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Abstract

In this study, we describe the algebraic computations required to implement the stochastic finite element method for

solving problems in which uncertainty is restricted to right-hand side data coming from forcing functions or boundary

conditions. We show that the solution can be represented in a compact outer product form which leads to efficiencies in

both work and storage, and we demonstrate that block iterative methods for algebraic systems with multiple right-hand

sides can be used to advantage to compute this solution. We also show how to generate a variety of statistical quantities

from the computed solution. Finally, we examine the behavior of these statistical quantities in one setting derived from

a model of acoustic scattering.
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1. Introduction

It is common practice for mathematical models to be studied under the assumption that data defining the

models are precisely understood. In reality, however, this simplifying assumption is often not valid, and

there is considerable uncertainty in specification of models. Sources of uncertainty include geological prop-
erties of transporting media, material properties of structures, and unknown aspects of boundary

conditions.

One approach for addressing this issue is to treat poorly specified data as random variables having some

given statistical properties such as means and higher order moments, and then to determine analogous sta-

tistical properties of solutions. For boundary value problems with uncertain data (stochastic partial differ-

ential equations), a methodology known as the stochastic finite element method has generated considerable

attention in the last decade [7,8,12,13,16]. This approach starts with a boundary value problem in d-dimen-

sional physical space. The stochastic component of the problem statement is then specified approximately
using an m-dimensional auxiliary space which is derived from an underlying probability space associated

with the data. The result is a (d + m)-dimensional model, which can be stated in a weak form on a suitable

function space using a combination of standard variational constructions for the physical component of the

problem together with averaging for the stochastic component. We will outline the details of this method-

ology in Section 2.

Once this weak formulation is specified, a numerical solution of the stochastic partial differential equa-

tion can be computed in essentially the same manner as for deterministic problems. In particular, the intro-

duction of finite dimensional subspaces leads to an algebraic system of equations whose solution can be
used to approximate statistical properties of the physical solution, such as its mean, variance and covari-

ances. Our concern in this paper is to explore the computational costs of solving the systems in question

and of generating statistical analyses of the solution.

We will focus on problems where randomness only affects the right-hand sides of the algebraic systems,

that is, where the forcing terms or boundary data are random functions. A natural example of this arises in

models of acoustic or electromagnetic scattering, where lack of information about the material properties of

scatterers or the shape and structure of boundaries such as ocean bottoms leads to uncertainty in boundary

conditions. We will use this model, specifically, the numerical solution of the Helmholtz equation, as a
benchmark problem, and in our assessment we will explore computational issues associated with quantities

such as moments and probability distributions of acoustic pressures, and how these are affected by charac-

teristics of the problem such as wave numbers.

One of the computational tasks required is the solution of algebraic systems of equations with multiple

right-hand sides. In the case of uncertain boundary data, the costs of this component of the computation

can be kept low using the fact that the solution has a Kronecker product structure. For our scattering

example, the systems can be solved efficiently with a multigrid algorithm for the discrete Helmholtz equa-

tion [10], and we show that efficiency can be enhanced in some cases using block iterative methods for sys-
tems with multiple right-hand sides [5,11,18,23]. With this strategy for solving the algebraic systems, the

dominant cost of the computation is that of computing statistical quantities. We also show that the Kro-

necker product structure of the solution allows storage costs to be kept relatively low, and moreover it ena-

bles the statistical computations to be performed using efficient matrix-oriented operations that are trivially

parallelizable and amenable to implementation using Level 3 Basic Linear Algebra Subprograms (BLAS3)

[9]. This means that it is possible to handle relatively fine ‘‘discretization’’ in the stochastic domain that

would otherwise not be possible.

We note that an alternative approach for handling random right-hand sides has been developed in
Schwab and Todor [21], where it is shown that the mean and second moment of the solution can be com-

puted directly. The latter entails the solution of a fourth-order equation derived for this quantity. It is

shown in [21] that if the underlying differential operator is coercive, then so is the associated fourth order
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system, and efficient multilevel algorithms (but dependent on special sparse grids) can be developed to solve

it. The approach under consideration here has the advantage that it readily yields more general statistical

information such as higher order moments and probability distributions. It is also relatively straightfor-

ward to implement, essentially only requiring algorithm technology for second-order problems. In partic-

ular, if, as in the example considered here, the underlying problem is not coercive, it is still possible to take
advantage of efficient algorithms for that problem.

A summary of the contents of the paper is as follows. Section 2 contains a description of the stochastic

finite element methodology and identifies the structure of the algebraic systems derived from discretization.

Section 3 describes the iterative algorithms that we consider for solving the discrete Helmholtz equation and

the block versions designed to handle multiple right-hand sides, and then it presents some experimental re-

sults demonstrating the performance of these solvers. Section 4 then outlines the costs of computing statis-

tical quantities associated with the solution and shows the results of these computations. Finally, Section 5

contains some concluding remarks.
2. The stochastic finite element method

We briefly describe the general methodology with an eye towards showing the structure of the algebraic

systems. For our description we use the problem that we will study in experiments, the Helmholtz

equation; it will be obvious that the approach is general. See [13] for complete descriptions of this

methodology.

2.1. Introduction: weak formulation

A model of acoustic scattering from a bounded obstacle is given by the Helmholtz equation
� Du� k2u ¼ f in D

BðuÞ ¼ g on C

ou
on

¼ LðuÞ on C1;

ð2:1Þ
where the solution domain D � Rd is bounded internally by the obstacle boundary C � oD and externally
by an artificial boundary C1. The boundary differential operator B is such that Dirichlet, Neumann or

Robin boundary conditions result along C, and L is the Dirichlet-to-Neumann operator [14] or a suitable

approximation thereof.
The weak form of this problem is to find u 2 Vg such that
aðu; vÞ ¼ ‘ðvÞ 8v 2 V ; ð2:2Þ

where V and Vg denote the linear and affine subspaces of H

1ðDÞ of functions satisfying any homogeneous,
respectively, inhomogeneous essential boundary conditions along C. In the simplest case of Dirichlet
boundary data along all of C, the sesquilinear form a : H 1ðDÞ 	 H 1ðDÞ ! C is
aðu; vÞ ¼
Z
D

ðru � r�v� k2u�vÞdx�
Z

C1

�vLðuÞds
and the right-hand side functional ‘ : H 1ðDÞ ! C is
‘ðvÞ ¼
Z
D

f�vdx:
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To introduce randomness into this formulation, let ðX;A; P Þ denote a probability space with sample
space X, r-algebraA and probability measure P. Let f : X ! C be a complex-valued random variable with

f 2 L1(X). The mean or expected value of f is
hfi ¼
Z

X
fðxÞdP ðxÞ ¼

Z
C

zdlðzÞ;
where l is the distribution probability measure associated with f and defined on the Borel sets B in the com-
plex plane by l (B) = P (f�1 (B)). Given a bounded domain D � Rd as above, a random function
u : D	 X ! C; ðx;xÞ 7! uðx;xÞ

is one that is jointly measurable with respect to Lebesgue measure on D and the measure P on X and for
which
hkuð�;xÞkL2ðDÞi < 1:
The space of random functions is a Hilbert space ~L
2ðD	 XÞ with respect to the inner product
ðu; vÞ~L2 ¼ hðuðx; �Þ; vðx; �ÞÞL2ðDÞi:
The stochastic Sobolev spaces eH kðD	 XÞ are defined analogously.
If any of the data in the Helmholtz equation (2.1) is random (e.g., the wave number k, forcing function f,

or Dirichlet boundary data g), then the solution u will be a random function. The weak form of the stoch-

astic problem is then to find u 2 eV g such that
~aðu; vÞ ¼ ~‘ðvÞ 8v 2 eV ; ð2:3Þ

where ~aðu; vÞ ¼ haðu; vÞi, ~‘ðvÞ ¼ h‘ðvÞi, and eV g and eV are the stochastic Sobolev spaces analogous to Vg and

V.

2.2. Series representation of randomness and derived weak form

We consider the development of the stochastic finite element method using series representations of ran-

dom functions in which the deterministic and stochastic components are separated. For the sake of con-
creteness, we describe the methodology under the assumption that the forcing function f of (2.1) is

random. Thus, suppose f is represented in series form as
f ðx;xÞ ¼ f0ðxÞ þ
X1
r¼1

ffiffiffiffi
kr

p
frðxÞnrðxÞ; ð2:4Þ
where the equality is to be interpreted in the least squares sense. We will discuss situations where other com-
ponents of the problem are random in Section 2.3.

An example of a series (2.4) is the Karhunen–Lo�eve expansion [24, pp. 447ff], where the random variables
{nr} are uncorrelated and the orthogonal functions {fr} are the eigenfunctions of the covariance function
cðx; yÞ ¼ hf ðxÞf ðyÞi � hf ðxÞihf ðyÞi

associated with f. That is, the integral equation
ðCcÞðxÞ ¼ kcðxÞ; where ðCcÞðxÞ ¼
Z
D

cðx; yÞcðyÞdy; ð2:5Þ
is a linear integral eigenvalue problem in which, by definition, the kernel is symmetric and positive-semidef-

inite. From the general theory of integral equations [6, Chapter 3], C is a compact operator and there exists
a countable sequence of eigenpairs {(kr, fr)} where the eigenvalues {krjk1 P k2 P � � �} are nonnegative and
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the eigenfunctions {fr} are orthogonal in L
2ðDÞ. Alternative series representations could be obtained by

other means, for example, through experiment or properties of the model; see [16] for some discussion

of this point. It is also shown in [2] that if the covariance function is not known, it is possible to compute

reasonable estimates for the required eigenvalues and eigenvectors from samples of the random function.

For computation, the infinite series (2.4) is approximated by a finite one with, say, m terms. Following
[2,8], we will also assume that the random variables {nr} are independent. In general, the more localized the
covariance kernel of f (the smaller the correlation length), the slower the decay of its eigenvalues and the

more terms need be retained in the expansion to achieve good accuracy. Thus, the utility of this approach

depends on the assumption that the properties of physical systems under consideration vary smoothly, i.e.,

there are significant correlations in the random data. In this case, it is expected that a truncated version of

(2.4) with a small number m of terms in the sum is sufficient to capture the randomness in the system.

Assume now that the random function is given by a finite-term expansion
f ðx; nÞ ¼ f0ðxÞ þ
Xm
r¼1

ffiffiffiffi
kr

p
frðxÞnr; ð2:6Þ
where the random variables {nr} are pairwise mutually independent with mean 0 and variance 1. Let
Ir ¼ nrðXÞ denote the image of nr, and let I ¼ I1 	 � � � 	Im. Collecting these variables into the random

vector n = (n1, . . .,nm), we have nðXÞ � I. Assume that nr possesses the probability density function
qr : Ir ! R, which gives rise to the joint density function
qðnÞ ¼ q1ðn1Þq2ðn2Þ � � � qmðnmÞ:
The stochastic variational formulation of the Helmholtz equation (2.1) uses as test functions random func-

tions in the space
fV ¼ uðx; nÞ :
Z
I

ðkukH1ðDÞÞqðnÞdn < 1
� �

; ð2:7Þ
satisfying homogeneous boundary conditions u = 0 on C, with trial functions in the space fVg defined anal-

ogously. The stochastic variational problem is then specified as in (2.3) with
~aðu; vÞ ¼
Z
I

Z
D

ðru � r�v� k2u�vÞdx�
Z

C1

�vLðuÞds
	 


qðnÞdn

~‘ðvÞ ¼
Z
I

Z
D

f�vdx
	 


qðnÞdn:
ð2:8Þ
The weak solution u can be viewed as defined on a (d + m)-dimensional domain D	I.
2.3. Discretization and the stochastic system

In order to establish notation, we briefly discuss the discretization of the deterministic problem (2.1),

assuming Dirichlet boundary conditions u = g hold on the obstacle boundary C. Let Vh ¼
spanf/1; . . . ;/Nxg denote a finite dimensional subspace of H

1
0ðDÞ, and let Vh

g denote the affine space ob-

tained by adding basis functions f/Nxþ1; . . . ;/NxþNEg to handle degrees of freedom on the boundary. As
is well known, the discrete weak formulation entails finding
uh ¼
XNx
j¼1

uj/j þ
XNxþNE
j¼Nxþ1

gðxjÞ/j
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such that
XNx
j¼1
að/j;/iÞuj ¼

Z
D

f/i dx�
XNxþNE
j¼Nxþ1

að/j;/iÞgðxjÞ 8i ¼ 1; . . . ;Nx:
This is a linear system of equations Au = f where
f ¼ ½ðf ;/iÞ�
Nx
i¼1 � AUEg; ð2:9Þ
AUE represents the coupling between degrees of freedom constrained by Dirichlet boundary conditions and

other unknowns, and g ¼ ½gðxjÞ�NxþNEj¼Nxþ1 is the vector of nodal boundary values.

Now consider the stochastic problem defined by (2.3) and (2.8). For the discretization, let
fVh
¼ spanfvjqðx; nÞ ¼ /jðxÞwqðnÞ : j ¼ 1; . . . ;Nx; q ¼ 1; . . . ;N ng;
denote a finite-dimensional subspace of fV of (2.7), where {w1, . . .,wNn} is a basis for a finite-dimensional

subspace of L2ðIÞ. LetfVh

g denote the affine space satisfying inhomogeneous essential boundary conditions.

The discrete stochastic problem is then to find uh 2 fVh

g,
uhðx; nÞ ¼
XNn

q¼1

XNx
j¼1

/jðxÞwqðnÞujq þ
XNXþNE
j¼Nxþ1

/jðxÞgðxjÞ ð2:10Þ
such that
haðuh; vhÞi ¼ h‘ðvhÞi 8vh 2 fVh
:

The result is a linear system of equations, the stochastic system
Au ¼ f ð2:11Þ

of order Nx · Nn, for unknowns
ðu11; u21; . . . ; uNx�1;Nn
; uNx;Nn

ÞT:
Once u is obtained, statistical properties of the associated random function uh can be computed easily, see

Section 4.

As we have noted, this study concerns the case where randomness only affects the right-hand side of the

algebraic systems generated, i.e., where the source term or boundary data is random. Let us consider the

structure of the discrete problem (2.11) in this case. The entries of the finite element system matrix A are
haðvjq; vipÞi ¼
Z
I

að/jwq;/iwpÞqðnÞdn

¼
Z

C
wqwpqðnÞdn

	 
 Z
D

r/j � r/i � k2/j/i dx�
Z

C1

/iL/j ds
	 


¼ hwqwpiað/j;/iÞ;
for 1 6 i, j 6 Nx, 1 6 p, q 6 Nn. Denoting by G 2 RNn	Nn the Grammian matrix
½G�pq ¼ hwqwpi; p; q ¼ 1; . . . ;N n; ð2:12Þ
and by A 2 CNx	Nx the stiffness matrix of the deterministic equation, the coefficient matrix is seen to have the

Kronecker structure
A ¼ G� A:
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Note that this implicitly determines an ordering for the rows and columns of A. The rows are ordered so
that for each p, indices i = 1, . . .,Nx are grouped together, and then p is ordered from 1 to Nn; the same

grouping applies to the columns.

For the right-hand side, assume as in Section 2.2 that the forcing function is random, and also assume

for the moment that homogeneous Dirichlet boundary conditions g = 0 hold on C. It then follows from
(2.6) and (2.8) that the entry of f corresponding to the test function vip = /iwp is
h‘ðvipÞi ¼
Z
I

‘ðf ; vipÞqðnÞdn ¼ ‘ðf0;/iÞhwpi þ
Xm
r¼1

ffiffiffiffi
kr

p
‘ðfr;/iÞhnrwpi: ð2:13Þ
Let us define the vectors
f r ¼ ½ðfr;/iÞ�
Nx
i¼1; r ¼ 0; 1; . . . ;m

w0 ¼ ½hwpi�
Nn
p¼1;

wr ¼ ½hnrwpi�
Nn
p¼1; r ¼ 1; . . . ;m;

ð2:14Þ
where upon the discrete system has the form
ðG� AÞu ¼ f ; f ¼ w0 � f 0 þ
Xm
r¼1

ffiffiffiffi
kr

p
ðwr � f rÞ:
That is, the right-hand side lies in an (m + 1)-dimensional subspace of RNn	Nx . The solution is then
u ¼ ðG� AÞ�1f ¼ ðG�1 � A�1Þf ¼ ðG�1w0Þ � ðA�1f 0Þ þ
Xm
r¼1

ffiffiffiffi
kr

p
ðG�1wrÞ � ðA�1f rÞ: ð2:15Þ
This entails the solution of m + 1 systems of size Nn with coefficient matrix G, and m + 1 systems of size Nx

with coefficient matrix A. In practice, the basis functions {wp} for the stochastic component are often cho-

sen to be orthogonal with respect to the probability measure [8,13], in which case G is a diagonal matrix.

Thus, the main computational requirement is solution of the m + 1 systems with coefficient matrix A.

Although the derivation above is for the case of stochastic forcing function and homogeneous boundary

conditions, the conclusion reached is general. For example, if a nonzero Dirichlet condition holds on C,
then the construction is identical except f0 has the form (cf. (2.9))
f 0 ¼ ½ðf0;/iÞ�
Nx
i¼1 � AUEg:
More generally, if it is Dirichlet boundary conditions that are random (we will explore this in experiments

described in Section 3), then terms of the form
w0 � ðAUEg0Þ þ
X
r

ffiffiffiffi
kr

p
ðwr � ðAUEgrÞÞ
will be included in the right-hand side. Similar considerations apply for Neumann conditions on the obsta-

cle boundary.

2.4. Implementation

The notation used in the previous section treats the unknowns u of (2.11) as a vector. In an implemen-
tation, it is in fact more convenient to treat the solution as a two-dimensional array. In particular, consider
the matrices
F ¼ ½f 0; f 1; . . . ; f m�; K ¼ diagð1;
ffiffiffiffiffi
k1

p
; . . . ;

ffiffiffiffiffi
km

p
Þ; W ¼ ½w0;w1; . . . ;wm�;
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where the vectors {fr} and {wr} are defined in (2.14). Then the system (2.11) is essentially of the form
AU ¼ B; ð2:16Þ

where B = FWT withW = G�1 (WK). The solution can then be represented implicitly in outer-product form
as
U ¼ VW T; ð2:17Þ

where V = A�1F is obtained by solving the system of equations AV = F with m + 1 right-hand sides.
3. Iterative solution of the stochastic system

For the problem under consideration, the coefficient matrix of (2.16) is a discrete Helmholtz operator,
which is complex, symmetric and indefinite. In this section, we describe an iterative algorithm that can

be used to solve this system and demonstrate its effectiveness on a set of benchmark problems.

3.1. Solution algorithm

The basic solution algorithm we use is a multigrid method designed for the Helmholtz equation, adapted

to handle multiple right-hand sides. As is well known, the principle behind multigrid is to combine

smoothers to eliminate oscillatory components of the error on fine grids, together with coarse grid correc-

tions to eliminate smooth components. For the Helmholtz equation, standard multigrid approaches are not

effective. There are two difficulties:

1. Standard smoothers such as the Jacobi and Gauss–Seidel methods do not work because certain smooth

modes are amplified by these operations.

2. The eigenvalues associated with some smooth modes change signs during the grid coarsening process,

which causes the coarse grid correction to also amplify some smooth modes rather than eliminate them

from the error.

These difficulties derive from the indefiniteness of the system. In [10], we developed a method that ad-

dresses them. The first difficulty is handled by replacing standard smoothers with Krylov subspace methods,

i.e., GMRES iteration [20] is used as the smoother. The second one is handled by using the multigrid oper-

ation as a preconditioner for an outer Krylov subspace iteration, so that components of the error not trea-

ted correctly by the multigrid coarse grid computations are eliminated. Because the multigrid smoother is

no longer a linear operator, the outer iteration must handle this via a so-called ‘‘flexible’’ GMRES algo-

rithm [19]. A complete description and analysis of the preconditioning strategy is given in [10], where it
is demonstrated that the algorithm exhibits ‘‘textbook multigrid’’ convergence behavior, that is, conver-

gence rates that are independent of the discretization parameter; there is some dependence on the wave

number k.

We also adapt this approach to handle the system (2.16) with multiple right-hand sides, the number of

which is denoted by m within this section. Recall that Krylov subspace methods generate an iterate at step s

using a certain subspace of dimension s. Two types of Krylov subspace algorithms have been proposed for

problems with multiple right-hand sides:

• Block algorithms [3,18] construct a subspace of dimension ms formed by the union of the s-dimensional

subspaces for each right-hand side. Then, for each right-hand side, they find the best solution within that

subspace. Deflation is used to remove vectors that become linearly dependent.
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• Seed algorithms [4,22] form a Krylov subspace using one of the right-hand sides and then find the best

solution for each of the m problems within that subspace. If the seed problem converges before the

others, then a different right-hand side is chosen as the seed and the algorithm is repeated.

Each of these approaches has its advantages. Seed methods tend to perform best when the right-hand
sides are related to each other, for example, if they arise from functions evaluated at nearby points [4]. This

approach requires less storage than block methods: for systems of order N, the seed GMRES method re-

quires storage proportional to sN, compared to smN for a block GMRES solver. On the other hand, block

algorithms tend to converge more rapidly for more general right-hand sides, or when a small number of

eigenvalues are well-separated from the others [18]. The block algorithm also makes much better use of

computer memory traffic, since each access to the coefficient matrix is used for m matrix–vector products.

In our application, the right-hand side vectors (columns of F in (2.16)) derive from the orthogonal eigen-

vectors of the covariance matrix, and we found the seed method to be ineffective. Therefore, we restrict our
attention to a block method. The idea of block iterative methods is due to O�Leary and Underwood. The
block biconjugate gradient algorithm was described in [18], and a block quasi-minimum residual method in

[11]. Algorithms for altering the block size adaptively were given in [1]. A block GMRES algorithm was

presented by Vital [23].

We also need to modify the algorithm to handle the nonlinear preconditioner, as described in [5]. To

present this block flexible GMRES method for (2.16), we use the generic notation Ax = b for the linear sys-

tem, and w =M(v) to represent a generic preconditioning operation. This may be a linear operation derived

from a matrix, or (as in the present setting) a nonlinear operation. Let xðsÞj denote an approximation of the
solution to the jth equation (of m) computed at iteration s. The block flexible GMRES algorithm generates

a sequence of matrices {Vj} of dimensions N · m that together form a matrix V = [V1, . . .,Vs], and a set of

matrices Zj =M (Vj), and Z = [Z1, . . .,Zs]. The block-Hessenberg matrix H has block entries Hij. Each

component fxðsÞj : j ¼ 1; . . . ;mg of the iterative solution has the form
xðsÞj ¼ xð0Þj þ ZyðsÞj ð3:1Þ
such that the norm of the residual kbj � AxðsÞj k is minimal, where xð0Þj is a possibly arbitrary initial value. If

M (v) is a linear operation (sayMv whereM is a matrix), thenVs, the span of the columns of V, is the same

as
spanfMr1; ðMAÞMr1; . . . ; ðMAÞs�1Mr1; . . . ;Mrm; ðMAÞMrm; . . . ; ðMAÞs�1Mrmg;

the span of the Krylov vectors. In this case, it is not necessary to store the auxiliary matrix Z. If M is a

nonlinear operator, then Vs will not be a Krylov subspace, but the sth iterate is still optimal among all

possibilities of the form (3.1), which corresponds to an affine subspace of CN of dimension ms. The algo-

rithm is as follows:

Compute the residual r = b � A x of dimension N · m.

until (kr‘k6d, ‘ = 1,. . .,m),
% Generate a subspace of dimension ms from the residual r.

Define V1 to be the orthogonal factor in the QR factorization of r.

for i = 2, . . ., s + 1,
% Generate the directions defining the new basis vectors.

Zi�1 =M(Vi�1)

W = A Zi�1
% Orthogonalize these directions against the previous ones.

for j = 1, . . ., i�1,
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Hj;i�1 ¼ V �
jW

W =W � VjHj,i�1
end for j.

Perform a QR factorization ofW, obtaining the upper triangular factor Hi,i�1 and the orthogonal matrix

Vi.
end for i.

% Update each of the solutions.

for j = 1, . . .,m,
c = V*rj
Solve the least squares problem minykc � Hyk.
xj = xj + Zy

end for j.

r = b � Ax

end until

The loop on i can break down if the matrixW becomes rank-deficient. In this case, we reduce the size of

the block by dropping the dependent columns, updating the solutions, and continuing with the residuals

that have not converged.

3.2. Experimental results

We tested the performance of the block flexible GMRES algorithm for solving the stochastic Helmholtz

equation on the two-dimensional domain D consisting of the complement within the unit circle of a scat-
terer taken to be a semi-open cavity. Dirichlet-to-Neumann conditions are specified on the external bound-

ary C1. The discretization in space consists of piecewise linear elements on triangles. Fig. 1 shows the

scatterer and the initial mesh used in all tests. For each wave number k, this mesh is refined until khmax
was on the order of p/5 � .63, so that there are approximately ten points per wavelength. All computations
were done using MATLABATLAB. Mesh construction was done using the MATLABATLAB PDE TOOLBOXOOLBOX routines init-

mesh and refinemesh, which performs a uniform mesh refinement.
All uncertainty in the specification of the boundary value problem occurs in the statement of boundary

conditions on C, the boundary of the scatterer, where Dirichlet boundary conditions u = g are such that g is
Fig. 1. Spatial domain and initial mesh used in spatial discretization.
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a random function as in (2.6), with mean determined by an incident plane wave gðx1; x2Þ ¼ �eikðx1 cos hþx2 sin hÞ

at angle h = p/4. We assume as in [7,8] that the random variables {nr} making up the series expansion of the
random function are independent and uniformly distributed on an interval Ir ¼ ½�a; a�, giving rise to the
joint uniform distribution on I ¼ ½�a; a�m with joint density function
qðnÞ ¼ 1

2a

	 
m
: ð3:2Þ
The convention that hninji = dij leads to the condition a ¼
ffiffiffi
3

p
. The stochastic domain I ¼ ½�a; a�m is dis-

cretized using a uniform mesh: each of the m coordinate intervals is subdivided into nn equal subintervals,

resulting in N n ¼ nmn elements, each of which is an m-dimensional cube with side length hn = 2a/nn. Since

there are no continuity requirements on the probability space, the basis functions are taken to be piecewise

constants; that is, the basis function wq has the value one on the cube with index q and zero elsewhere. This

leads to the particularly simple diagonal structure for the Grammian matrix G of (2.12), G ¼ 1
Nn
I . (Recall

that this is always the case if the basis functions for the stochastic discretization are orthogonal with respect

to the probability measure.)
To define the series expansion (2.6), we assume that the covariance function associated with g has the

form
cðx1; x2Þ ¼ e�½ðjðx1Þ1�ðx2Þ1jÞ=2þjðx1Þ2�ðx2Þ2j�; x1; x2 2 C:
In the integral eigenvalue problem (2.5), the eigenfunctions become more oscillatory as their indices in-

crease, and they can be interpreted as simulating the results of a series of independent experiments on dif-

ferent scales. A general requirement of this methodology is that the first m eigenfunctions and eigenvalues

of the covariance operator, or discrete approximations to them, be available. In some circumstances, these

may be obtained in closed form [13, pp. 27ff], or, alternatively, they may be approximated using a Galerkin

discretization of the integral equation (2.5). For the problems we are considering, the domain of g is one-
dimensional, and the Galerkin computation is inexpensive. The discrete eigenvalues and eigenvectors are

computed directly from the Galerkin approximation. If the domain in question is of higher dimension, this

computation can be done efficiently using sparse eigenvalue methods and fast summation techniques [15].

Table 1 examines the performance of the block flexible GMRES algorithm and compares it with that of

the flexible GMRES algorithm (FGMRES) applied to each right-hand side separately. In these tests, the

stopping criterion for the solvers was for the Euclidean norm of each component of the residual to satisfy
krjk=kbjk < 10�6; j ¼ 1; . . . ;mþ 1:

For the block method, the iteration was stopped when the maximal individual residual component meets

this criterion. The table shows the total number of matrix–vector products performed during the course of

the computation, and in parentheses, the number of iterations required for convergence. For FGMRES, the

latter number is the average for m + 1 right-hand sides; for block FGMRES, it is the number of block iter-
ations. Note that the dimension of the spaces constructed by the block FGMRES method depends on m,

the number of right-hand sides, but not on the discretization parameter nn associated with the stochastic

domain, since F does not depend on nn in (2.16).

It is clear from these results that the block methods require fewer matrix–vector products in all cases,

and the difference in the number of these products becomes more dramatic as the number of right-hand

sides increases and also as the wave number k grows, i.e., as the problem becomes more difficult. The results

provide further evidence of the mesh independent performance of the multigrid algorithm. We note, how-

ever, that as the number of steps s increases, the advantages of the block FGMRES method become less
pronounced, since the overhead in generating the Krylov space grow like m2s2Nx, compared to ms2Nx

when the right-hand sides are processed separately. A block Krylov subspace method such as QMR [11]

would not suffer from this drawback, although it is not clear that this approach can be adapted to handle



Table 1

Number of matrix–vector products required to solve m + 1 systems arising from m-term series expansion, using preconditioned

FGMRES

m = 4 m = 6 m = 8

k = 5p
kh = .72, Nx = 4170

Block FGMRES 35 (7) 49 (7) 54 (6)

FGMRES 37 (7.4) 52 (7.4) 67 (7.4)

kh = .36, Nx = 16,196

Block FGMRES 40 (8) 56 (8) 72 (8)

FGMRES 45 (9.0) 63 (9.0) 81 (9.0)

k = 10p
kh = .72, Nx = 16,196

Block FGMRES 85 (17) 105 (15) 135 (15)

FGMRES 153 (30.6) 214 (30.6) 276 (30.7)

kh = .36, Nx = 63,816

Block FGMRES 90 (18) 119 (17) 162 (18)

FGMRES 157 (31.4) 220 (31.4) 282 (31.3)

k = 20p
kh = .72, Nx = 63,816

Block FGMRES 200 (40) 245 (35) 288 (32)

FGMRES 360 (72.0) 495 (70.7) 636 (70.7)

Numbers in parentheses are average iteration counts or number of block iterations.
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a nonlinear preconditioner. Because solution of the linear systems step represents a low order cost for the

complete construction of statistical data (see the next section), we have not explored this issue.
4. Computation of statistical data

Once the random function uh of (2.10) is available, we are interested in statistical properties such as mo-

ments and probability distributions associated with it. In the case of time-harmonic wave propagation, an
important quantity is the modulus juhj, which indicates the significance of the component with wave num-
ber k in the wave field. In this section, we describe the computations required to generate statistical data

associated with the random function juh(x,n)j.

4.1. Computation of a distribution function

Consider the construction of the probability distribution function for the maximum modulus
F ðaÞ � Prðmax
x

juhðx; nÞj 6 aÞ: ð4:1Þ
Let
Sa ¼ fn 2 I : max
x

juhðx; nÞj 6 ag:
Using the definition of the joint density function (3.2), we have
F ðaÞ ¼
Z
Sa

qðnÞdn ¼ jSaj
1

2a

	 
m
:
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To determine the volume of Sa, let n 2 I be given, and let q = q(n) be the index of the stochastic element
Iq � I containing n. Then
Fig. 2.

m, the
max
x

j uhðx; nÞj ¼ max
x

XNx
j¼1

ujq/jðxÞ
�����

����� ¼ maxj jujqj;
where the latter equality follows from the linearity of uh in space. Letting
sa ¼ q : max
j

jujqj 6 a
� ����� ����
it follows that jSaj ¼ ð2aÞm
Nn
sa, and therefore F (a) = sa/Nn. This construction requires maxjjujqj for each q.

Once these maxima are computed, they can then be used to compute F(a) for any a.
Effect of the stochastic discretization parameter nn on the estimate of Pr (maxxjuh (x,n)j 6 a), for k = 5p and various choices of
number of terms in the expansion (2.6).



Fig. 3. Effect of the number of terms m in the expansion (2.6) on the estimate of Pr (maxxjuh (x,n)j 6 a), for k = 5p.
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We show in Figs. 2 and 3 the results of computing the distribution function (4.1) for various para-

meter values. There is no analytic expression for this quantity, so it is difficult to make a rigorous

assessment of the accuracy of the computations. Nevertheless, it is possible to identify certain qualita-

tive aspects of the results as well as to place the costs of producing them in context. First, note that

discretization of the random component of the problem can be viewed from two perspectives, derived

from the number of terms m used in the finite expansion (2.6), and, once m is fixed, from the value nn

of the discretization parameter in I. Convergence of the series expansion depends on the correlations
within the process; when the finite expansion is fixed, it is shown in [8] that the error in the stochastic
discretization (assuming an accurate spatial discretization) is proportional to n�1n . Since the number of

stochastic degrees of freedom is proportional to N n ¼ nmn , it would be desirable to keep m as small as

possible.

In Fig. 2, we consider the impact of the two parameters m and nn, for a fixed wave number k = 5p. (The
spatial discretization was such that kh = .36.) Each subplot in this figure corresponds to a fixed value of m

for which nn is allowed to vary. Each plot shows convergence to a fixed curve with refinement in nn, as ex-

pected. It is also noteworthy that as m is increased, the quality of the solution for fixed nn appears to im-

prove. (For example, the solution for nn = 4 is closer to the limiting value for each successive choice
m = 2,4,6.) This indicates that the constants associated with the error bounds are smaller as m increases.

Fig. 3 explores the impact of m more closely. For this example, the results suggest that m = 8 is an appro-

priate limiting value for the number of terms in the expansion. With nn = 4, this yields 65,536 spatial degrees

of freedom. 4 The combination of smaller values of m together with large nn (e.g., m = 2 and nn = 10, yield-

ing 1024 stochastic degrees of freedom) is able convey the qualitative structure of the distribution at signif-

icantly smaller cost.

Finally, Fig. 4 shows the estimated distribution function (4.1) for different values of k. These results sug-

gest that this probability distribution function does not vary dramatically as the wave number increases.
4 We also remark that for m = 10, nn = 4 was the largest discretization parameter we could use in our MATLABATLAB environment. This

led to Nn = 1,048,576 stochastic degrees of freedom.



Fig. 4. Estimated probability distribution function Pr(maxxjuh (x,n)j 6 a), for various values of the wave number k.
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4.2. Computation of higher moments

For examples of other statistical data to be computed, consider the moments of the modulus of uh. Let

ah (x,n) � juh (x,n)j, and let
aðmÞh ðxÞ � hahðx; �Þmi; m ¼ 1; 2; 3; . . .

denote the moments of ah. We have
aðmÞh ðxÞ ¼
Z
I

juhðx; nÞjmqðnÞdn

¼
XNn

p¼1

Z
Ip

XNn

q¼1

XNx
j¼1

ujq/jðxÞ
 !

wqðnÞ
�����

�����
m

qðnÞdn

¼
XNn

p¼1

Z
Ip

qðnÞdn
 !XNx

j¼1
ujp/jðxÞ

�����
�����
m

¼ 1

N n

XNn

p¼1

XNx
j¼1

ujp/jðxÞ
�����

�����
m

:

This is straightforward to evaluate once the coefficients {ujp} are available. In particular, the nodal values
are
a
ðmÞ
i � aðmÞh ðxiÞ ¼

1

N n

XNn

p¼1
juipjm;
giving the piecewise linear interpolant of the m�th moment,
âðmÞh ðxÞ ¼
XNx
j¼1

a
ðmÞ
j /jðxÞ:
The computations required for central moments hðah � að1Þh Þmi are identical in structure.



Fig. 5. Estimated mean lh, standard deviation rh, ratio rh/lh, and skewness of juhj, for k = 5p.
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We examine some of these quantities in Figs. 5–7. Four things are shown: the mean lh, standard devi-

ation rh, ratio of standard deviation to mean, and scaled third central moment (the coefficient of skewness

[17])
1

r3h
ah � að1Þh
� �3� �
of ah. The data used for these plots come from the parameter choices m = 8 for the truncated expansion
(2.6), stochastic discretization parameter nn = 4 and spatial discretization satisfying kh = .36 for both

k = 5p and 10p and kh = .72 for k = 20p. Within each figure, the means and standard deviations are dis-
played using the same scalings. The magnitudes of the standard deviations largely mirror those of the

means, and there is virtually no difference in the relative sizes of these quantities for different wave numbers.

This indicates that size of the wave number k will not have a significant impact on the confidence that can

be attributed to computed mean solutions. The depictions of skewness indicate that near the corner singu-



Fig. 6. Estimated mean lh, standard deviation rh, ratio rh/lh, and skewness of juhj, for k = 10p.
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larities, the distributions tend to be more skewed toward the right (positive direction) with respect to the

mean, and inside the cavity they are skewed more toward the left; this may be of use in identifying the shape

of scatterers.

Note that all these computations require the complete set of values {ujq : j = 1, . . .,Nx,q = 1, . . .,Nn},

which are obtained from (2.17) as
ujq ¼
Xm
r¼0
vjrwqr:
Consequently, the cost is of order O(NxNn) and these computations represent the dominant expense of the

process. The storage costs are also of this magnitude but can be reduced to order m max(Nx,Nn) by taking

advantage of the outer-product representation (2.17) and recomputing ujq whenever it is needed. The trade-
off here is a (small) additional computational expense of magnitude O(mNxNn). This makes it feasible to

handle large values of m or nn that storage restrictions would otherwise prevent.



Fig. 7. Estimated mean lh, standard deviation rh, ratio rh/lh, and skewness of juhj, for k = 20p.
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5. Concluding remarks

Our aim in this work was to carefully outline the computational issues associated with implementing the
stochastic finite element method and processing the results for a model of acoustic scattering, where uncer-

tainty is restricted to boundary data. We have shown that a representation of the solution in outer product

form leads to significant savings in storage and also enables the relatively inexpensive computation of the

random solution. The dominant cost comes from postprocessing of the solution to compute statistical data,

although the outer product form in this setting reduces the storage overhead of these computations. Finally,

we note that if uncertainty appears in the differential operator instead of the right-hand side, then the outer

product formulation of the stochastic system is not available, and this problemwould bemore costly to solve.
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