
shown in Reference 6 that .4 is SPD with respect to the inner product (6), so that CG in this inner
product is applicable. The matrix
I 0
¢ = ( ) )
0 Ou

is also SPD with respect to (6), so that this can be used as a preconditioner.

* If the finite element solution is expressed using a given basis {¢,} as p = Y, di¢,, then ||p]l,, = (6,M8)'2,
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Let
A _(f — Ay +BTP0))
%= (po)’ Ro= ( —(Bug — Cpo)

denote an arbitrary guess for the solution and the associated residual. An implementation of PCG is
given below. Except for the non-standard inner product, it is the standard implementation as given e.g.
Reference 13, in p. 529. It is more efficient then the version given in Reference 6. The preconditioner 0,
is implicitly incorporated into the inner product. The use of the preconditioner (7) is new.

Ry=TR,, R,=9"'R,
Py=R, MPy=T AP,
o) = [Ro. Ro), o =[Py, Py, ], g =0/af]
X1 =X + %Py
Ry =Ry—ogPy, Ry=Ry—ogMP), R =9"'R,
for i = 1 until convergence, do
Bf'l)l = []A{i, k,-], ﬁfi)l = agi)l' Bioy = ﬁg)l/ ﬂfi)l
P,=R +Bi_\P_,, MP,=TAP,
o =g, o =[P, 4P), =0/
k‘-_’_] = kl’ - a'-le,', ki-}-l = g_ll},-.,_l
enddo

To help identify operation counts, we describe the computation of {o;} and {8;} in more detail. Letting

we have B, = [R,, R)) = (%, 4%; — ;) + (5, 5,); similarly, if

R R o1

then o = [P, #P}) = (c;, AQ7'v; — v) + (d;, BQ7'v, — ;). O, is referenced only in the construc-
tion of Q;'v in (8), so that only the action of the inverse of Q, is required. Moreover, although the
vectors AF;, Ac; (for v;) and AQ'v; are used, the first two of these can be computed using an AXPY.
Consequently, only one matrix—vector product by 4 is needed.
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2.3. The preconditioned conjugate residual method

Since «f is symmetric, variants of the conjugate residual method are applicable. Let X, denote the
initial guess and R, its residual. The following algorithm implements the Orthomin version of PCR with
preconditioner 2:'%*

Ro = .@—IRo, Po = Ro, So = .@_ldpo
o = Ry, #Py), o = (AP, Sy), o= ool
X, =Xo+ %Py, R =Ry—ogdPy, Ry =Ry— S
for i = 1 until convergence, do
B = (RS ) BD =o?,
P,=R+B_ Py, AP,=oAR +pB_ 4P, S;=2"'oAP,
o =R, #P), o =(4P,S), o=
X1 =X, + P, Ry =R —odP, R, =R-as,
enddo

Any symmetric positive definite 2 could be used as a preconditioner. As in Reference 8, we use
0 0 )
2= .
( 0 On

2.4. Multigrid

As is well known, multigrid methods combine iterative methods to smooth the error with correction
derived from a coarse grid computation. We use V-cycle multigrid for ‘transformed systems’. Our
description follows References 11 and 16. See References 17 and 18 for other multigrid methods
den'ved from the squared system associated with (2).

-4, denote the Laplace operator defined on the pressure space, with Neumann boundary
condmons, and let 4, be a discrete approximation to —A,, defined on the pressure grid. Consider the

following lransformed version of (2):
u I BT) (t;)
= - ) ()]
(P) ( 0 -4,

(5 26 4)6)-6)
&:(g g’) (10)

The coefficient matrix in (9) is

where W = ABT — B4, and G = BB" + CA,, For appropriate discretizations of (1) (see Section 3), W
is of low rank, with non-zero entries only in rows corresponding to mesh points next to 3Q. When
C =0, G can also be viewed as a discretization of —A,. The splitting

L=F-R [6h))

®ltis poss:ble for this version of PCR to break down, with a; = 0. The Orthodir version, which uses a three-term recurrence to
generate P;, is guaranteed not to break down,; it requires two additional AXPYs. Our implementation switches from the Orthomin
to Orthodir direction update if [#;| < 107*, as described in Reference 15. In the experiments discussed in Section 4, this switch
never took place.
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then induces a stationary iteration applicable to (2), namely

et _ (% I BT) -1 (f — (Au; + BTPI:))
(Pk+l) (Pk) * (0 —4, d —(Bu,—Cpy) )’ (12)
This is used as the smoother for the multigrid solver for (2). Specific choices for & are given in
Section 3.2.
Let R, denote a restriction operator mapping velocity vectors in the fine grid (of width 4) to the coarse
grid (of width 24), let R, similarly denote the restriction operator for the discrete pressure space and let
P, and P, denote prolongation operators from the coarse spaces to the fine spaces. (For simplicity we

are omitting explicit mention of 4 in this notation.) One step of V-cycle multigrid for solving (2), starting
with initial guess 4°, p° and using g = 0, is as follows:

@' p") =MGW’,p’.f, g, ki, by, h)
if A < hy, then % Recursive call
Starting with «°, p°, perform k, smoothing steps (12), producting u'/?, p'/?
A8 = f (4P + BTp'3), V3 = g — (Bu' — Cp'?)
réﬂ = Rurl/3, sé” = Rpsl/3
213, p¥®) = MG(0, 0, 7273, 51 &y, Ky, 2h)
PP = M3 4 Pl p = p'/3 +P,,p§/3
Starting with 4%/, p?/3, perform k, smoothing steps (12), producing u', p'
else % Coarse grid solve when h = A,

T 1
Solve (; _2 ) (;1) = (j;) directly
end if

We also use V-cycle multigrid derived from the discrete Laplacian as a preconditioner to approximate
the action of 4~! for the Krylov subspace methods; this is defined analogously and we omit the details.?®
For all multigrid methods we use bilinear interpolation to define P, and P,, and R, = P}, R, = P}. The
discrete operators at each level are derived from the discretization on the associated grid.

2.5. Convergence properties

We briefly outline some convergence properties of these methods; see the primary references for
derivations of bounds. Each of the methods generates a sequence of iterates u; =~ u, p; =~ p such that if ¢;
is a representation of the error, then lim;_, (lle;ll/lleg ||)'/ ' = p for some norm ||-||. We refer to p as the
convergence factor.

We are assuming that the discretization and choice of Q,, are such that

2 < @(B47'B"+C)g)
= (qv QMq)

where 4; and A;, and therefore x = A,/1,, are bounded independently of the mesh size of the
discretization. This is the case, for example, when Q,, is a suitable approximation of the mass
matrix in finite element discretization.?’?> Note that x is the spectral condition number of
0/ (BA'BT + C).2

The exact Uzawa algorithm has a convergence factor p (I — Q3. (BA~'BT + C)). This is smallest
for the choice & = 2/(4, + 4;), in which case it has the value (x — 1)/(x + 1). Thus the convergence

<7-2' (13)
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factor for the Uzawa algorithm is independent of the mesh. It is shown in Reference 12 that the
performance of the inexact Uzawa algorithm is close to that of the exact one if the iterate u;,, satisfies

I f — B'p; — Au;i,ll; < By, — Cpylig-t, (14)
A

where 7 is independent of the mesh size.

The PCG method is analyzed in Reference 6, Theorem 1, where it is shown that the condition number
of the coefficient matrix .# of (5) is bounded by a constant proportional to k. Thus standard results for
CG" imply that the bound on the convergence factor for this method is proportional to
(v/x = 1)/(J/x +1). The constant of proportionality depends on how close 7, is to 5, in (3), ie.
how well Q, approximates A.

The PCR method is analyzed in References 7 and 8. The analysis shows that the eigenvalues of the
preconditioned matrix 2!« are contained in two intervals [—a, —b] U [c, d], where a, b, c are d are
positive constants that are independent of the mesh size. The sizes of the intervals depend on x and the
accuracy with which O, approximates A. It follows from the convergence analysis of CR'>?* that the
convergence factor for the preconditioned algorithm is independent of the mesh size. For example, it is
shown'* that if d—c=a—b>0, then the convergence factor is bounded by
2[(1 — /B)/(1 + /B)'/2, where B = bc/ad.

It is shown in Reference 24 that for finite difference discretization of (1) (see Section 3.1), two-grid
variants of multigrid are convergent with a convergence rate independent of the mesh size. The analysis
applies to the ILU smoothing of Section 3.2, although it requires that the prolongation be based on
bidquadratic interpolation. In practice, bilinear interpolation has been observed to be sufficient.''
Fourier analysis in Reference 10 also suggests that MG/DGS has a convergence rate independent of the
mesh size.

Remark 1. Several other proposed methods share properties with the version of PCG under
consideration. In particular, Verfiirth®! has shown that PCG applied directly to the Schur complement
system has a convergence factor proportional to pcg; however, this method requires accurate
computation of the action of 4~! at each CG step.>* Bank ez al.?® present a method making use of
Q4 =~ A4, with the convergence rate dependent on the accuracy of this approximation, but using an
additional inner iteration on the pressure space.

3. SOLUTION COSTS

In this section we outline the computational costs required to solve four benchmark problems on
Q = (0, 1) x (0, 1) for each of the solution methods of Section 2.

3.1. Benchmark problems

We use four discretizations to produce test problems: ‘marker and cell’ finite differences and three
mixed finite element strategies.

1. Finite differences>’ This consists of the usual five-point operator for each of the discrete
Laplacian operators of (1), together with centred differences for the first derivatives Vp and div u.
For the discretization to be stable, it is necessary to use staggered grids in Q. Figure 1 shows such
grids on a mesh of width /# = 1. In order to define the velocity discretizations at grid points next
to 3Q, certain values outside {2 must be extrapolated; for example, this is needed to approximate
&%u;/8y? for points ‘x’ next to the bottom of Q.
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Figure 1. Staggered grids for finite difference discretization

2. Linear/constant finite elements. This choice consists of continuous piecewise linear velocities on
a mesh of width » and piecewise constant pressures on a mesh of width 2h. The discrete
pressures are not required to be continuous. The coarser pressure grid ensures that the inf-sup
condition holds.* We refer to this as the P, (h)Py(2h) discretization.

3. Piecewise linear finite elements. Here continuous piecewise linear velocities on a mesh of width
h are paired with continuous piecewise linear pressures on a mesh of width 2h. The inf-sup
condition is also satisfied. We call this the P,(h)P,(2h) discretization.

4. Stabilized piecewise linear finite elements. A stable discretization using piecewise linear
velocities and pressures on a single mesh can be obtained using a stabilization matrix
C = Bh?A4,, where 4, is the discrete Laplace operator defined on the pressure space, subject to
Neumann boundary conditions.?® This technique is equivalent to mini-element discretization®®
after elimination of the internal degrees of freedom. We use § = 0-025 as recommended in
Reference 30. We refer to this discretization as P, (k)P (k). The usual hat functions are used as
the bases for linear velocities and pressures.

The coefficient matrix &/ of (2) for all these problems, as well as BT, C and B4~'BT + C, is rank-
deficient by one; the latter three matrices share a constant null vector. As a result, the discrete pressure
solutions are uniquely defined only up to a constant. In exact arithmetic the solution methods under
consideration correct the initial guess with quantities orthogonal to the null space of &, so that the
component of the null space in the computed solution is the same as in the initial guess. For the analysis
the lower bound of (13) refers to the smallest non-zero eigenvalue.

Note that our goal in considering these problems is to compare the performance of the different
solution strategies on a variety of problems. We highlight some properties of each of the problems as
follows.

1. Finite differences, stable, #(pressure unknowns) =z #(velocity grid points).

2. Finite elements, stable, discontinuous pressures, #(pressure unknowns) = %#(velocity grid
points).

3. Finite elements, stable, continuous pressure, #(pressure unknowns) ~ % #(velocity grid points).

4. Finite elements, requires stabilization, continuous pressures, #(pressure unknowns) == #(velocity
grid points).

We are not comparing the accuracy achieved by the discretizations, but remark only that the three finite
element discretizations display the same asymptotic convergence rates. See Reference 4, pp. 29 and 50
for comments on the accuracy of finite element discretization and Reference 31 for analysis of the finite
difference scheme.
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3.2. Preconditioners and smoothers

The Uzawa, PCR and PCG methods require choices of @, and Q,,. For all cases, O, consists of one
step of V-cycle multigrid derived from the discrete Laplacian. The smoothing is based on damped point
Jacobi iteration (so that O, is symmetric), with optimal damping parameter w = %. For the three finite
element discretizations, Q,, is chosen to be the diagonal of the mass matrix M.22 (In the case of the
P, (h)Py(2h) discretization, Q,, = M.) Although there is no mass matrix for finite differences, a natural
analogue in two dimensions is M = h2I and this is used for @, with finite differences.

We consider two multigrid smoothing strategies. The first is a variant of the distributive Gauss—Seidel
(DGS) iteration introduced by Brandt and Dinar.'® The splitting operator of (11) is given by

s, 0
F=(" ,
B S;
so that the smoother (12) has the form

ligyy = S3'Lf — (Auy + B'py)],
Pis1 = S5'[—Buy + tiy41) + Cpyls
Upy) = Uy + Uy +BT§k+,,

Pyt = Pi — ApDr11-

For S, we use the point Gauss-Seidel matrix derived from red-black ordering of the velocity grid. (That
is, if A = D — L — U with red-black ordering, then S, = D — L.) For finite differences, S; = (1/w)T,
where T is the tridiagonal part of G and v = %; that is, S; corresponds to a damped one-line Jacobi
splitting. For P, (k)P,(h) finite elements, S; is the block Jacobi matrix derived from a two-line ordering
of the underlying grid.*?> We refer to this multigrid method as MG/DGS.

The other multigrid smoother is the incomplete LU factorization (ILU) used by Wlttum We use an
ILU factorization of the matrix & of (10), with no fill-in in the factors. The ordering for ./ is problem-
dependent. For finite differences it is derived from an uncoupled red-black ordering of the underlying
grid. That is, the grid values for 4, were listed first, in red-black ordering, followed by those for #, and
then those for p. (See also Remark 4 below.) For P (h)P, (k) finite elements, o is ordered according to
an uncoupled lexicographic ordering of the grid vectors. We denote this method by MG/ILU.

In choosing preconditioners and smoothers, we have attempted to use methods that are suitable for
vector and parallel computers. Thus we are using point Jacobi smoothing for multigrid preconditioning,
red-black Gauss—Seidel and line Jacobi for the DGS iteration and a red-black ordering for MG/ILU
applied to finite differences. With the P, (h)P,(h) discretization the operator G in the DGS method is a
19-point operator that has block property A for a two-line ordering of the pressure grid,* so that the two-
line Jacobi splitting can be implemented efficiently in parallel. The ILU smoother used with this
problem is not efficient on parallel computers. Our multigrid strategies do not address the issue of
idleness of parallel processors for coarse grid computations; see References 35 and 35 for discussions of
this point for the discrete Poisson equation.

Parameters are required for the Uzawa, PCG and multigrid methods and for the multigrid
preconditioner. These are as follows.

Uzawa. The optimal value of « for the exact Uzawa method, determined empirically, is used for the
inexact version. This requires computation of the extreme eigenvalues of Q;,' (BA~'BT + C).

* That is, G can be partitioned as a block tridiagonal matrix in which the block diagonal S; is a set of decoupled blocks, each of
which reflects connections within pairs of horizontal lines in the grid; see Reference 33, p. 445.
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PCG. As noted in Section 2.3, the preconditioner must be scaled so that , > 1 in (3). From the
results of Reference 6 it is desirable to have #, close to unity. In all tests the scaling is chosen so that
1 < 1, < 1.02. This requires computation of the smallest eigenvalue of 0;'4.*

Multxgnd For the coarse mesh size k, in multigrid computations we chose the one of hy =3 and

} that produced lower iteration counts. This turned out to be hy = 4 for preconditioners and hy = }
for solvers The coarse grid solution is obtained using Cholesky factonzatlon for the precondmoners
and singular value decomposition for the solvers.

Remark 2. For the Uzawa method the choice of Q4 does not guarantee that condition (14) is
satisfied. The results of References 12 and 36 as well as those of 4 suggest that with multigrid for Oy,
(14) may be too stringent.

Remark 3. The effectiveness of the multigrid solvers depends on the fact that the commutator # in
(10) is zero away from the boundary of Q. This is true for the finite difference and stabilized
P, (h)P, (h) discretizations, where pressures and velocities are defined on the same grid, but not for the
Py (h)P,(2h) discretization, Our experiments indicate that a simple implementation of multigrid for
Py(h)Py(2h) is ineffective. See Reference 37, p. 248 for a discussion of this issue. For the P, (h)Po(2h)
discretization it is difficult to define the discrete pressure Poisson operator 4, and we have not tested
multigrid in this case. It is possible to define versions of multigrid for these discretizations by grouping
the unknowns in a special manner.’® For example, for P;(h)P;(2h) let the velocity grid be organized
into four types of points, namely those at which the pressure unknowns are centred and the horizontal,
vertical and diagonal neighbours of those points. The two velocity components are then each blocked
into four subsidiary sets according to this reordering of grid points. A similar idea can be devised for
the P,(h)Py(2h) discretization. We have not examined these ideas.

Remark 4. For MG/ILU applied to the finite difference discretization, we also tested several
alternative ordering strategies, including an uncoupled lexicographic ordering (i.e. like that used for
Py (h)Py(h)) as well as several ‘coupled’ lexicographic orderings. For the latter strategies, velocity and
pressure unknowns are not separated from one another 39 The performances of MG/ILU for all these
orderings were very close. For example, for h = 32 as in Table IV below, the smallest average iteration
count with one smoothing step was 10} and the largest was 112,

Remark 5. Better performance of MG/DGS and multigrid applied to the Poisson equation can be
obtained with red-black Gauss—Seidel iteration for S¢ and Q4. In order to significantly improve
performance, however, it is necessary to perform more relaxation steps at points near the boundary
than at interior points.***? This has negligible effect on the computational costs but makes
implementation somewhat more complicated.

3.3. Iteration costs

We identify the costs per iteration of each of the methods by first specifying the ‘high-level’
operations of which they are composed and then determining the costs of each of these operations.
High-level operations are defined to be matrix—vector products, inner products (denoted ‘(;)’ in the
tables of this section) and AXPY's. Note that each of the techniques under consideration is formulated
with essentially the same set of these operations; consequently, we expect operation counts to give a
good idea of their comparative performance.

* In the experiments described in Section 4, these were computed using a power method applied to Q7'4 — I; 5-10 steps were
needed to obtain an estimate accurate to three significant digits.
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Table I. High-level operations for all solution algorithms

765

Matrix—vector product AXPY )
Uzawa 14 1 BT 107! 1(np) 1 (nu + np)
1B 1C 16/
PCG 14 1 BT 107! 4(n, +np) 3(n+np)
2B 1C 10/ 2(n)
PCR 14 187 105! 5 (n +np) 4 (ny +np)
1B 1C 10/
Multigrid (+k+k)4 1R,
preconditioner (k1 + k2)Sy! 1P,
Multigrid solver 14 18T 1R, 1(n+np)
(excluding 1B 1C 1R,
smoother) 1P, 1P,
14 287 14,
DGS smoother 1B i1c 187!
185
ILU smoother 14 28" 14,
1B 1C 197!
Table II. Costs for matrix—vector products
Fin. diff Py(h)Po(2h) Py(R)P\(2h) P(WPi(h)
A 10n? 10n? 10n? 10n?
B, BT 4n? 4an? 8n? 12n?
C 0 0 0 5n?
Q“ﬁl 1n? 0-25n? 0-25n2 1n?
S, (Jacobi) 2n? 2n? 2n? 2n?
87! (Gauss—Seidel) 6n? 6n? 6n? 6n?
Sg' 3n? — — 9n?
4, 5n? — — 5n’
R, P, 6n? 4.5n% 4.5n2 4.5n%
R, P, In? — — 2:25#%
g 19n2 — — 41n?
Table III. Cost factors
Uzawa PCR PCG MG/DGS MG/ILU
Finite h=k=1 84 107 109 148 175
differences khi=ky=2 116 139 141 244 297
Py(h)Po(2h) h=k=1 79 98 101 — —
kh=k=2 111 130 133 — —
Pi(h)Py(2h) h=k=1 86 104 111 — —
kh=k=2 118 136 143 — —
Py(R)Py (k) h=k=1 101 124 134 247 333
kh=k=2 133 156 166 421 591
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The high-level operations are shown in Table I. Matrix—vector products include operations with
matrices that define the problem or method, such as 4 or R,,, as well as preconditioning and smoothing
operators such as Q7' and S;'. The latter computations are themselves built from other matrix
operations and some of these are also identified in the table. All multigrid entries correspond to
operations performed on one grid level. For multigrid solvers the smoothing operations are presented
separately; these operations would be performed k, times during pre-smoothing and k, times during
post-smoothing. The lengths of the vector operations are listed in parentheses. We are assuming that one
inner product will be used in the convergence test and the counts in the table include this.

The costs of matrix—vector products are estimated to be the number of non-zeros in the matrices used.
This is roughly one-half the number of ‘FLOPS’ required and is also proportional to the number of
memory references. These costs, for discretizations in which the velocity unknowns come fromann x n
grid, are shown in Table II. The costs of vector operations are taken to be the length of the vectors.

Combining the data of Table I and II gives an estimate for the cost per iteration for each of the solution
methods under consideration. These numbers are all proportional to n? and we present in Table III the
cost factors obtained by omitting this factor, rounded to the nearest integer. For the multigrid methods
(preconditioners and solvers) the cost of one full multigrid step is estimated as % times the cost of the
computations on the finest grid; this is approximately the cost of full recursive multigrid in two
dimensions.

4. EXPERIMENTAL RESULTS

We now present the results of numerical experiments for solving (2). All experiments were performed in
Matlab on a Sparc-10 workstation. For each solution algorithm we solved three problems derived from
three choices of f consisting of uniformly distributed random numbers in [—1, 1]. The initial guess in all
cases was uy = 0, py = 0. The stopping criterion was

IR M2/ IRoll, < 107°,

T
R.-=(f)—(A 5 ) (“").
0 B —-C Di
We found that performance was essentially in the asymptotic range for A = é and all results are for this
mesh size.

We present three types of data: iteration counts, estimates for convergence factors and plots of
residual norms as functions of operation counts. The iteration counts are averages over three runs of the
number of steps needed to satisfy the stopping criterion; these are shown in Table IV, The estimates for
asymptotic convergence factors are the averages of (JiRs_;li»/ 1 Rsll;)"/* over all steps after step 5; here R,
represents the average of the kth residual norm over the three runs. These are shown in Table V. We
chose step S rather than step 0 because performance was often better in the first few steps than later,
when asymptotic behaviour is seen. Finally, Figures 2—5 plot the averages of the residual norms against
operation counts,

We make the following observations on these results.

where

1. Where multigrid was tested, it requires the smallest number of iterations and has the smallest
convergence factors. MG/ILU is superior to MG/DGS in these measures. These observations
agree with those of Reference 11. In addition, where it is applicable, MG/ILU requires the
smallest number of operations. (See Remark 5, however.)

2. The versions of the Krylov subspace methods and MG/DGS tested are roughly equal in cost.
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Table IV. Iterations

Uzawa PCR PCG MG/DGS MG/ILU

Finite kh=k= 31 38 27 22 12
differences h=k=2 29 32 21 14 9
Py(h)Po(2h) kh=k=1 29 38 28 — —
b=k=2 28 33 22 — —

P (h)P,(2h) h=k=1 89 54 36 — —
kh=k=2 89 50 29 — —

Py(h)P\(h) h=k=1 39 44 30 20 8
k=k=2 38 39 24 10 7

Table V. Estimates of convergence factor

Uzawa PCR PCG MG/DGS MG/ILU

Finite ki =k =1 0-63 0-68 0-66 0-59 0-39
difference h=k=2 0-60 0-63 0-52 048 0-31
Py(h)Py(2h) h=k=1 0-64 0-68 0-69 — —
h=k=2 0-60 0-67 0-54 — —

Pi(R)Py(2h) hh=kh=1 0-82 0-78 0-74 — —
kh=k=2 0-84 0-80 0-68 — —

Pi(WP(h) h=k=1 0-69 0-74 0-67 0-56 0-24
kh=k=2 0-71 0-76 0-59 0-33 021

3. The performances of all these methods are very close. In terms of operation counts the ratio of
costs of the most expensive and least expensive method is no worse than 2-2,

4. No Krylov subspace method is clearly superior to the others. PCG exhibits a somewhat faster
convergence rate than PCR and the Uzawa algorithm is surprisingly competitive with the other
two methods. This appears to derive from the dependence of PCG and PCR on both the spectral
condition number x from (13) and the accuracy of the preconditioning O, as an approximation to

Finke Diferences, § Smooling Siap

Finlls Difererces, 2 Smookhing Slecs
1 — 10" v v . v v v

MaDas
.. AP . - MV
0 500 1000 1500 2000 2500 3000 3500 4000 45Kl
Malipicalions

" i " Iy s et
S0 1000 1500 2000 2500 3000 3500 4000 4300
Mufipications

Figure 2. Operation counts for finite difference discretization
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Figure 3. Operation counts for P)(k)Po(2h) finite element discretization
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Figure 4. Operation counts for P, (h)P;(2h) finite element discretization
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Figure 5. Operation counts for P,{h)P,(h) finite element discretization
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A; for both these methods the iteration counts go down in all cases when the number of
smoothing steps in Q, increases. The Uzawa method appears to be less sensitive to the accuracy
of Q,. The values of k for the three problems are:

finite difference 4-14, P,(h)P,(2h) 2271,
P(B)Py(2h) 4.87, P,(h)P,(h) 9.91.

The Uzawa method is least effective for the P,(k)P;(2h) discretization, which has the largest
condition number.

5. The Uzawa and PCG methods depend on choices of iteration parameters. These can be estimated
relatively inexpensively (e.g. using a coarse grid for the Uzawa method and a few steps of the
power method for PCG), but this increases the cost of these methods and makes implementing
them considerably more difficult. In contrast, PCR is independent of parameters, except for those
needed for the multigrid preconditioning, and is therefore easier to implement. Thus there is a
trade-off between these methodologies: PCR converges slightly more slowly than PCG and often
the Uzawa method, but it has a simpler implementation.

6. For each of the solution strategies except PCG it is less expensive to use one smoothing step than
two.
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