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Abstract. We introduce a preconditioner for the linearized Navier–Stokes equations that is
effective when either the discretization mesh size or the viscosity approaches zero. For constant
coefficient problems with periodic boundary conditions, we show that the preconditioning yields a
system with a single eigenvalue equal to 1, so that performance is independent of both viscosity and
mesh size. For other boundary conditions, we demonstrate empirically that convergence depends only
mildly on these parameters and we give a partial analysis of this phenomenon. We also show that
some expensive subsidiary computations required by the new method can be replaced by inexpensive
approximate versions of these tasks based on iteration, with virtually no degradation of performance.
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1. Introduction. This paper introduces a methodology for preconditioning the
discrete steady-state incompressible Navier–Stokes equations

−ν∆u + (u · grad) u + grad p = f
−div u = 0

in Ω,(1)

subject to suitable boundary conditions on ∂Ω, where Ω is an open bounded domain
in R2 or R3. The vector field u represents the velocity in Ω, p represents pressure, and
the scalar ν is the viscosity, which is inversely proportional to the Reynolds number.
We will develop the preconditioners for the linearized version of (1) known as the
Oseen equations, which can be written as

−ν∆u + (w · grad) u + grad p = f ,
−div u = 0,

(2)

where w is given such that div w = 0. These equations arise from a nonlinear iteration
essentially of the form −ν∆u(m)+(u(m−1) ·grad) u(m)+grad p(m) = f , −div u(m) = 0;
see [18].

Common discretizations of (2) yield a linear system of equations(
F BT

B 0

)(
u
p

)
=

(
f
0

)
,(3)

where u and p now represent discrete versions of velocity and pressure, respectively.
Here F = νA+N, where A consists of a set of uncoupled discrete Laplace operators,
corresponding to diffusion, and N is a discrete convection operator. We are inter-
ested in convergence behavior of iterative methods applied to (3) as either ν or the
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discretization mesh width h tend to zero. For small ν it is necessary for the discretiza-
tion to be fine enough to resolve features such as boundary layers [13]. Ideally, when
ν is decreased, h will also be reduced proportionally. We are concerned only with
values of ν for which stable steady-state solutions exist; for example, it is shown in
[12] that values of 1/ν on the order of 1000 to several thousand are feasible.

Let A denote the coefficient matrix of (3). We will consider preconditioners of
the form

Q =

(
F BT

0 −X
)
.(4)

It is easily confirmed that

AQ−1 =

(
I 0

BF−1 BF−1BTX−1

)
,(5)

so that the eigenvalues of AQ−1 are

{1} ∪ σ(BF−1BTX−1).

For finite element discretization, let M denote the diagonal of the pressure mass
matrix; for finite differences, a natural analogue isM = hdI for a uniform grid of width
h in d dimensions. It was shown in [5] that for the choice X = 1

νM , the eigenvalues
of BF−1BTX−1 are bounded independently of h, and experimental results suggest
that Krylov subspace methods such as GMRES [26] have convergence rates that are
independent of the mesh size. See [19] for a rigorous analysis of this method based on
the field of values and [2, 24, 27, 31] for analogous results for the Stokes equations.
Similar bounds were also obtained in [11] for a different class of preconditioners based
on the symmetric part of A, where the preconditioning entails solution of the Stokes
equations.

The convergence properties of these approaches depend on the viscosity ν, and in
general, convergence rates deteriorate as ν decreases. For example, the results in [5]
yield eigenvalues that are contained in a box in the complex plane of the form

[c1ν
2, c2]× i [c3, c4],

where {cj} are independent of h and ν, and in experimental results iteration counts
increase roughly like 1/ν. (See also section 4.)

Our concern here is to develop alternative choices for X for which the sensitivity
to ν is less pronounced. Our starting point is an observation derived from [6]. Let G
and K be two matrices of dimensions np × nu with nu ≥ np and such that both are
of full rank np. The matrix KT (GKT )−1G can then be viewed as an operator from
range(KT ) to itself, and it is trivial to see that this is in fact the identity operator.
To apply this to (3), first assume for simplicity that B is of full rank (this assumption
will be eliminated below) and let G = BF−1 and K = B. Our observation is then

BT (BF−1BT )−1BF−1 = I on range(BT )

or, equivalently,

BT (BF−1BT )−1B = F on range(F−1BT ).(6)
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Suppose for the moment that

range(BT ) ⊂ range(F−1BT ).(7)

Then the equality (6) can be postmultiplied by BT , and premultiplying the result by
B yields

(BBT ) (BF−1BT )−1(BBT ) = BFBT .

Equivalently,

(BF−1BT )−1 = (BBT )−1(BFBT ) (BBT )−1.

That is, for the choice

X = (BBT ) (BFBT )−1(BBT ),(8)

the eigenvalues of the preconditioned operator (5) are identically 1. Moreover, it can
be shown that in this case, AQ−1 has Jordan blocks of order at most 2, so that two
steps of GMRES will produce the solution.

In the rest of this paper, we examine the use of the preconditioner (4) for solving
the discrete two-dimensional Oseen equations, using X defined by (8) as well as some
computationally less expensive variants. Because of the presence of the high-order
discrete operator BFBT in (8), we will refer to the combination of (4) and (8) as the
BFBt preconditioner; cf. [22] for other approaches to the problem of approximating
the action of the inverse of BF−1BT . For our analysis, we restrict our attention to
a “marker-and-cell” (MAC) finite-difference operator [15], which we outline in sec-
tion 2. In section 3, we show that in the case where (2) is given with constant “wind”
w and periodic boundary conditions, (7) holds. (In fact the two spaces are identical.)
Consequently, in this case the discussion of the previous paragraph represents a com-
plete analysis. In section 4, we examine through a series of numerical experiments the
extent to which these results reflect the behavior of the preconditioner in more real-
istic scenarios, that is, for Dirichlet boundary conditions or nonconstant wind. Our
observations are that the convergence behavior of Krylov subspace methods is inde-
pendent of ν for the Dirichlet problem with constant wind and mildly dependent on ν
for variable wind; convergence also depends mildly on the mesh size h, with iteration
counts increasing in proportion to h−1/2. These conclusions also hold for variants
of the BFBt preconditioner designed to keep computational costs low. In particular,
use of Q with (8) in an iteration entails two Poisson solutions on the pressure space
and (for any X) the solution of a set of convection–diffusion equations on the velocity
space. We show that these computations can be approximated using inner iterations
with little degradation of performance of the outer iteration. In section 5 we make
some summarizing remarks, and in an appendix we present a partial analysis of the
behavior of the BFBt preconditioner for the Stokes problem.

2. Finite-difference discretization. We briefly describe the MAC finite-
difference scheme. Assume that Ω is the rectangular region (0, 1) × (0, 1), divided
into a uniform n × n grid of cells of width h = 1/n. Let u = (u, v)T denote the
velocity field and w = (a, b)T the wind. The discrete velocities and pressures are
defined on a staggered grid in which the discrete values of u lie in the centers of the
cell boundaries orthogonal to the x-axis, the discrete values of v lie in the center of
the cell boundaries orthogonal to the y-axis, and the discrete pressures lie in the cell
centers. An example is shown in Figure 1.
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× Velocity u

⊗ Velocity v
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× × × × ×• • • •
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Fig. 1. Staggered grid for the MAC finite-difference discretization.

The matrix of (3) contains three block rows, the first two of which come from the
momentum equations for the individual components of the discrete velocity field and
the last from the incompressibility constraint. F and B have the form

F =

(
F1 0
0 F2

)
, B = (B1 B2),

where Fi = νAi + Ni. The submatrices are defined as follows. Let φjk denote the
value of a mesh function φ at the point (jh, kh) ∈ Ω̄. The form of the indices (j, k)
depends on the mesh function to which they correspond. In particular, they need not
be integers. The first block row of (3) is defined by

[−∆u]jk ≈ [A1u]jk ≡ 1
h2 (4ujk − uj−1,k − uj+1,k − uj,k+1 − uj,k−1) ,

[aux]jk ≈ [N
(x)
1 u]jk ≡ 1

2h

(
aj+1/2,kuj+1,k − aj−1/2,kuj−1,k

)
,

[buy]jk ≈ [N
(y)
1 u]jk ≡ 1

2h

(
bj,k+1/2uj,k+1 − bj,k−1/2uj,k−1

)
,

[px]jk ≈ [BT1 p]jk ≡ 1
h

(
pj+1/2,k − pj−1/2,k

)
.

(9)

The second block row (associated with v) is defined analogously. The discrete con-

vection operator N1 = N
(x)
1 +N

(y)
1 represents a second-order approximation to

1

2
[w · gradu+ div (uw)] ;

this is a skew–self-adjoint version of the first convection term of (2).1 The resulting
matrix N is skew symmetric. The discrete incompressibility constraint is

−[ux + vy]jk ≈ [Bu]jk = −
[

1

h

(
uj+1/2,k − uj−1/2,k

)
+

1

h

(
vj,k+1/2 − vj,k−1/2

)]
.(10)

We will discuss the treatment of boundary conditions in sections 3 and 4.

3. Fourier analysis. Suppose that (2) is posed with constant wind w and pe-
riodic boundary conditions

u(x, 0) = u(x, 1), u(0, y) = u(1, y).

For the discretization, indexing in (9) and (10) is done in mod n arithmetic. In
particular, mesh points on the left and right (or top and bottom) boundaries are

1This form of the convection operator leads to the skew–self-adjoint weak form used, for example,
in [14, p. 53] or [28, p. 205].
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identified, and if (j, k) corresponds to a pressure mesh point next to the boundary
(e.g., j = 1/2), then one of its “neighboring” points is next to the opposite boundary
(j = n− 1/2). The discrete versions of u, v, and p each contain n2 components, and
therefore each of

F1, F2, B1, B2, B
T
1 , B

T
2(11)

is a square matrix of order n2. We also define a discrete convection–diffusion operator
Fp on the pressure space using the first three terms of (9), that is,

Fp ≡ νA+N,

where A and N = N (x)+N (y) are specified exactly as in (9) and (j, k) now corresponds
to indices for grid functions in the pressure space. An analogous idea is used in the
definition of “distributive relaxation” schemes for multigrid methods applied to the
Stokes and Navier–Stokes equations; see [3, 32]. Fp is also defined using periodic
boundary conditions for the discrete pressures. It is then straightforward to prove the
following lemma by direct calculation.

Lemma 3.1. If w is a constant vector, then FBT = BTFp.
We will assume for the rest of this section that the wind w is constant on Ω. The

preconditioned operator can then be analyzed using Fourier techniques of the type
described in [4]. It turns out that F1 = F2 = Fp in this case, and in some of the
discussion we will refer to them collectively as F∗. Consider the discrete exponential
mesh functions {ψ(s,t) | 0 ≤ s, t < n}, where[

ψ(s,t)
]
jk

= e2πisxje2πityk , xj = j/n, yk = k/n, 0 ≤ j, k < n.(12)

These make up an orthogonal basis for Cn2

. The matrices associated with the periodic
problem satisfy

F∗ψ(s, t) =

(
ν

4
(
sin2(πsh) + sin2(πth)

)
h2

+ i
w1 sin(2πsh) + w2 sin(2πth)

h

)
ψ(s, t),

B1ψ
(s, t) =

1

h

(
1− e2πish

)
ψ(s,t), BT1 ψ

(s, t) =
1

h

(
1− e−2πish

)
ψ(s, t),

B2ψ
(s, t) =

1

h

(
1− e2πith

)
ψ(s,t), BT2 ψ

(s, t) =
1

h

(
1− e−2πith

)
ψ(s, t).

(13)

That is, the mesh functions of (12) constitute an orthogonal basis of eigenvectors for
each of these matrices. The particular choice s = t = 0 leads to ψ(0, 0) ≡ 1, with an
associated eigenvalue equal to 0 for all the matrices of (11). Let S0 denote the space
generated by ψ(0, 0) and let S⊥0 denote the orthogonal complement of S0. It can be
verified that all eigenvalues of F∗ are nonzero for other combinations of s and t, so
that this matrix represents a nonsingular operator from S⊥0 to itself. We can also

extend F−1
∗ to an operator on all of Cn2

by defining it to be 0 on S0. Therefore, it
makes sense to consider the operators

F−1BT , BTF−1
p , BF−1BT = B1F

−1
1 BT1 +B2F

−1
2 BT2 .(14)

Lemma 3.2. The Schur complement BF−1BT of (14) is a nonsingular operator
from S⊥0 to itself.
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Proof. It follows immediately from (13) that

BF−1BTψ(s, t) = λstψ
(s, t),

where

λst =
4
(
sin2(πsh) + sin2(πth)

)
ν
[
4
(
sin2(πsh) + sin2(πth)

)]
+ i h (w1 sin(2πsh) + w2 sin(2πth))

.

This eigenvalue is nonzero if s 6= 0 or t 6= 0.
Theorem 3.3. Let X be given by (8). If BF−1BT , X, and (the identity) I are

viewed as operators from S⊥0 to itself, then X is simply an alternative representation
of BF−1BT , and BF−1BT X−1 = I.

Proof. It follows from Lemma 3.1 that F−1BT = BTF−1
p . Consequently,

range(BT ) = range(BTF−1
p ) = range(F−1BT ),

so that (7) holds. The assertion follows from the discussion of section 1.

4. Experiments on Dirichlet problems. The results of section 3 show that
(8) defines a perfect preconditioner for constant wind and periodic boundary condi-
tions. In this section, we examine the performance of the BFBt preconditioner and
some variants on more realistic problems with Dirichlet boundary conditions u = g
on ∂Ω.

For most of the experiments, the Oseen equations are posed on Ω = (0, 1)× (0, 1)
and discretized with the MAC scheme. This is defined as in section 2 except when the
discrete operators refer to grid indices outside Ω̄ (for example, in components of the
first discrete momentum equation centered at the values of u next to the bottom of
∂Ω). Linear extrapolation is used in these cases; see the definition of TE in section A.2
for details. We consider two sets of coefficients, constant w = (1, 2) and w = a circular
vortex. In the latter case, w is the image of

(2y(1− x2),−2x(1− y2))(15)

under the linear mapping from (−1, 1) × (−1, 1) to Ω. Rather than impose explicit
boundary conditions, we eliminate the discrete velocities on the boundary from the
system. We use a normally distributed random vector with mean 0 and variance 1
for the right-hand side f of (3). We also demonstrate that the BFBt methodology
is not restricted to finite differences with a set of experiments for a finite element
discretization of the driven cavity problem. Both discretizations satisfy an inf-sup
condition [14].

Our results are in the form of iteration counts for various combinations of ν and h.
We restrict our attention to values of ν such that for the smallest mesh size considered,
wh
2ν is of order 1, so that the discretizations are reasonably accurate. The iterative
solver is GMRES with right-oriented preconditioning; the initial guess for all tests is
u0 = 0, p0 = 0, and the stopping criterion is

‖f −Axk‖2
‖f‖2 ≤ 10−6,

where f and xk denote the right-hand side and iterate for the block system (3).
We now present the results for the BFBt preconditioner. For comparison we show

analogous iteration counts for the preconditioner (4), where X = 1
νM is the diagonal



NAVIER–STOKES EQUATIONS WITH LOW VISCOSITY 1305

Table 1
Iterations of GMRES for constant wind w = (1, 2) with finite-difference discretization.

X = XBFBt X = 1
ν
M

h 1/16 1/32 1/64 1/16 1/32 1/64

ν = 1 9 10 12 12 10 10
ν = 1/10 8 11 15 34 34 33
ν = 1/30 9 10 13 88 87 83
ν = 1/50 9 10 11 144 145 139

Table 2
Iterations of GMRES for w = circular vortex with finite-difference discretization.

X = XBFBt X = 1
ν
M

h 1/16 1/32 1/64 1/16 1/32 1/64

ν = 1 8 10 12 10 10 10
ν = 1/10 11 14 18 19 19 18
ν = 1/30 14 17 21 47 46 43
ν = 1/50 16 18 23 79 77 73

of the scaled mass matrix as described in [5]; X = 1
ν (h2I) for the MAC scheme. For

the moment we are ignoring any issues of cost.2

We present three sets of results. For the MAC discretization, Table 1 shows the
number of iterations for convergence of GMRES for constant wind, and Table 2 shows
the results for the circular vortex. Table 3 shows analogous statistics for one example
of a different discretization consisting of bilinear finite elements for both velocities and
pressures, with the pressure grid of width 2h and streamline upwinding [17, p. 185]
for the velocities.3

As defined, the BFBt preconditioner requires several costly subsidiary computa-
tions. For each step of GMRES, the preconditioning entails the action of Q−1, where
Q is given by (4). It can be seen from the factorization

Q−1 =

(
F−1 0

0 I

)(
I BT

0 −I
)(

I 0
0 X−1

)
that computing the action of Q−1 entails

• computing the action of X−1;
• performing a matrix–vector product by BT ; and
• computing the action of F−1.

BBT is a discrete Poisson operator on the pressure space (see section A.2 for a deriva-
tion for the MAC scheme), so that for the BFBt preconditioner, computing the ac-
tion of X−1 entails solving two discrete Poisson equations. These, together with the
convection–diffusion solutions, are potentially expensive operations, and the BFBt

2All computations were performed in MATLAB on either a Sun SPARC-20 workstation or a
DEC-Alpha 2100 4/275 workstation. For both preconditioners, the action of F−1 was computed
using Gaussian elimination. For the BFBt preconditioner the action of (BBT )−1 was computed by
direct methods using the pseudoinverse of BBT , except when h = 1/64 for the MAC discretization.
In that case, this computation was done using a multigrid iteration in which the relative residual is
forced to be less than 10−8.

3The test problem is slightly different here. It is posed on Ω = (−1, 1) × (−1, 1) with w as in
(15), f = 0 in (1), and boundary conditions u = v = 0 when x = ±1 or y = −1, and u = 1, v = 0
when y = 1. See [5] for more details. Some of the entries in Table 3 are taken from [5].
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Table 3
Iterations of GMRES for w = circular vortex with bilinear finite element discretization.

X = XBFBt X = 1
ν
M

h 2/16 2/32 2/64 2/16 2/32 2/64

ν = 1 7 9 11 21 22 21
ν = 1/10 10 12 15 32 36 35
ν = 1/30 13 15 17 44 56 64
ν = 1/50 15 17 19 48 72 97

Table 4
Iterations of GMRES with modified BFBt preconditioning using multigrid for the Poisson equa-

tion. Wind w = (1, 2), finite-difference discretization.

X = XBFBt/MG

h 1/16 1/32 1/64 1/128

ν = 1 11 12 15 19
ν = 1/10 12 13 17 22
ν = 1/30 12 12 15 20
ν = 1/50 13 13 14 18
ν = 1/100 14

preconditioner is significantly more costly than when X = 1
νM , a diagonal matrix.

We now examine what happens when less costly computations based on inner itera-
tion are used in place of these three operations. We consider only finite differences
here, although the same methodologies are applicable to other discretizations. These
versions of the preconditioner also require less storage, and in particular this enabled
us to further explore some trends in the data with a finer mesh size h = 1/128 and
smaller viscosity parameter ν = 1/100 (used only with this fine mesh).

We first consider the effect of replacing the Poisson solutions with approximations
derived from one step of the V-cycle multigrid [21, Chap. 1].4 That is, the modified
BFBt preconditioner uses

X = SMG (BFBT )SMG,

where SMG is the multigrid approximation to (BBT )−1. The computational costs of
this algorithm are of the same order of magnitude as when X = 1

νM . (We are still
solving the convection–diffusion equations exactly except when h = 1/128; in this
case, we use an iterative method based on relaxation and force the relative residual
norm to be less than 10−8.) The iteration counts for the two sets of benchmark
problems are shown in Tables 4 and 5.

Next, we consider the effect of also replacing the convection–diffusion solutions
with approximate solutions derived from iterative methods. We will comment on the
choice of method below. The performance of any such method will depend on the
relative amount of convection and diffusion in the problem, i.e., the value of ν [7].
Therefore, rather than use a fixed number of iterations, we perform the inner iteration
until the stopping criterion

‖w − Fvk‖2
‖w‖2 ≤ τ = 10−2(16)

4The multigrid computation used damped Jacobi smoothing with optimal smoothing parameter
ω = 4/5, one presmoothing and one postsmoothing step, and bilinear interpolation for prolongation.
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Table 5
Iterations of GMRES with modified BFBt preconditioning using multigrid for the Poisson equa-

tion. Wind w = circular vortex, finite-difference discretization.

X = XBFBt/MG

h 1/16 1/32 1/64

ν = 1 11 12 15
ν = 1/10 14 16 20
ν = 1/30 19 21 24
ν = 1/50 21 24 27

Table 6
Iterations of FGMRES with modified BFBt preconditioning using multigrid for the Poisson

equation and iteration for the convection–diffusion equation. Wind w = (1, 2), finite-difference
discretization.

X = XBFBt/MG/Iter X = 1
ν
M

h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

ν = 1 11 13 16 20 12 11 12 12
ν = 1/10 12 14 17 22 35 34 33 32
ν = 1/30 12 13 15 20 111 88 85 85
ν = 1/50 – 13 14 18 – 185 141 142
ν = 1/100 15

is satisfied, where w represents the right-hand side for each convection–diffusion equa-
tion and v0 = 0 is the initial guess. The number of these iterations may vary from
step to step of the outer GMRES iteration, so that we are no longer using a fixed pre-
conditioner Q; instead we have a series of operators Qk that vary with the GMRES
step. This may cause difficulties for GMRES, but these can be avoided with a “flex-
ible” variant of GMRES (FGMRES) designed for this situation [25], which we use
in these tests. The two algorithms are mathematically equivalent when Qk is fixed.
The results for constant wind are shown in Table 6, and for the circular vortex in
Table 7. We also present the performance using the scaled mass matrix. A dash
(–) indicates failure to converge; this was due to divergence of the iteration for the
convection–diffusion equation and is an artifact of inaccuracy of the discretization.

We highlight some trends displayed by these data as follows.
1. In all tests with the constant coefficient problem (Tables 1 and 6, left, and

Table 4), iteration counts with the BFBt preconditioner are independent of
the viscosity ν. Indeed, in some cases they actually decrease slightly with
ν. For the circular vortex, however, the iteration counts appear not to be
independent of ν, instead exhibiting some growth as ν decreases (Tables 2
and 7, left, and Table 5).

2. In all cases, the counts with BFBt preconditioning increase slowly with h−1.
3. The iteration counts for X = 1

νM are independent of h−1, but they grow
roughly linearly with 1/ν; these trends are consistent with the analysis of [5].
The counts are smaller for the circular vortex than for the constant wind;
we have no explanation for this. However, the same qualitative patterns
are present for both problems. In practical situations, it is often desired to
compute solutions of a fixed accuracy for a variety of values of ν by letting
h → 0 and ν → 0 simultaneously; with respect to this criterion, the BFBt
preconditioner requires significantly fewer iterations as the viscosity decreases.

4. The results for bilinear finite elements (Table 3) are qualitatively the same
as for finite differences.
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Table 7
Iterations of FGMRES with modified BFBt preconditioning using multigrid for the Poisson

equation and iteration for the convection–diffusion equation. Wind w = circular vortex, finite-
difference discretization.

X = XBFBt/MG/Iter X = 1
ν
M

h 1/16 1/32 1/64 1/128 1/16 1/32 1/64 1/128

ν = 1 11 13 16 19 11 12 12 12
ν = 1/10 14 16 20 25 19 19 19 18
ν = 1/30 19 21 24 31 51 45 44 43
ν = 1/50 – 28 27 34 – 95 73 73
ν = 1/100 37 155

5. Comparison of Tables 4 and 5 with Tables 1 and 2 shows that replacing
the exact Poisson solution with one multigrid step leads to little increase
in iteration counts (less than 25% for h = 1/64). The same trends with
respect to ν and h are evident, and these carry over to h = 1/128. Note that
the multigrid method used here is not necessarily an optimal choice, just a
simple one.

6. Approximate solution of the convection–diffusion problem produces little de-
gradation in performance of either preconditioner, even though the tolerance
τ in (16) is very mild.

We also ran some tests with the quasi-minimum residual (QMR) iteration without
look-ahead [10], which (in contrast to GMRES) has a fixed cost per step. Performance
for both the BFBt preconditioner and for X = 1

νM was qualitatively similar to that
of GMRES.

We return to the first two items on this list: the dependence of iteration counts
with BFBt preconditioning on the parameters ν (for the circular vortex) and h. To
try to get a feeling for this dependence, we plot the behavior of the solver along with
graphs of functions that might model this behavior. In particular, Figure 2 plots
iteration counts as a function of ν−1 using the entries of Table 7 for h = 1/128,
together with graphs of the functions ν−1 and ν−1/2; the latter curves were shifted
to make the figure easy to view. These results suggest that dependence on ν is like
O(ν−1/2), although it is difficult to make a precise statement with this limited amount
of data. Similarly, Figure 3 plots iteration counts as a function of h−1 using the entries
from Table 7 for ν = 1/30, and these are compared with h−1 and h−1/2. These results
typify the behavior for all the values ν in the table and suggest that the dependence
on h is of order h−1/2; see also section A.2.

We comment briefly on the convection–diffusion solvers. For simple flows, it is
fairly easy to construct relaxation strategies that follow the flow and converge rapidly
[7], but for more complex flows, especially with recirculations, this is a more difficult
task. In these tests, we used a horizontal one-line SOR iteration with relaxation
parameter given by the optimal choice for the constant coefficient problem, which can
be computed analytically [8]. We used this for the circular wind only for convenience
of coding, and convergence was slow for these problems. Many other options for
solving this problem (such as multigrid) are available. We also ran some tests with
another inner iteration (using a “multidirectional relaxation”) and found the number
of outer iterations not to depend significantly on the choice of the method used to solve
the convection–diffusion equation. This points to the importance of the convection–
diffusion problem for the BFBt preconditioner; it is critical that the approximate
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Fig. 2. Comparison of iteration counts (from Table 7) with various functions of ν for h = 1/128.
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Fig. 3. Comparison of iteration counts (from Table 7) with various functions of h for ν = 1/30.

solution to this subproblem be computed efficiently for the complete computation to
be inexpensive.

5. Concluding remarks. We summarize this study as follows. The main new
result is that the performance of the BFBt preconditioner for solving the steady-
state Oseen equations with Dirichlet boundary conditions depends very mildly on
the viscosity ν. This stands in contrast to other preconditioning methods, where
performance deteriorates more dramatically as ν → 0. Its performance depends on
the mesh size h with iterations apparently growing in proportion to h−1/2. If a series
of Dirichlet problems with decreasing viscosity is to be solved in such a way that h is
proportional to ν, then we expect the iteration counts to grow like O(ν−1/2).



1310 HOWARD C. ELMAN

This conclusion also appears to hold for “inexact” versions of the BFBt pre-
conditioner in which the expensive subsidiary computations, solution of the Poisson
equation and convection–diffusion equation, are replaced by iterative solutions with
mild stopping criteria. The effectiveness of these variants of the BFBt preconditioner
depends on having efficient methods for the convection–diffusion equation.

This issue is also critical for multigrid methods for the Navier–Stokes equations
[3, 29, 30, 32]. It is difficult to make a simple comparison between the methods
proposed here and multigrid; most reported studies show a dependence on viscosity
(or Reynolds number) but not on mesh size [29, 30, 32]. An advantage of the BFBt
preconditioner is that it can be applied easily to systems arising from mixed finite
elements with different grids for velocities and pressure (as shown in Table 3).

If the goal is to solve a fixed Dirichlet problem on a sequence of finer meshes, then
there are other methods whose performance is less dependent on the mesh size [5, 11].
This is true in particular for the Stokes equations, where several methods exist whose
convergence rate is independent of h [1, 2, 24, 27].

Finally, we note that the boundary conditions are very important here. Fourier
analysis is often used as a guideline in behavior of numerical methods [23], and there
are numerous examples of cases where the results for periodic boundary conditions
are predictive of performance for Dirichlet conditions [4]. However, here there is a
qualitative difference in the two types of problems. See [20] for other examples of the
effects of boundary conditions on iterative methods.

A. Appendix: Partial analysis for the preconditioned Stokes problem.
We show that the minimum eigenvalue for the BFBt-preconditioned Stokes operator
is no smaller than 1 and give a partial analysis that suggests why its maximum
eigenvalue is proportional to h−1.

A.1. Lower bound. Suppose the coefficient matrix of (3) is a discrete Stokes
operator; i.e., it is derived from ν = 1, w = 0 in (2), with Dirichlet boundary
conditions. Therefore, F = A. Let the singular value decomposition of B be denoted

B = UΣV T = [U1, u0]

((
Σ1 0
0 0

)
0

) (
V T1

V T2

)
= U1Σ1V

T
1 .

The columns of U1 span range(B), the columns of V1 span range(BT ), and u0 is
parallel to the discrete hydrostatic pressure p ≡ 1, which determines the null space
S0 of BT . It follows that

BBT = U1Σ2
1U

T
1 .

As in section 3, we will treat BT as an operator defined on S⊥0 ; on this space, BBT

and BABT represent nonsingular operators whose inverses are given by the matrix
pseudoinverses

(BBT )−1 = U1Σ−2
1 UT1 ,

(BABT )−1 = U1Σ−1
1 (V T1 AV1)−1Σ−1

1 UT1 .

We are interested in the minimum eigenvalue of the generalized eigenvalue prob-
lem

(BA−1BT )p = λ (BBT ) (BABT )−1(BBT )p.(17)
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The Schur complement matrix on the left is

S ≡ BA−1BT = U1Σ1V
T
1 A

−1V1Σ1U
T
1 ,

and the preconditioning matrix on the right is

X = U1Σ1(V T1 AV1)−1Σ1U
T
1 .

Consequently,

S = X + U1Σ1

[
V T1 A

−1V1 − (V T1 AV1)−1
]

Σ1U
T
1 .(18)

Using this splitting of S, we can prove the following result.
Theorem A.1. The minimum eigenvalue of the preconditioned generalized Stokes

operator with Dirichlet boundary conditions is bounded below by 1.
Proof. We will show that V T1 A

−1V1 − (V T1 AV1)−1 is positive semidefinite. Let

D = V TAV =

(
D11 D12

D21 D22

)
,

where Dij = V Ti AVj . D is symmetric positive definite and standard analysis gives

D =

(
I 0

D21D
−1
11 I

)(
D11 0

0 D22 −D21D
−1
11 D12

)(
I D−1

11 D12

0 I

)
.

Letting CD ≡ D22 −D21D
−1
11 D12, this in turn implies that

D−1 =

(
D−1

11 +D−1
11 D12C

−1
D D21D

−1
11 −D−1

11 D12C
−1
D

−C−1
D D21D

−1
11 C−1

D

)
.

However, D−1 = V TA−1V , so that

V T1 A
−1V1 = [D−1]11 = D−1

11 +D−1
11 D12C

−1
D D21D

−1
11 .

Therefore,

inf
x6=0

(x, V T1 A
−1V1x)

(x, (V1AV1)−1x)
= inf

x6=0

(x, (D−1
11 +D−1

11 D12C
−1
D D21D

−1
11 )x)

(x,D−1
11 x)

= inf
x6=0

(x, (D11 +D12C
−1
D D21)x)

(x,D11x)
≥ 1.

It follows that V T1 A
−1V1 − (V T1 AV1)−1 is positive semidefinite, so that (18) yields

inf
q∈S⊥0

(q, Sq)

(q,Xq)
≥ 1.

A.2. Largest eigenvalue. The experiments described in section 4 show that
convergence rates for the BFBt preconditioner depend on the mesh size. Figure 4
plots the maximum eigenvalue of (17) as a function of h−1, where the computations
were for h = 1/4, 1/8, 1/16, and 1/32. The results indicate that the maximum
eigenvalue is of magnitude O(h−1). By analogy with the standard convergence bounds
for symmetric positive definite problems, this suggests that the iteration counts will
increase in proportion to h−1/2, which is consistent with the results of section 4.
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Fig. 4. Maximum eigenvalue for the Stokes problem with BFBt preconditioner.

To provide some insight into this maximum eigenvalue, we write

(q, Sq)

(q,Xq)
=

(q, Sq)

(q, (h2I)q)

(q, (h2I)q)

(q,Xq)
,

where h2I is playing the role of the mass matrix for the finite-difference discretization.
It is well known [9] that the first quotient on the right is bounded by a constant
Γ ≤ √2. We would like a bound for the second quotient of the form

sup
q∈S⊥0

(q, (h2I)q)

(q, (BBT ) (BABT )−1(BBT )q)
≤ c

h

or, equivalently,

sup
q∈S⊥0

(q,BABT q)

(q, (BBT )2q)
≤ c

h3
.(19)

The matrices comprising (19) have a tensor product structure derived from one-
dimensional operators. Let the interval [0, 1] be divided into n equally spaced subin-
tervals of width h = 1/n, where the jth interval is [xj−1, xj ] with xj = jh and
midpoint x̂j = (j − 1/2)h. An example with n = 8 is

x0 x1 x2 x3 x4 x5 x6 x7 x8 .
x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8

Consider the following three (scaled) finite-difference approximations to the one-
dimensional Laplace operator −u′′:

TD =


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

 , TE =


3 −1
−1 2 −1

. . .

−1 2 −1
−1 3

 , TN =


1 −1
−1 2 −1

. . .

−1 2 −1
−1 1

 .

TD and TE are derived from Dirichlet boundary conditions (u(0), u(1) given), and
TN is derived from Neumann conditions (u′(0), u′(1) given). TD is defined at the cell
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boundaries {xj}n−1
j=1 and is of order n − 1; TE and TN are defined at the cell centers

{x̂j}nj=1 and are of order n. In all cases, the discrete Laplace operator at points next to
the boundaries depends on the boundary conditions. TE uses the linear extrapolation

u(x̂0) = −u(x̂1) + 2u(0), u(x̂n+1) = −u(x̂n) + 2u(1);

TN approximates the Neumann boundary conditions as

u′(0) ≈ [u(x̂1)− u(x̂0)]/h, u′(1) ≈ [u(x̂n+1)− u(x̂n)]/h.

Note that

TE = TN + 2E0, E0 =


1

0
. . .

0
1

 .(20)

We will also use the difference operator

BD =



−1

1 −1

. . .
. . .

1 −1

1


,

which has dimensions n × (n − 1) and can be viewed as mapping cell boundary grid

functions to cell centered functions. It is easily verified that

BDB
T
D = TN , BDTDB

T
D = T 2

N .(21)

Recall that for matrices X and Y , where X has dimensions r × s, the tensor
product of X and Y is [16, pp. 239ff]

X ⊗ Y =


x11Y · · · x1,sY

...
. . .

...

xr,1Y · · · xr,sY

 .

Letting Ir denote the identity matrix of order r, it is straightforward to show that

A =

(
In ⊗ TD + TE ⊗ In−1 0

0 In−1 ⊗ TE + TD ⊗ In

)
,

B = [In ⊗ hBD, hBD ⊗ In].

The identities (21) then imply

BBT = h2(In ⊗ TN + TN ⊗ In),

(BBT )2 = h4(In ⊗ T 2
N + 2TN ⊗ TN + T 2

N ⊗ In),

BABT = h2(In ⊗ T 2
N + TE ⊗ TN + TN ⊗ TE + T 2

N ⊗ In).
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Consequently, relation (19) is equivalent to

sup
q∈S⊥0

(q, (In ⊗ T 2
N + TE ⊗ TN + TN ⊗ TE + T 2

N ⊗ In)q)

(q, (In ⊗ T 2
N + 2TN ⊗ TN + T 2

N ⊗ In)q)
≤ c

h
.(22)

Remark. This derivation shows that BBT is a scaled discrete Poisson operator
on the pressure space with Neumann boundary conditions.

The matrices in (22) differ only by the presence of TE in the cross-terms of the
numerator; i.e., the numerator contains submatrices derived from Dirichlet conditions,
whereas the denominator comes exclusively from Neumann conditions. To get a feeling
for why this difference in boundary conditions leads to an inequality of the form (22),
consider the generalized eigenvalue problem for the one-dimensional operators,

TNx = λTEx.(23)

It is evident from (20) that there is an eigenvalue λ = 1 of multiplicity n−2 for which
every eigenvector x satisfies x1 = xn = 0. Moreover, TNx = 0 for the constant vector
x ≡ 1, so that 0 is also an eigenvalue. If any x satisfies (23) with λ 6= 0 and at least
one of x1 6= 0 or xn 6= 0, then the first and last equations (of (23)) imply λ 6= 1. From
the first equation we have

x2 − x1 =
2λ

λ− 1
x1.(24)

The assumption λ 6= 1 together with the (interior) equations k = 2, . . . , n− 1 imply

xk+1 − xk = xk − xk−1 =
2λ

λ− 1
x1, 2 ≤ k ≤ n,

where the second equality comes from (24). An inductive argument then yields

xk =
(2k − 1)λ− 1

λ− 1
x1, 2 ≤ k ≤ n.(25)

Finally, the last equation of (23) implies

xn =
1− λ

2λ
(xn − xn−1) = −x1.

Equating this expression for xn with the one from (25) yields λ = 1/n = h. Therefore,
we have the following result.

Theorem A.2. The eigenvalues of the generalized eigenvalue problem (23) are
λ = 1 of multiplicity n− 2, λ = 0, and λ = h. Consequently,

sup
x

(x, TEx)

(x, TNx)
=

1

h
,

where the supremum is taken over all vectors orthogonal to the constant vector.
Remark. The results of section A.1 apply in general to any discretization for

which the null space is spanned by constant pressures. The discussion of section A.2
applies only for the MAC scheme.
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