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Solving the stochastic steady-state diffusion problem using multigrid
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We study multigrid for solving the stochastic steady-state diffusion problem. We operate under the mild
assumption that the diffusion coefficient takes the form of a finite Karhunernd expansion. The prob-

lem is discretized using a finite-element methodology using the polynomial chaos method to discretize
the stochastic part of the problem. We apply a multigrid algorithm to the stochastic problem in which
the spatial discretization is varied from grid to grid while the stochastic discretization is held constant.
We then show, theoretically and experimentally, that the convergence rate is independent of the spatial
discretization, as in the deterministic case, and the stochastic discretization.

Keywords Karhunen—Le@ve expansion; multigrid; polynomial chaos.

1. Introduction

Mathematical models often contain partial differential equations (PDES). The constituent parts of the
PDE, i.e. the differential coefficients and the source function, are most easily modelled as functions of
the spatial domain. However, uncertainty might exist as to the most appropriate functions to use in the
model. A more sophisticated model might therefore represent the differential coefficients and source
function not only as functions on the spatial domain but also as functions on some sample space, i.e. as
random fields. This gives rise to stochastic partial differential equations (SPDES).

In this paper, we consider the stochastic steady-state diffusion equation along with homogeneous
Dirichlet boundary-value conditions. We are interested in the case when the diffusion coefficient is
stochastic and the source function is deterministic, i.e. the diffusion coefficient is a random field and the
source function is defined on the spatial domain only. However, we also treat the source function as a
random field as this is required for purposes of analysis and incorporates, as a special case, the fact that
the source function may be deterministic.

We will assume the diffusion coefficient to be of the form of a finite Karhunegvkaexpansion.

This is common in the literature, e.g. sBabskaet al. (2004, Ghanem & Spanofl99]) andXiu &
Karniadakig(2002.

We are interested in using a finite-element methodology to find an approximate solution to the prob-

lem. We therefore obtain a weak formulation to the boundary-value problem and proceed to look in a
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finite-dimensional subspace of the infinite-dimensional space that contains the weak solution in order to
obtain a matrix problem.

The finite-dimensional subspace in which we look for the approximate solution will be a tensor
product of a space of functions defined on the spatial domain and a space of functions defined on
the sample space. For the finite-dimensional space of functions on the spatial domain, we will choose
the set of piecewise linear polynomials defined on a triangulation. For the finite-dimensional space of
functions defined on the sample space, we use polynomial chaos of a given order. This corresponds
to the polynomial chaos method as pioneered3tivanem & Spanogl991) and generalized iXiu &
Karniadakig(2002.

Theoretically, we apply a two-grid correction scheme to solve the finite-dimensional problem. In
this scheme, the spatial discretization is varied from grid to grid while the stochastic discretization is
kept constant. We show that the convergence rate of this method is independent of the discretization
parameters. Multigrid algorithms, obtained by applying the two-grid correction scheme recursively, can
then be shown to have convergence rates independent of the discretization parameters via inductive
arguments. We do not give these inductive arguments but note that the reasoning would be the same as
that for the analogous deterministic problem.

Experimentally, we consider two problems. These are obtained by defining the diffusion coefficient
to be a finite Karhunen—l&ve expansion consisting of random variables that are for the first problem
uniformly distributed and for the second problem normally distributed. A multigrid algorithm consisting
of a full V-cycle is then applied to solve a selection of problems associated with different discretization
parameters, both spatial and stochastic. The number of iterations it requires to solve the problem within
a given tolerance are tabulated. It will be seen that these tables provide experimental evidence that the
converge rate of the multigrid algorithm is indeed independent of the discretization parameters.

We note that an algorithm of this nature was employetarMaitre et al. (2003, where multigrid
was applied to steady and unsteady diffusion problems and in which the conclusions reached are in
agreement with our own. This paper buildslaanMaitre et al. (2003 by providing theoretical analysis
supporting the numerical results. We also note that multigrid was applied to the steady-state problem in
Seynaevet al. (2007, where classical Fourier mode analysis was extended to the stochastic case.

2. The stochastic steady-state diffusion problem

In this section, we introduce the stochastic steady-state diffusion problem along with its weak formu-
lation and finite-element discretization. We then obtain a number of properties associated with the dis-
cretized system. These properties are analogous to the properties of the system of equations resulting
from the deterministic steady-state diffusion problem and are proven similarly.

2.1 Boundary-value problem

The stochastic steady-state diffusion equation with homogeneous Dirichlet boundary-value conditions
is given by

[—V~(0Vu)= f inDx Q,
(2.1)

u=20 onoD x Q,

where D is the spatial domaing is a sample space; D x Q — R is the diffusion coefficient
and f: D x 2 — R is the source function. The sample space in turn belongs to a probability space
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(2, %#,P), where.Z is ac-algebra andP is a probability measure. Note that the divergence and
gradient operators are considered to act on spatial components only.

The spatial domainD, is assumed to be a 2D simply connected bounded open set with piecewise
smooth boundary. In particular, we taketo be the interior of a polygon.

We will let Q = (a, b)™. We will assume the diffusion coefficient to be of the form

m
C(x, ) = Co(X) + D /7 & ()& (@), (2.2)

r=1

where&: Q2 — R are identically distributed independent random variables with zero mean and for
o= (w1,...,0m) € Q,&(w) = w. Note that the distribution of = (&1, ..., &) will dictate the
probability measure to be used. For example, if eadb uniformly distributed or{—1, 1), thenP will
be the probability measure associated witimadimensional uniform distribution.

We necessarily expect the solution to be a random fiel x 2 — R, such that for each value of
w € Q, the resulting PDE is satisfied in the classical sense.

We note that this problem is extensively discussed from a modelling perspectisbanem &
Spanog199]) and from an analytic perspective Babuskaet al. (2004).

2.2 Weak formulation

In stating the weak formulation o2(1), we will use tensor products of Hilbert spaces which are defined
and discussed iBabuskaet al. (2004 andTreves(1967). Letc € L (D)® Lo(2)andf € Lo(D)®
L2(2). The weak formulation of4 1) is given by the following: findu € Hol(D) ® L2(£L) such that

a(u,0) =1(v) VYo e H}(D) ® L2(Q), (2.3)

where
a(u,v):/ / cVu- Vo, (2.4)
eJp

|(v):/Q/Dfu. (2.5)

Note that the integral ove® is with respect to the probability measure, ifg. [ = [, [/ dxdP.
The ‘Lax—Milgram lemma’ can be used to show that there exists a unique solution to this problem
provided that there exist positive constastand$ such that

a<cX,w) <p P-aevVxeD, (2.6)

where byP-a.e. we mean that there exists a suliset .# with P(F) = 0 such that the inequality
holds on the complement &f.

Assuming this condition holds, we can define the energy npn@: a(., -), which plays an analo-
gous role to the energy norm defined in the analysis of the deterministic diffusion problem.

2.3 Finite-element formulation

We are interested in applying a finite-element methodology to find an approximation to the solution of
the variational problem given in Sectidh2 This entails a discretization of both the spatial and the
stochastic parts of the problem.
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The spatial domain is discretized using a conforming triangulatione assume that any triangula-
tion used belongs to a family of triangulations that is quasi-uniform and shape regulBréssg2001)
for the definitions of quasi-uniformity and shape regularity). The finite-dimensional subspbléej
is then taken to b& = spari¢s, ..., #n}, whereg: D — R, k = 1,..., N, are the usual piece-
wise linear basis functions defined at the nodes’of(Here,N is the number of internal nodes in the
triangulation.)

To construct the finite-dimensional subspacé §fQ), the ‘polynomial chaos method’, as originally
given inGhanem & Spanogl99]) and generalized iXiu & Karniadakis(2002), is used. This essen-
tially involves using the set afi-dimensional functions (recalling thatis the number of terms ir2(2))
from the ‘Askey scheme of hypergeometric polynomials’ that satisfy the orthogonality relationship

/ WKy = o, (2.7)
Q

where we have assumed that the polynomials have been normalized. We note that if the polynomials
have not been normalized, the convergence analysis given in S&ciihholds, though the algebra
is a little less tidy. The finite-dimensional subsetlof(£2) is then defined to be the set of all such

polynomials that are of degrgeor less, which will be denoted 8 = sparfys, ..., wm}, where
|
M= Mt (2.8)
m! p!

Such a set is often referred to as the ‘m-dimensional polynomial chaos of grder
We thus have&s® T Hol(D) ® L2(L), which leads to the finite-element formulation: fing,, e
S® T such that

a(uhp,v) =1(®) Vo e S®T, (2.9)
wherea(-, -) andI(-) are as in 2.4) and @.5. This will possess a unique solution under the same

conditions that apply to the weak formulation.

2.4 Matrix formulation

By substituting the expansion

N M
uhp:zzujl¢j ¥ (2.10)

j=11=1

into (2.9) and varyingy over the basis functions &® T, we find that we can obtain the finite-element
approximation by solving the matrix problem: finde RMN such that

Au =f, (2.11)

where
Aix - Awm
A=| Sl Al =//CV¢i -Voiwky, (2.12)
oJp

Avi - Auwm
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and

f1
t=| | [fk]i=/Q/Df¢iw. (2.13)

fm

The solution vectory, contains the coefficients i2(10 stacked columnwise, i.al = [u1y,...,
UN1, ..., U1Mm, ...,UNM]T.

We note that the matriXd, thus defined, is symmetric and positive definite. This fact is implicitly
used throughout the remainder of this paper in demonstrating the convergence of multigrid.

Though not immediately transparent frot112), the choice ofS ensures that the blocks &f are
sparse and the choice @f ensures thalA has a sparse block structure. This is further discussed in
Pellissetti & Ghanenf2000 where block sparsity plots ok are given for various choices of and p.

Once we have computed then we haveihp. From this, we can calculate such things as the mean,

variance and covariance of the approximation.

2.5 Matrix and right-hand side properties

We here establish some results concerning the system mAtrand the right-hand side vectdy that
will be required for the analysis of multigrid in Secti8n

In the following, E refers to the stochastic mass matrix @&kfers to the deterministic mass matrix,
which are defined by

[Elwi =/ wkyr,  [Blij =/ didj, (2.14)
Q D
respectively. BJyE ® B, we will mean the matrix Kronecker product as given by
e1B .- emB B
E®B=| : =] - (2.15)
ev1B - eumB B

as, by 2.7), E is an identity matrix.
We now introduce some notation for the coefficient vector of a functi®s . Lettingo € S®T,
we have the expansion

N M
D= ki Yk (2.16)
i—1 k=1
We define the coefficient vectore RMN of » by
Vi
V= , [wli = vik. (2.17)
VM

THEOREM2.1 Letf e S® T with coefficient vectof. Thenf = (E ® B)f, wheref is asin .13.
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Proof. This follows upon substituting the expansionfofnto (2.13). O
THEOREM2.2 Letf e S® T with coefficient vectof. Then|| f ”2L2(D)®L2(Q) =(E® B)f, f).
Proof. This follows upon substituting the expansionfofnto |- ||L,p)eL,(@)- O

THEOREM2.3 The inequality

2 ((E® B)v,v)

Cib? < == 5 (2.18)

holds for allv € RMN whereC; is a constant.

Proof. The right-hand side of( 18 is the Rayleigh quotient dE ® B and this is bounded below by the
lowest eigenvalue of ® B. The eigenvalues dt ® B are the products of the eigenvaluesoénd the
eigenvalues oB. Denoting the minimum eigenvalues BfandB asAmin(E) andimin(B), respectively,
we thus have

(E® B)v,v)

Amin(E)Amin(B) < TV) (2.19)

For a quasi-uniform and shape-regular mesh, the minimum eigenvaBiésdfounded below b 1h?,
whereCy is a constant, as shown in, eglmanet al. (2009, and Anin(E) = 1 asE is an identity
matrix. O

THEOREM2.4 Letf € S® T. Thenhy/Cy| f|lL,(D)sL,o0) < lIfll2, whereCy is as in Theoren2.3.

Proof. Using Theoren®.1, we have|f|3 = ((E ® B)f, (E ® B)f). Now settingg = (E ® B)3f and
using Theorem&.2and2.3 we have

2 2 2
Cih? < (E®B)g,9) _ (E® B)f, (E® B)Y) _ 115 (2.20)

(9, 9) (E® B)f, ) 1112, o)eLac0)

as required. O

2.6 Semi-discrete formulation

In proving the approximation property used in the analysis of multigrid in Se8tigrit will be useful
to introduce the solution of a semi-discrete version of the finite-element formulation where only the
stochastic space is discretized. This is given by the following:dine H(}(D) ® T such that

a(up,v) =1(v) VYoe HID)®T. (2.21)

This has a unique solution under the same conditions as apply to the weak formulation in 3&ction

THEOREM 2.5 The solution to the semi-discrete problamg, and the finite-element approximation,
Unp, defined in SectioR.3, satisfy

lup — Unplla < v/BC2h[ID2UpllL,(DysL(2)s (2.22)
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wherep is defined in 2.6), ||D?0|L,(D)sL,() is defined by

||DZU||EZ(D)®|_2(Q) = /Q |U||2_|2(D) Vo € H3(D) ® L2(Q) (2.23)

andC; is a constant.
Proof. From Galerkin orthogonality, we have

Now, letlip € S® T be the spatial interpolant of, € H&(D) ®T,ie ifxj, j=1,...,N, are the
nodes of the spatial triangulatiof, thentip(Xj, w) = Up(Xj, ®) Yo € Q. Then

lup — unpli2 < llup — dpl12 </f/g |up = Gpl%1p)- (2.25)

A standard interpolation result, as given in, eJphnsorn(1987), tells us that

|Up—l.~,|p|H1(D) <C2h|Up|H2(D) Vo e .Q, (226)
whereC; is only dependent on the spatial domain. Therefore,
2 21,2 2 212121 12
[up — Unpllg < BC5h /Q lUpliizp) = AC2NTID UplIL, (D)sL,(0)- (2.27)
which proves the theorem. O

THEOREM2.6 TheH 2-regularity bound
ID2UpllLyD)eLa@) < Call fllL(D)eLa(2) (2.28)
holds, whereCs is a constant.

Proof. From elliptic regularity, we have

luplhzpy < Call flliL,0) Vo e Q, (2.29)
whereCs; is dependent on the spatial domain ghdSquaring and integrating ov&r give the desired
result. O
3. Multigrid

In this section, we give a two-grid correction scheme for solving the system of equations given in
Section2.4. This scheme varies the mesh parameter from grid to grid, i.e. there is a coarse grid and a fine
grid, while the polynomial chaos ordep, is held constant. Thereby, the scheme resembles that which
would be applied to the regular deterministic problem. It is known that such a scheme when applied
to the deterministic problem will converge at a rate independent of the value of the mesh parameter,
We show that this is also the case for the stochastic problem. Moreover, the convergence rate for the
stochastic problem will also be independent of the paramstarsd p. To show this, we follow a regular
multigrid analysis, as given in, e.§raess(2001) or ElImanet al. (2005, and show that a smoothing
property and an approximation property hold. Once the convergence rate of the two-grid scheme has
been shown to be independent of the discretization parameters, then inductive arguments can be used
to show that multigrid algorithms, derived from applying the two-grid scheme recursively, also have a
convergence rate independent of the discretization parameters.
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3.1 Stationary iteration

Central to the idea of multigrid is the understanding that certain stationary iterations when applied to
particular matrix problems tend to ‘smooth’ the associated error. Given the praklemf, the matrix
splitting A = Q — Z inspires the stationary iteration

uktd = Q=1zu® 4 Q1 (3.1)
= Q7 HQ—-AuY + Q7'
=( - Q7 tau® + Q7.
The matrixl — Q~1A s the iteration matrix of the method and in the context of multigrid is called the

‘smoother’.

3.2 Two-grid correction scheme
LetT c L2(Q) andS?™" ¢ S" ¢ HA(D) be as defined in Sectidh3. Then definingy?" = S" @ T
andvVh = '@ T, we havev?" ¢ Vh c H}(D) ® L2(9Q). Finite-element formulations " andV2"
give rise to matrix equations which we represenfas= f and Al = f, respectively.

We now define a prolongation operatd};: V2" — V" via natural inclusion, i.e. forzn € V2,
I} von = van. To see howt ) can be represented, we note that any basis funeftf@mf S can be
expanded in the basis functions$f, viz.,

Np
=Zpij¢ih, j=1..., Non. (3.2)
i=1

We define a matri¥ using the coefficients above, i.&];; = pij. Now we have, fobo, € vah

Non M Non M Np
2h 2h 2 h
van =D > viRdT k=D D ik D Pii v

j=1k=1 j=1k=1 i=1

Nh M/ Non Nh M

2n | 4h 2h7 4h
Do 2o miofe | Bl =D0 D TPV TiB v (3.3)

i—1k=1 \j=1 i=1 k=1

As von € VN, we also have the expansion

Nn M
voh =D > vl k. (3.4)

i=1k=1

Comparing 8.3) and @.4), we see thatPvi 2y = u,k or ka = vk From this, it follows that ifv2" is
the coefficient vector ofzn in V2, then(l ® P)v2h is the coefficient vector afop in V1. (Herel is
anM x M identity matrix.) We therefore call ® P the prolongation matrix and introduce the notation
Z=1QP.

We next define a restriction operatqfh: Vv — V2" sych that the corresponding restriction
matrix Z satisfies#Z = 27 (or equivalentlyZ = | ® R, whereR = PT). That is to say that if
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12" mapson € V2 10 0n € V21 andv andv?" are the respective coefficient vectors of these func-
tions, thenv?" = v = ﬁth_. With the prolongation and restriction operators related in this way, we
have the desirable relationships- #f andA = ZAZ.
Using these definitions, we have the following algorithm for a two-grid iterative correction scheme:

choose initial guess
fori =0,1,...
forj =1:k
ue(-QlAu+ Q1
end
F =2 — Au)
solveAe=T
U<« u+ 7e
end

The success of this algorithm necessarily depends on how well the smoother works and how well the
functions are passed between the coarse and the fine grids.

3.3 Convergence of two-grid correction scheme

We wish to establish that the two-grid algorithm given in Sec8dttonverges and that the convergence
rate is independent df, m and p. That the scheme converges can be shown to be true provided that
the ‘smoothing property’ and the ‘approximation property’ are satisfied, as is shown in the following
theorem.

THEOREM 3.1 Provided that the smoothing property,

IAQ = Q7' AKYl2 < n(K)llylla Yy e RMM, (3.5)
with (k) - 0 ask — oo, and the approximation property,
I(A™ — 2 A 2)yla < Callyl2 ¥y e RMMN, (3.6)

whereCy is a constant, are satisfied, then, provided thit sufficiently large, the two-grid algorithm
given in SectiorB.2 converges.

Proof. It can be shown that the error associated with the two-grid algorithm obeys the recursive
relationship

e = (A1 - 2A 12 AU — Q71AKeD. (3.7)
Hence,
e DA =I(A™t = P AR AU — QT AKED 4
< Cal A = QA€ < Can(k 1€ a. (3.8)
Sincen(k) — 0ask — oo, there exists some minimal number of smoothing steps suciygk) < 1.
O

That the smoothing property and approximation hold and #tilat and C4 are independent df, m
and p are discussed in SectioAstand3.5.
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3.4 Smoothing property

The proof that the smoothing property holds is dependent on the choice of smoother, i.e. the choice
of Q. For the case of) = #1, & € R, whose choice corresponds to Richardson'’s iterative method, the
proof follows that given irBraess(2001) andElmanet al. (2005 where the damped Jacobi iteration

is applied to the deterministic diffusion problem amk) is shown to be independent bf Moreover,

it can be shown, though we omit the details, thatan be chosen such thatk) is also independent

of mandp.

3.5 Approximation property
We here wish to show that the approximation property giver3if) (s satisfied.

THEOREM 3.2 For the problem under consideration, the approximation property given in Th8dtem
holds.

Proof. Giveny € RMNn we can find somé e S"® T such thay = f. Letunp anduzn, p be the fine-
and coarse-grid solutions, respectively, with coefficient veators A~1f andi = A~1f = A-1%f.
Then, we have
-1 A-1 2 _ 2 _ _
(AT = ZATR)Yla = lu— ZUlx = U— Z0,u— Z0)a
_ h h
= a(Unp — lopU2n, p, Unp — IopU2h p)
= a(Unp — Uzh, p, Unp — Uzh,p) = [Unp — Uzn,pll3. (3.9)

Now introducing the solution of the semi-discrete problerp, defined in Sectior2.6, and applying
Theorem<.5and2.6 give

(At = ZA1R)ylla < llup — unplla + lup — Uzn,plla
< VBCoNIID%UpllLyDysLa@) + 2v/AC2NIl Dzup”Lz(D)@Lz(Q)

< 3y/ACoCsh|l fllL,D)sLa@)- (3.10)

Finally, applying Theoren2.4 gives

- = 3J/pBC2C3 3J/BC2C3
1A = ZATIB)YIIA < ="l = ====""lyll2. 3.11
Wla N e y (3.11)
which establishes the approximation property. O

3.6 Extension to multigrid

The two-grid correction scheme given in Secti®2 only contains pre-smoothing. In practice, post-
smoothing is often also applied, as in the numerical experiments given in Séctémhave neglected
post-smoothing in the preceding analytic argument in order to keep things a little simpler. It can be
shown, though we omit the details here, that the two-grid correction scheme with post-smoothing also
converges with a convergence rate independeht of and p.
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Recursively applying the two-grid correction scheme gives rise to a multigrid scheme. A number of
variations are possible, see, eBgiggset al. (2000. That multigrid converges with a convergence rate
independent of the parametdrsm and p can be established by an inductive argument. This inductive
argument will be no different for the stochastic problem than for the analogous deterministic problem
and is discussed in, e.®raesg2001) andElmanet al. (2005.

4. Numerical experiments

We now perform some numerical experiments to provide practical support for the theoretical results
obtained in Sectior8. The model that we use follows that given @hanem & Spano$1991) and
Xiu & Karniadakis(2002.

4.1 Model problem

We take the spatial domain to lBe= (—1, 1)2 and consider the deterministic source functior: 1. To
construct the diffusion coefficient, we consider a process with mean furgigin constant variance
and covariance function(x, y). Such a process will have a Karhunenélke expansion of the form

c(x, ) = co(X) + D v/ 2k (X) (@), (4.1)

k=1

where (&) is a sequence of uncorrelated and identically distributed random variables with variance
and mean zero andy) and(ck) can be computed by solving the eigenvalue equation

v

/D T4 Y) 6 0k = (). .2)

If need be we make the further assumption t@) is a sequence of independent random variables.
The sequencéli) is ordered so as to be nonincreasing. Fox, y), we use the exponential covariance
function given by

rx,y)=v e—%|xl—Y1|—%|X2—y2|’ (4.3)

wherex = (X1, X2), Y = (Y1, ¥2) € D. The constan is called the correlation length and will affect the
decay of(1k), a larger value producing faster decay. Welset 10. Analytic solutions to4.2) for this
choice of covariance function are given@hanem & Spanogl991).

For computational purposes, we need a finite-term expansion, so we clutpib(obtain

C(X, ) = Co(X) + D v/ 2Kk (X)ék(®). (4.4)

k=1

From the modelling perspective, the replacement of the infinite expansion with the finite expansion is
justified provided thaf1x) decays rapidly, which is discussed@hanem & Spanogl997).

We will consider two cases for the distributions of the random variafyle Section4.2, we take
¢k to be uniformly distributed o6—1, 1) with cg(x) = 10 andv = 1/3. In Sectiord.3, we takei to be
normally distributed witheg(x) = 1 andv = 0.01.
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4.2 Multigrid for diffusion with uniform distributions

We now leté to be uniformly distributed oii—1, 1). Therefore 2 = (-1, 1)™ and dP = dw/2™. We
also setv = 1/3 andcy(x) = 10. Applying the generalized polynomial chaos method as described in
Section2.3, the basis ofl will be the set ofm-dimensional Legendre polynomials of deger less.

For the triangulation oD, we will use a uniform mesh consisting of an underlying grichct n
squares each of which is further subdivided into two equal triangles. A full V-cycle is used with2a 2
coarsest mesh. For the smoother, we use the damped Jacobi method with the damping parameter set
to 2/3. Three pre-smoothing and three post-smoothing iterates are carried out. The iterations stop when
the relative residual reaches a tolerance offl0rable1 shows the number of iterations required for
convergence for varying values ot n and p. The results clearly support the theoretical conclusion that
the conversion rate of the multigrid algorithm is independet, @ and p.

4.3 Multigrid for diffusion with normal distributions

We now leté to be normally distributed with zero mean and variancéNow, we haveQ = R™
and P = e ®*/@) /(27 v)™2 dw. We takeco(x) = 1. Applying the generalized polynomial chaos
method as described in Secti@rB, the basis ofl will be the set oin-dimensional generalized Hermite
polynomials of degre@ or less.

Note that the diffusion coefficient as defined in Secdohwill now fail to satisfy condition 2.6)
no matter what the choice of However, we have reason to believe that the theory still applies. We give

TABLE 1 Number of iterations required for multigrid to converge for diffusion defined via
uniform distritutions

n=4 m=1 m=2 m=3 m=4
p=1 6 6 6 6
p=2 6 6 6 6
p=3 6 6 6 6
n=38 m=1 m=2 m=3 m=4
p=1 7 7 7 7
p=2 7 7 7 7
p=3 7 7 7 7
p=4 7 7 7 7
n=16 m=1 m=2 m=3 m=4
p=1 7 7 7 7
p=2 7 7 7 7
p=3 7 7 7 7
p=4 7 7 7 7
n=32 m=1 m=2 m=3 m=4
p=1 7 7 7 7
p=2 7 7 7 7
p=3 7 7 7 7
p=4 7 7 7 7
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TABLE 2 Number of iterations required for multigrid to converge for diffusion defined
via normal distritutions

n=4 m=1 m=2 m=3 m=4
p=1 6 6 6 6
p=2 7 7 7 7
p=3 7 7 7 7
p=4 7 7 7 7
n=28 m=1 m=2 m=3 m=4
p=1 8 8 8 8
p=2 8 8 8 8
p=3 9 9 9 9
p=4 10 10 10 10
n=16 m=1 m=2 m=3 m=4
p=1 8 8 8 8
p=2 8 8 8 8
p=3 9 9 9 9
p=4 9 10 10 10
n=32 m=1 m=2 m=3 m=4
p=2 8 8 8 8
p=3 8 8 9 9
p=4 9 9 9 9

here only a heuristic argument. Given a sufficiently small variance, the probabitityesfig outside two
positive bounds becomes negligibly small. That is to say that if the normal distributions were replaced
by similar distributions that looked like the normal distributions with their tails cut off so as to ensure
thatc satisfies 2.6), then the difference would not be noticed computationally. We emphasize that we
have not pursued this reasoning analytically. We have found that sufficiently small variance results in
positive definite systems that yield sensible results. Weitake).01.

For the triangulation oD, we will use a uniform mesh consisting of an underlying grichot n
squares each of which is further subdivided into two equal triangles. A full V-cycle is used withza 2
coarsest mesh. For the smoother, we use the damped Jacobi method with the damping parameter set to
2/3. Three pre-smoothing and three post-smoothing iterates are carried out. The iterations stop when
the relative residual reaches a tolerance of®lrable2 shows the number of iterations required for
convergence for varying values of, n and p. The results support the theoretical conclusion that the
conversion rate of the multigrid algorithm is independerth,ah and p.
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