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SUMMARY 

Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable 
discretizatiom a variety of numerical methods have been proposed that have rates of convergence independent of 
the mesh size used in the dkretization. In this paper we compare the performance of four such methods, namely 
variants of the Uzawa, preconditioned conjugate gradient, preconditioned conjugate residual and multigrid 
methods, for solving several two-dimensional model problems. The results indicate that multigrid with smoothing 
based on incomplete factorization is more efficient than the other methods, but typically by no more than a factor 
of two. The conjugate residual method has the advantage of being independent of iteration parameters. 
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1. INTRODUCTION 

Consider the system of part~al differential equations 

-Au+Vp=f and -divu=O onR. 
u = O  onm,  

r 

where R is a simply connected bounded domain in wd, d = 2 or 3. This system, the Stokes equations, is 
a fundamental problem arising in computational fluid dynamics (see e.g. References 14 ) ;  u is the d- 
dimensional velocity vector defined in R, and p represents pressure. 

Discretization of (1) by finite difference or finite element techniques leads to a linear system of 
equations of the form 

where A is a set of uncoupled discrete Laplacian operators and C is a positive semidefinite matrix. We 
consider here only stable discretizations, i.e. those for which the condition number of the Schur 
complement matrix BA-' BT + C is bounded independently of the mesh size used in the discretization. 
For finite element discretizations with C = 0 this is a consequence of the inf-sup condition and upper 
bound 
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where y and r are independent of the mesh size. Here I.I1 and Il.llo denote the H'-seminom and 
Euclidean norm respectively on the discrete velocity and pressure spaces and the bounds are taken over 
all u and q in the appropriate discrete  space^.'^ 

In recent years a variety of iterative algorithms have been devised for solving the discrete Stokes 
equations. In this paper we compare the performance of four such methods: 

(i) a variant of the Uzawa method 
(ii) a preconditioned conjugate gmhent (PCG) method applied to a transformed version of (2) 

(iii) a preconditioned conjugate residual (PCR) method 
(iv) multigrid (MG). 

The Uzawa method is the first among these to have been devised5 and is often advocated as an efficient 
solution technique (see e.g. References 1-3). The convergence factor associated with it is proportional 
to (K - l)/(rc + l), where K is the condition number of the Schur complement BA-'BT + C (see Section 
2.5). The conjugate gradient method, developed by Bramble and Pasciak,6 has a convergence h t o r  
proportional to (JK - ~) / (JK + 1) but a larger cost per step than the Uzawa method. The 
preconditioned conjugate residual method was developed by Rusten and Winther' and Silvester and 
Wathen8*9 and its convergence behaviour is determined by the properties of the indefinite matrix. For 
multigrid we consider versions derived fiom two smoothing strategies: a variant of the distributive 
Gauss-Seidel (MG/DGS) method of Brandt and Dinar" and a technique based on incomplete 
factorization (MG/ILU) studied by Wittun.'' 

These methods all have the property that for an appropriate choice of preconditionm (or, for 
multigrid, smoothers) their convergence rates are independent of the mesh size used in the 
discretization. The actual costs of using them depend on both the convergence rate and the cost per 
iteration. Our goal in this paper is to compare the costs, in operation counts, of using each of the 
methods to solve four discrete versions of (1). For convergence to be independent of mesh size, the first 
three methods (KTyov subspace metho&) require a preconditioning operator spectrally equivalent to the 
discrete Laplacian. In an effort to unify the comparison of these ideas with multigrid, we also implement 
this preconditioner using a multigrid method for the associated Poisson equation. The benchmark 
problems are derived from the Stokes equations (1) on the two-dimensional unit square, discretized by 
either finite differences or one of three low-order mixed finite element schemes. 

Our main observations are as follows. For problems where it is applicable, one version of multigrid, 
using incomplete factorization, quires the fewest iterations and o p t i o n s ,  but it is only marg idy  
faster, i.e. by factors of approximately 1-52 ,  than the Krylov subspace methods and the distributive 
Gauss-Seidel method. Among the Krylov subspace methods the conjugate residual method is slightly 
slower than the conjugate gradient method and in some cases the Uzawa method, but it has the 
advantage of not requiring any parameter estimates. 

An outline of the rest of the paper is as follows. In Section 2 we present the solution algorithms and 
give an overview of their convergence properties. In Section 3 we specify the benchmark problems and 
the computational costs per iteration of each of the solution methods. In Section 4 we present the 
numerical comparison. 

2. OVERVIEW OF METHODS 

In this section we present the four algorithms under consideration and outline their convergence 
properties. The first three methods depend on a preconditioning o p t o r  QA that approximates the 
matrix A of (2). We assume that QA is symmetric positive definite (SPD) and that 
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where q1 and q2 are independent of the mesh size used in the discretization. In addition, finite element 
discretizations of (1) have a mass matrix M associated with the pressure discretization.* The 
preconditioner will also include an SPD approximation QM of M. Discussions of computational 
costs will be made in terms of various matrix operations together with inner products and 'AXPYs', i.e. 
vector operations of the form y t ax + y. 
2.1. The inexact Uzawa method 

arbitmy initial guess po: 
We use the following 'inexact' version of the Uzawa algorithm12 which starts with uo = 0 and an 

for i = 0 until convergence, do 

~ j + l  = uj + &I[ f - (Auj + Bfp,)] 

Pi+l =Pi  + aQG'(Bui + 1 - CPi) 
enddo 

Here a is a scalar parameter that must be determined prior to the itexation. 
In the 'exact' version of this algorithm, Q,, = A and the first step is equivalent to solving the linear 

system = f - BTpi. When QM = I, the exact algorithm is then a fixed parameter firstader 
Richardson iteration applied to the Schur coxqlement system (BA-'BT + C)p = BA-'f; QM is a 
preconditioner for this iteration. The inexact Uzawa algorithm (4) replaces the exact computation of 
A-'(f - BTpJ with an approximation. 

2.2. A preconditioned conjugate gmdient method 

Let d denote the coefficient matrix of (2). Premultiplication of (2) by the matrix 

produces the equivalent system 

Let A=Yi denote the coefficient matrix of this system. The conjugate gradient method (CG) 
developed in Reference 6 r e q k  that the bilinear form 

define an inner product. Equivalently, the preconditioning operator QA must satis@ (3) with ql > 1. It is 
shown in Reference 6 that A is SPD with respect to the inner product (a), 80 that CG in this inner 
product is applicable. The matrix 

. = ( I  0 QM 0 )  

is also SPD with xespcct to (6), 80 that this can be u8cd as a pnconditioner. 

(7) 
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denote an arbitrary guess for the solution and the associated residual. An implementation of PCG is 
given below. Except for the non-standard inner product, it is the standard implementation as given e.g. 
Reference 13, in p. 529. It is more efficient then the version given in Reference 6. The preconditioner QA 
is implicitly incorporated into the inner product. The use of the preconditioner (7) is new. 

To help identify operation counts, we describe the computation of (ai} and {&} in more detail. Letting 

then ai4 = [Pi, d P i ]  = (ci, A&'vi - vi) + (di, BQi'v, - wi). QA is referenced only in the construc- 
tion of Qi'w in (8), so that only the action of the inverse of QA is required. Moreover, although the 
vectors AFi, Ac, (for vi)  and AQi'v, are used, the first two of these can be computed using an AXPY. 
Consequently, only one matrix-vector product by A is needed. 
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2.3. The preconditioned conjugate residual method 

Since d is symmetric, variants of the conjugate residual method are applicable. Let Xo denote the 
initial guess and Ro its residual. The following algorithm implements the Orthomin version of PCR with 
preconditioner 1: 14** 

= 3!-'Ro, Po = ko, So = 3!-ldP0 

at' = (i0, d p 0 ) ,  ai4 = ( d p 0 ,  so), a. = a. (n) /ao (4 

X, = x0 + a,,p0, 
for i = 1 until convergence, do 

R~ = R,, - a o d P o ,  il = 2, - %so 

= = 

Pi =if + / 3 - J J i - 1 ,  d P i  = dii + &Idpi- , ,  si = S ' d P i  

af '  = (Ai, &pi), a!4 = (&pi. si). ai = ai (4 /ai (4 

X,+, = 4 + aiPi, Ri+, = Ri - a i d p i ,  f i i + l  = ki - aiSi 
enddo 

Any symmetric positive definite 1 could be used as a preconditioner. As in Reference 8, we use 

1 = ( Q A  0 QM O ). 
2.4. Multigrid 

As is well known, multigrid methods combine iterative methods to smooth the error with correction 
derived h m  a coarse grid computation. We use V-cycle multigrid for 'transformed systems'. Our 
description follows References 1 1 and 16. See References 17 and 18 for other multigrid methods 
derived from the squared system associated with (2). 

Let -A denote the Laplace operator defined on the pressure space, with Neumann boundary 
conditionsp" and let Ap be a discrete approximation to -Ap defined on the pressure grid. Consider the 
following transformed version of (2): 

The coefficient matrix in (9) is 

A W  
' = ( B  G ) '  

where W = ABT - BTAp and G = BBT + CAP. For appropriate discretizations of (1) (see Section 3), W 
is of low rank, with non-Zero entries only in rows corresponding to mesh points next to aR. When 
C = 0, G can also be viewed as a discretization of -Ap. The splitting 

' = Y - W  (1 1) 

It is possible for this vusion of PCR to bnak down, with a, = 0. The oltfrodir version, which uses a thret-tcrm recumme to 
generate P,, is gumteed not to b& dowq it quires two additional AXPYs. Our implementation switches 6rom the m m i n  
to orthodir direction update if lail < lo-*, as described in Reference IS. In the experimcnta d i s c d  in Section 4, this switch 
never took place. 
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then induces a stationary iteration applicable to (2), namely 

This is used as the smoother for the multigrid solver for (2). Specific choices for 9' are given in 
Section 3.2. 

Let R, denote a restriction operator mapping velocity vectors in the fine grid (of width h) to the coarse 
grid (of width 2h), let Rp similarly denote the restriction operator for the discrete pressure space and let 
P, and Pp denote prolongation operators from the coarse spaces to the fine spaces. (For simplicity we 
are omitting explicit mention of h in this notation.) One step of V-cycle multigrid for solving (2), starting 
with initial guess uo,po and using g = 0, is as follows: 

(ul.pl) = MG(uo,po,f,g, kl, b, h) 
if h < ho, then % Recursive call 

Starting with uo,po, perfom kl smoothing steps (12), producting u113,p113 
*I13 =f - (Au'/3 + BTp'/3), s113 = g - (Bu'13 - CP'13) 

113 = R ,.113 s:/3 = R rc Y 9  P 

@,pif3) = MG(O.0, r:I3, 413, kl, b, 2h) 
3 1 3  = ,,113 + p u p ,  p 2 ~ 3  = p l ~ 3  + pppy3 

Starting with 313, p2l3, perform b smoothing steps (1 21, producing ul, pl 
else % Coarse grid solve when h = ho 

Solve (i -:) ( f l )  = c) directly 

end if 

We also use V-cycle multigrid derived from the discrete Laplacian as a preconditioner to approximate 
the action ofA-' for the Krylov subspace methods; this is defined analogously and we omit the details." 
For all multigrid methods we use bilinear interpolation to define P, and Ppy and R,, = PT, Rp = Pi. The 
discrete operators at each level are derived from the discretization on the associated grid. 

2.5. Convergence pmperties 

We briefly outline some convergence properties of these methods; see the primary references for 
derivations of bounds. Each of the methods generates a sequence of iterates ui sz u, pi % p such that if e, 
is a representation ofthe error, then l ~ i ~ ~ ( ~ ~ e i ~ ~ / ~ ~ ~ o ~ ~ ) l J i  = p for some norm 11-11. We refer to p as the 
convergence factor. 

We are assuming that the discretization and choice of Q M  are such that 

where 1, and A2, and therefore K = &/Al, are bounded independently of the mesh size of the 
discretization. This is the case, for example, when Q M  is a suitable approximation of the mass 
matrix in finite element discretization.2'*22 Note that K is the spectral condition number of 

The exact Uzawa algorithm has a convergence factor p (I - aQi'(BA-'BT + 0). This is smallest 
for the choice a = 2/(A1 + A2), in which case it has the value (K - 1 ) / ( ~  + 1). Thus the convergence 

Q ~ I ( E A - I B ~  + c) .~  
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factor for the Uzawa algorithm is independent of the mesh. It is shown in Reference 12 that the 
performance of the inexact Uzawa algorithm is close to that of the exact one if the iterate ui+’ satisfies 

~ ~ f - B ~ p i - ~ u j + l I I z  < ZIIBUi-  CPiIIEl, (14) 

where T is independent of the mesh size. 
The PCG method is analyzed in Reference 6, Theorem 1, where it is shown that the condition number 

of the coefficient matrix .M of ( 5 )  is bounded by a constant proportional to K. Thus standard results for 
CGI3 imply that the bound on the convergence factor for this method is proportional to 
(JK - ~)/(JK + 1). The constant of proportionality depends on how close ql is to q2 in (3), i.e. 
how well QA approximates A. 

The PCR method is analyzed in References 7 and 8. The analysis shows that the eigenvalues of the 
preconditioned matrix Z1d are contained in two intervals [-a, -b] U [c, d], where a, b, c are d are 
positive constants that are independent of the mesh size. The sizes of the intervals depend on K and the 
accuracy with which QA approximates A. It follows from the convergence analysis of CR’5323 that the 
convergence factor for the preconditioned algorithm is independent of the mesh size. For example, it is 
shown” that if d - c  = a  - b  > 0, then the convergence factor is bounded by 
2[(1 - J/?)/(l + J/?)]1/2, where /? = bc/ad. 

It is shown in Reference 24 that for finite difference discretization of (1) (see Section 3. l), two-grid 
variants of multigrid are convergent with a convergence rate independent of the mesh size. The analysis 
applies to the ILU smoothing of Section 3.2, although it requires that the prolongation be based on 
bidquadratic interpolation. In practice, bilinear interpolation has been observed to be sufficient.” 
Fourier analysis in Reference 10 also suggests that MG/DGS has a convergence rate independent of the 
mesh size. 

Remark 1. Several other proposed methods share properties with the version of PCG under 
consideration. In particular, Verfurth” has shown that PCG applied directly to the Schur complement 
system has a convergence factor proportional to pCG; however, this method requires accurate 
computation of the action of A-’ at each CG step.25 Bank et ~ 1 . ~ ~  present a method making use of 
QA x A, with the convergence rate dependent on the accuracy of this approximation, but using an 
additional inner iteration on the pressure space. 

3. SOLUTION COSTS 
In this section we outline the computational costs required to solve four benchmark problems on 

R = (0,l)  x (0,l)  for each of the solution methods of Section 2. 

3.1. Benchmark problems 

mixed finite element strategies. 
We use four discretizations to produce test problems: ‘marker and cell’ finite differences and three 

1. Finite dflemn~es.~’ This consists of the usual five-point operator for each of the discrete 
Laplacian operators of (l), together with centred differences for the first derivatives V p  and div u. 
For the discretization to be stable, it is necessary to use staggered grids in fi. Figure 1 shows such 
grids on a mesh of width h =f. In order to define the velocity discretizations at grid points next 
to aR, certain values outside S l  must be extrapolated; for example, this is needed to approximate 
a‘ul/aJ for points ‘ x ’  next to the bottom of an. 
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Figure 1. Staggered grids for finite difference discretization 

2. Linearlconstantfinite elements. This choice consists of continuous piecewise linear velocities on 
a mesh of width h and piecewise constant pressures on a mesh of width 2h. The discrete 
pressures are not required to be continuous. The comer pressure grid ensures that the inf-sup 
condition holds! We refer to this as the Pl(h)P0(2h) discretization. 

3. Piecewise linearfinite elements. Here continuous piecewise linear velocities on a mesh of width 
h are paired with continuous piecewise linear pressures on a mesh of width 2h. The inf-sup 
condition is also satisfied. We call this the Pl(h)P,(2h) discretization. 

4. Stabilized piecewise linear finite elements. A stable discretization using piecewise linear 
velocities and pressures on a single mesh can be obtained using a stabilization matrix 
C = flh2A,, where A, is the discrete Laplace operator defined on the pressure space, subject to 
Neumann boundary conditions.28 This technique is equivalent to minielement discretization29 
after elimination of the inkmal degrees of freedom. We use f l  = 0-025 as recommended in 
Reference 30. We refer to this discretization as Pl(h)Pl(h). The usual hat functions are used as 
the bases for linear velocities and pressures. 

The coefficient matrix d of (2) for all these problems, as well as BT, C and BA-'BT + C, is rank- 
deficient by one; the latter three matrices share a constant null vector. As a result, the discrete pressure 
solutions are uniquely defined only up to a constant. In exact arithmetic the solution methods under 
consideration correct the initial guess with quantities orthogonal to the null space of d,  so that the 
component of the null space in the computed solution is the same as in the initial guess. For the analysis 
the lower bound of (1 3) refers to the smallest non-zero eigenvalue. 

Note that our goal in considering these problems is to compare the performance of the d i f f in t  
solution strategies on a variety of problems. We highlight some properties of each of the problems as 
follows. 

1. Finite differences, stable, #(pressure unknowns) re #(velocity grid points). 
2. Finite elements, stable, discontinuous pressures, #(pressure unknowns) % i#(velocity grid 

3. Finite elements, stable, continuous pressure, #(pressure unknowns) % f #(velocity grid points). 
4. Finite elements, requires stabilization, continuous pressures, ##(pressure unknowns) % #(velocity 

points). 

grid points). 

We are not comparing the accuracy achieved by the discretizations, but remark only that the three finite 
element discretizations display the same asymptotic convergence rates. See Reference 4, pp. 29 and 50 
for comments on the accuracy of finite element discretization and Reference 3 1 for analysis of the finite 
difference scheme. 
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3.2. Preconditioners and smoothers 

The Uzawa, PCR and PCG methods require choices of QA and QM. For all cases, QA consists of one 
step of V-cycle multigrid derived fiom the discrete Laplacian. The smoothing is based on damped point 
Jacobi iteration (so that QA is symmetric), with optimal damping parameter o = i. For the three finite 
element discretizations, QM is chosen to be the diagonal of the mass matrix MZ2 (In the case of the 
P1(h)P0(2h) discretization, QM = M.) Although there is no mass matrix for finite differences, a natural 
analogue in two dimensions is M = h2Z and this is used for QM with finite differences. 

We consider two multigrid smoothing strategies. The first is a variant of the distributive Gauss-Seidel 
(DGS) iteration introduced by Brandt and Dinar." The splitting operator of (1 1) is given by 

Y =  (" 0 ) ) .  
sG 

so that the smoother (12) has the fonn 

ck+1 = si'lf - (Auk + BTpk)], 

i k + l  = &' [-B(uk + iik+l) + Cpkl* 

uk+l = uk + ck+l + BT$k+l 9 

Pk+1 = P k  - A#k+l. 

For S, we use the point Gauss-Seidel matrix derived from red-black ordering of the velocity grid. (That 
is, if A = D - L - U with red-black ordering, then S,, = D - t.) For finite differences, S, = (1 /w)T, 
where T is the tridiagonal part of G and o = $; that is, SG corresponds to a damped one-line Jacobi 
splitting. For P ,  (h)P, (h) finite elements, S, is the block Jacobi matrix derived from a two-line ordering 
of the underlying grid.32 We refer to this multigrid method as MG/DGS. 

The other multigrid smoother is the incomplete LU factorization (ILLJ) used by Withun." We use an 
ILU factorization of the matrix 2 of (lo), with no fill-in in the factors. The ordering for 2 is problem- 
dependent. For finite differences it is derived from an uncoupled red-black ordering of the underlying 
grid. That is, the grid values for u1 we= listed first, in red-black ordering, followed by those for u2 and 
then those forp. (See also Remark 4 below.) For Pl(h)Pl(h) finite elements, 2 is ordered according to 
an uncoupled lexicogmphic ordering of the grid vectors. We denote this method by MG/ILU. 

In choosing preconditioners and smoothers, we have attempted to use methods that are suitable for 
vector and parallel computers. Thus we are using point Jacobi smoothing for multigrid preconditioning, 
red-black Gauss-Seidel and line Jacobi for the DGS iteration and a red-black ordering for MG/ILU 
applied to finite differences. With the P1 (h)P, (h) discretization the operator G in the DGS method is a 
19-point operator that has block property A for a two-line ordering of the pressure grid,* so that the two- 
line Jacobi splitting can be implemented efficiently in parallel. The ILU smoother used with this 
problem is not efficient on parallel computers. Our multigrid strategies do not address the issue of 
idleness of parallel processors for coarse grid computations; see References 35 and 35 for discussions of 
this point for the discrete Poisson equation. 

Parameters are required for the Uzawa, PCG and multigrid methods and for the multigrid 
preconditioner. These are as follows. 
Uzawa. The optimal value of a for the exact Uzawa method, detexmined empirically, is used for the 

inexact version. This requires computation of the extreme eigenvalues of Q ~ ~ ( B A - ~ B ~  + c>. 
* That is, G can be partitioned as a blodc hidiagonal matrix in which the block diagonal SG is a set of decoupled blocks, each of 
which reflects connections within pairs of horizontal lines in the grid; see Reference 33, p. 445. 
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PCG. As noted in Section 2.3, the preconditioner must be scaled so that ql > 1 in (3). From the 
results of Re fmce  6 it is desirable to have ql close to unity. In all tests the scaling is chosen so that 
1 < ql < 1.02. This requires computation of the smallest eigenvalue of Q;IA.+ 

Multigrid. For the coarse mesh size ho in multigrid computations we chose the one of ho = 4 and 
ho = 4 that produced lower iteration counts. This turned out to be h, = 4 for preconditioners and h, = f 
for solvers. The coarse grid solution is obtained using Cholesky factorization for the preconditioners 
and singular value decomposition for the solvers. 

Remark 2. For the Uzawa method the choice of QA does not guarantee that condition (14) is 
satisfied. The results of References 12 and 36 as well as those of 4 suggest that with multigrid for QA, 
(14) may be too stringent. 

Remurk 3. The effectiveness of the multigrid solvers depends on the fact that the commutator Win 
(10) is zero away from the boundary of R. This is true for the finite difference and stabilized 
PI (h) discretizations, where pressures and velocities are defined on the same grid, but not for the 
PI (h)P1(2h) discretization. Our experiments indicate that a simple implementation of multigrid for 
PI (h)P1(2h) is ineffective. See Reference 37, p. 248 for a discussion of this issue. For the PI (h)Po(2h) 
discretization it is difficult to define the discrete pressure Poisson operator Ap and we have not tested 
multigrid in this case. It is possible to define versions of multigrid for these discretizations by grouping 
the unknowns in a special manner.38 For example, for PI (h)P1(2h) let the velocity grid be organized 
into four types of points, namely those at which the pressure unknowns are centred and the horizontal, 
vertical and diagonal neighbours of those points. The two velocity components are then each blocked 
into four subsidiary sets according to this reordering of grid points. A similar idea can be devised for 
the Pl(h)Po(2h) discretization. We have not examined these ideas. 

Remark 4. For MG/ILU applied to the k i t e  difference discretization, we also tested several 
alternative ordering strategies, including an uncoupled lexicographic ordering (i.e. like that used for 
PI (h)P1 (h)) as well as several ‘coupled’ lexicographic orderings. For the latter strategies, velocity and 
pressure unknowns are not separated from one The performances of MG/ILU for all these 
orderings were very close. For example, for h = f t  as in Table IV below, the smallest average iteration 
count with one smoothing step was 10 4 and the largest was 11 3. 

Remark 5. Better performance of MG/DGS and multigrid applied to the Poisson equation can be 
obtained with red-black Gauss-Seidel iteration for SG and QA. In order to significantly improve 
performance, however, it is necessary to perform more relaxation steps at points near the boundary 
than at interior points.-’ This has negligible effect on the computational costs but makes 
implementation somewhat more complicated. 

3.3. Ztemtion costs 

We identify the costs per iteration of each of the methods by first specifjmg the ‘high-level’ 
operations of which they are composed and then determining the costs of each of these operations. 
High-level operations are defined to be matrix-vector products, inner products (denoted ‘(,)’ in the 
tables of this section) and AXPYs. Note that each of the techniques under consideration is formulated 
with essentially the same set of these opemtions; consequently, we expect operation counts to give a 
good idea of their comparative Performance. 

In the experiments deacribcd in Section 4, these were computed using a power mahod applied to Qi’A - I ;  5-10 steps w 
needed to obtain an estimate accurate to three s i g n i h t  digits. 



MULTIGRID AND KRYLOV SUBSPACE METHODS 765 

Multigrid solver 1A 1 BT 1 R u  
(excluding 1 B  1 c  1 RP 
smoother) 1 p u  1 PP 

1A 2 BT 1 AP 
DGS smoother 1 B  1c 1 s,i1 

1 SEI 

ILU smoother 1A 2 BT 
1 B  1 c  

Table 111. Cost factors 

UZaWa PCR PCG MG/DGS MG/ILU 

Finite kl = k2 = 1 84 107 109 148 175 
differences k1 = k2 = 2 116 139 141 244 297 

- - kI = k2 = 1 79 98 101 
k2 = k2 = 2 111 130 133 

kl = kz = 1 86 104 111 
k2 = kz = 2 118 136 143 

k2 = k2 = 2 133 156 166 42 1 59 1 

- - Pl(h)PO(2h) 

p1 (h)P1(2h) 

PI ( W I  (h) kl = k2 = 1 101 1 24 I34 247 333 

- - 
- - 
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The high-level operations are shown in Table I. Matrix-vector products include operations with 
matrices that define the problem or method, such as A or R,, as well as preconditioning and smoothing 
operators such as Qi' and 8;'. The latter computations are themselves built from other matrix 
operations and some of these are also identified in the table. All multigrid entries correspond to 
operations performed on one grid level. For multigrid solvers the smoothing operations are presented 
separately; these operations would be performed k, times during pre-smoothing and k2 times during 
post-smoothing. The lengths of the vector operations are listed in parentheses. We are assuming that one 
inner p d u c t  will be used in the convergence test and the counts in the table include this. 

The costs of matrix-vector products are estimated to be the number of non-zeros in the matrices used. 
This is roughly one-half the number of 'FLOPS' required and is also proportional to the number of 
memory references. These costs, for discretizations in which the velocity unknowns come from an n x n 
grid, are shown in Table 11. The costs of vector operations are taken to be the length of the vectors. 

Combining the data of Table I and I1 gives an estimate for the cost per iteration for each of the solution 
methods under consideration. These numbers are all proportional to n2 and we present in Table III the 
cost factors obtained by omitting this factor, rounded to the nearest integer. For the multigrid methods 
(preconditioners and solvers) the cost of one full multigrid step is estimated as 4 times the cost of the 
computations on the finest grid; this is approximately the cost of full recursive multigrid in two 
dimensions. 

4. EXPERIMENTAL RESULTS 

We now present the results of numerical experiments for solving (2). All experiments were performed in 
Matlab on a Sparc-10 workstation. For each solution algorithm we solved three problems derived from 
three choices offconsisting of uniformly distributed random numbers in [- 1, 11. The initial guess in all 
cases was uo = O,po = 0. The stopping criterion was 

where 

We found that performance was essentially in the asymptotic range for h = & and all results are for this 
mesh size. 

We present three types of data: iteration counts, estimates for convergence factors and plots of 
residual norms as functions of operation counts. The iteration counts are averages over three runs of the 
number of steps needed to satis@ the stopping criterion; these are shown in Table n! The estimates for 
asymptotic convergence factors are the averages of ( llks+i112/Ili?s l12)1'i over all steps after step 5;  hem Rk 
represents the average of the kth residual norm over the three runs. These are shown in Table V We 
chose step 5 rather than step 0 because performance was often better in the first few steps than later, 
when asymptotic behaviour is seen. Finally, Figures 2-5 plot the averages of the residual norms against 
operation counts. 

We make the following observations on these results. 

1. Where multigrid was tested, it requires the smallest number of iterations and has the smallest 
convergence factors. MG/ILU is superior to MG/DGS in these measures. These observations 
agree with those of Reference 11. In addition, where it is applicable, MG/ILU requires the 
smallest number of operations. (See Remark 5 ,  however.) 

2. The versions of the Krylov subspace methods and MG/DGS tested are roughly equal in cost. 
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Table IV. Iterations 
~ _____________________ ____ 

Uzawa PCR PCG MG/DGS MG/ILU 

Table V. Estimates of convergence factor 

UzaWa FCR PCG MG/DGS MG/ILU 

Finite kl = k2 = 1 0.63 0.68 0.66 0.59 0.39 
difference kl = k2 = 2 0.60 0.63 0.52 0.48 0.3 1 

- - kl = k2 = 1 0.64 0.68 0.69 
k2 = k2 = 2 0.60 0.67 0.54 

k1 = k2 = 1 0.82 0.78 0.74 
k2 = k2 = 2 0.84 0.80 0.68 - - 

ki = k2 = 2 0.71 0.76 0.59 0.33 0.21 

- - PI (h)Po(W 

PI ( W I  (2h) - - 

PI (h)Pi (h) k~ = k2 = 1 0.69 0.74 0.67 0-56 0-24 

3. The performances of all these methods are very close. In terms of operation counts the ratio of 
costs of the most expensive and least expensive method is no worse than 2-2. 

4. No Krylov subspace method is clearly superior to the others. PCG exhibits a somewhat faster 
convergence rate than PCR and the Uzawa algorithm is surprisingly competitive with the other 
two methods. This appears to derive from the dependence of PCG and PCR on both the spectral 
condition number K from ( 13) and the accuracy of the preconditioning QA as an approximation to 

Figme 2. operahon counts for finite difference discretizati on 
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Figure 3. Opetation counts for Pl(h)Po(Zh) finite element discretization 

Figure 4. Opetation counts for PI (h)P 1 (2h) fiNte element discretizati on 

! 

vrplcan 

Figure 5. Opetation counts for PI (h)P I (h) finite element discretization 
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A; for both these methods the iteration counts go down in all cases when the number of 
smoothing steps in QA increases. The Uzawa method appears to be less sensitive to the accuracy 
of QA. The values of K for the three problems are: 

finite difference 4-14, PI (h)P, (2h) 22.7 1, 

PI(h)P,(Zh) 4.87, PI (h)PI (h) 9.9 1. 

The Uzawa method is least effective for the PI  (h)P, (2h) discretization, which has the largest 
condition number. 

5. The Uzawa and PCG methods depend on choices of iteration parameters. These can be estimated 
relatively inexpensively (e.g. using a coarse grid for the Uzawa method and a few steps of the 
power method for PCG), but this increases the cost of these methods and makes implementing 
them considerably more difficult. In contrast, PCR is independent of parameters, except for those 
needed for the multigrid preconditioning, and is therefore easier to implement. Thus there is a 
trade-off between these methodologies: PCR converges slightly more slowly than PCG and often 
the Uzawa method, but it has a simpler implementation. 

6. For each of the solution strategies except PCG it is less expensive to use one smoothing step than 
two. 
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