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Solving the stochastic steady-state diffusion problem using multigrid
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We study multigrid for solving the stochastic steady-state diffusion problem. We operate under the mild
assumption that the diffusion coefficient takes the form of a finite Karhunen–Loève expansion. The prob-
lem is discretized using a finite-element methodology using the polynomial chaos method to discretize
the stochastic part of the problem. We apply a multigrid algorithm to the stochastic problem in which
the spatial discretization is varied from grid to grid while the stochastic discretization is held constant.
We then show, theoretically and experimentally, that the convergence rate is independent of the spatial
discretization, as in the deterministic case, and the stochastic discretization.
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1. Introduction

Mathematical models often contain partial differential equations (PDEs). The constituent parts of the
PDE, i.e. the differential coefficients and the source function, are most easily modelled as functions of
the spatial domain. However, uncertainty might exist as to the most appropriate functions to use in the
model. A more sophisticated model might therefore represent the differential coefficients and source
function not only as functions on the spatial domain but also as functions on some sample space, i.e. as
random fields. This gives rise to stochastic partial differential equations (SPDEs).

In this paper, we consider the stochastic steady-state diffusion equation along with homogeneous
Dirichlet boundary-value conditions. We are interested in the case when the diffusion coefficient is
stochastic and the source function is deterministic, i.e. the diffusion coefficient is a random field and the
source function is defined on the spatial domain only. However, we also treat the source function as a
random field as this is required for purposes of analysis and incorporates, as a special case, the fact that
the source function may be deterministic.

We will assume the diffusion coefficient to be of the form of a finite Karhunen–Loève expansion.
This is common in the literature, e.g. seeBabǔskaet al. (2004), Ghanem & Spanos(1991) andXiu &
Karniadakis(2002).

We are interested in using a finite-element methodology to find an approximate solution to the prob-
lem. We therefore obtain a weak formulation to the boundary-value problem and proceed to look in a
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finite-dimensional subspace of the infinite-dimensional space that contains the weak solution in order to
obtain a matrix problem.

The finite-dimensional subspace in which we look for the approximate solution will be a tensor
product of a space of functions defined on the spatial domain and a space of functions defined on
the sample space. For the finite-dimensional space of functions on the spatial domain, we will choose
the set of piecewise linear polynomials defined on a triangulation. For the finite-dimensional space of
functions defined on the sample space, we use polynomial chaos of a given order. This corresponds
to the polynomial chaos method as pioneered byGhanem & Spanos(1991) and generalized inXiu &
Karniadakis(2002).

Theoretically, we apply a two-grid correction scheme to solve the finite-dimensional problem. In
this scheme, the spatial discretization is varied from grid to grid while the stochastic discretization is
kept constant. We show that the convergence rate of this method is independent of the discretization
parameters. Multigrid algorithms, obtained by applying the two-grid correction scheme recursively, can
then be shown to have convergence rates independent of the discretization parameters via inductive
arguments. We do not give these inductive arguments but note that the reasoning would be the same as
that for the analogous deterministic problem.

Experimentally, we consider two problems. These are obtained by defining the diffusion coefficient
to be a finite Karhunen–Lòeve expansion consisting of random variables that are for the first problem
uniformly distributed and for the second problem normally distributed. A multigrid algorithm consisting
of a full V-cycle is then applied to solve a selection of problems associated with different discretization
parameters, both spatial and stochastic. The number of iterations it requires to solve the problem within
a given tolerance are tabulated. It will be seen that these tables provide experimental evidence that the
converge rate of the multigrid algorithm is indeed independent of the discretization parameters.

We note that an algorithm of this nature was employed inLe Mâıtre et al. (2003), where multigrid
was applied to steady and unsteady diffusion problems and in which the conclusions reached are in
agreement with our own. This paper builds onLe Mâıtre et al. (2003) by providing theoretical analysis
supporting the numerical results. We also note that multigrid was applied to the steady-state problem in
Seynaeveet al. (2007), where classical Fourier mode analysis was extended to the stochastic case.

2. The stochastic steady-state diffusion problem

In this section, we introduce the stochastic steady-state diffusion problem along with its weak formu-
lation and finite-element discretization. We then obtain a number of properties associated with the dis-
cretized system. These properties are analogous to the properties of the system of equations resulting
from the deterministic steady-state diffusion problem and are proven similarly.

2.1 Boundary-value problem

The stochastic steady-state diffusion equation with homogeneous Dirichlet boundary-value conditions
is given by

{
−∇ ∙ (c∇u) = f in D ×Ω,

u = 0 on∂D ×Ω,
(2.1)

where D is the spatial domain,Ω is a sample space,c: D × Ω → R is the diffusion coefficient
and f : D × Ω → R is the source function. The sample space in turn belongs to a probability space
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(Ω,F , P), whereF is a σ -algebra andP is a probability measure. Note that the divergence and
gradient operators are considered to act on spatial components only.

The spatial domain,D, is assumed to be a 2D simply connected bounded open set with piecewise
smooth boundary. In particular, we takeD to be the interior of a polygon.

We will let Ω = (a, b)m. We will assume the diffusion coefficient to be of the form

c(x, ω) = c0(x)+
m∑

r=1

√
λr cr (x)ξr (ω), (2.2)

whereξr : Ω → R are identically distributed independent random variables with zero mean and for
ω = (ω1, . . . , ωm) ∈ Ω, ξr (ω) = ωr . Note that the distribution ofξ = (ξ1, . . . , ξm) will dictate the
probability measure to be used. For example, if eachξr is uniformly distributed on(−1, 1), thenP will
be the probability measure associated with anm-dimensional uniform distribution.

We necessarily expect the solution to be a random field,u: D×Ω → R, such that for each value of
ω ∈ Ω, the resulting PDE is satisfied in the classical sense.

We note that this problem is extensively discussed from a modelling perspective inGhanem &
Spanos(1991) and from an analytic perspective inBabǔskaet al. (2004).

2.2 Weak formulation

In stating the weak formulation of (2.1), we will use tensor products of Hilbert spaces which are defined
and discussed inBabǔskaet al.(2004) andTreves(1967). Let c ∈ L∞(D)⊗ L∞(Ω) and f ∈ L2(D)⊗
L2(Ω). The weak formulation of (2.1) is given by the following: findu ∈ H1

0 (D)⊗ L2(Ω) such that

a(u, v) = l (v) ∀ v ∈ H1
0 (D)⊗ L2(Ω), (2.3)

where

a(u, v) =
∫

Ω

∫

D
c∇u ∙ ∇v, (2.4)

l (v) =
∫

Ω

∫

D
f v. (2.5)

Note that the integral overΩ is with respect to the probability measure, i.e.
∫
Ω

∫
D =

∫
Ω

∫
D dx dP.

The ‘Lax–Milgram lemma’ can be used to show that there exists a unique solution to this problem
provided that there exist positive constantsα andβ such that

α 6 c(x, ω) 6 β P-a.e.∀ x ∈ D, (2.6)

where byP-a.e. we mean that there exists a subsetF ∈ F with P(F) = 0 such that the inequality
holds on the complement ofF .

Assuming this condition holds, we can define the energy norm‖∙‖2a = a(∙, ∙), which plays an analo-
gous role to the energy norm defined in the analysis of the deterministic diffusion problem.

2.3 Finite-element formulation

We are interested in applying a finite-element methodology to find an approximation to the solution of
the variational problem given in Section2.2. This entails a discretization of both the spatial and the
stochastic parts of the problem.



678 H. ELMAN AND D. FURNIVAL

The spatial domain is discretized using a conforming triangulation,T . We assume that any triangula-
tion used belongs to a family of triangulations that is quasi-uniform and shape regular (seeBraess(2001)
for the definitions of quasi-uniformity and shape regularity). The finite-dimensional subspace ofH1

0 (D)
is then taken to beS = span{φ1, . . . , φN}, whereφk: D → R, k = 1, . . . , N, are the usual piece-
wise linear basis functions defined at the nodes ofT . (Here,N is the number of internal nodes in the
triangulation.)

To construct the finite-dimensional subspace ofL2(Ω), the ‘polynomial chaos method’, as originally
given inGhanem & Spanos(1991) and generalized inXiu & Karniadakis(2002), is used. This essen-
tially involves using the set ofm-dimensional functions (recalling thatm is the number of terms in (2.2))
from the ‘Askey scheme of hypergeometric polynomials’ that satisfy the orthogonality relationship

∫

Ω
ψkψl = δkl , (2.7)

where we have assumed that the polynomials have been normalized. We note that if the polynomials
have not been normalized, the convergence analysis given in Section3 still holds, though the algebra
is a little less tidy. The finite-dimensional subset ofL2(Ω) is then defined to be the set of all such
polynomials that are of degreep or less, which will be denoted asT = span{ψ1, . . . , ψM }, where

M =
(m+ p)!

m! p!
. (2.8)

Such a set is often referred to as the ‘m-dimensional polynomial chaos of orderp’.
We thus haveS⊗ T ⊂ H1

0 (D)⊗ L2(Ω), which leads to the finite-element formulation: finduhp ∈
S⊗ T such that

a(uhp, v) = l (v) ∀ v ∈ S⊗ T, (2.9)

wherea(∙, ∙) and l (∙) are as in (2.4) and (2.5). This will possess a unique solution under the same
conditions that apply to the weak formulation.

2.4 Matrix formulation

By substituting the expansion

uhp =
N∑

j=1

M∑

l=1

u jl φ jψl (2.10)

into (2.9) and varyingv over the basis functions ofS⊗ T , we find that we can obtain the finite-element
approximation by solving the matrix problem: findu ∈ RM N such that

Au = f, (2.11)

where

A =






A11 ∙ ∙ ∙ A1M
...

...
AM1 ∙ ∙ ∙ AM M




 , [ Akl ]i j =

∫

Ω

∫

D
c∇φi ∙ ∇φ jψkψl , (2.12)
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and

f =






f1
...

fM




 , [fk]i =

∫

Ω

∫

D
f φiψk. (2.13)

The solution vector,u, contains the coefficients in (2.10) stacked columnwise, i.e.u = [u11, . . . ,
uN1, . . . , u1M , . . . , uN M]T.

We note that the matrixA, thus defined, is symmetric and positive definite. This fact is implicitly
used throughout the remainder of this paper in demonstrating the convergence of multigrid.

Though not immediately transparent from (2.12), the choice ofS ensures that the blocks ofA are
sparse and the choice ofT ensures thatA has a sparse block structure. This is further discussed in
Pellissetti & Ghanem(2000) where block sparsity plots ofA are given for various choices ofm and p.

Once we have computedu, then we haveuhp. From this, we can calculate such things as the mean,
variance and covariance of the approximation.

2.5 Matrix and right-hand side properties

We here establish some results concerning the system matrix,A, and the right-hand side vector,f, that
will be required for the analysis of multigrid in Section3.

In the following,E refers to the stochastic mass matrix andB refers to the deterministic mass matrix,
which are defined by

[E]kl =
∫

Ω
ψkψl , [B]i j =

∫

D
φiφ j , (2.14)

respectively. ByE ⊗ B, we will mean the matrix Kronecker product as given by

E ⊗ B =






e11B ∙ ∙ ∙ e1M B
...

...
eM1B ∙ ∙ ∙ eM M B




 =






B
. . .

B




 (2.15)

as, by (2.7), E is an identity matrix.
We now introduce some notation for the coefficient vector of a function inS⊗T . Lettingv ∈ S⊗T ,

we have the expansion

v =
N∑

i=1

M∑

k=1

vikφiψk. (2.16)

We define the coefficient vectorv ∈ RM N of v by

v =






v1
...

vM




 , [vk] i = vik . (2.17)

THEOREM 2.1 Let f ∈ S⊗ T with coefficient vector̂f. Thenf = (E ⊗ B)f̂, wheref is as in (2.13).
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Proof. This follows upon substituting the expansion off into (2.13). �

THEOREM 2.2 Let f ∈ S⊗ T with coefficient vector̂f. Then‖ f ‖2L2(D)⊗L2(Ω)
= ((E ⊗ B)f̂, f̂).

Proof. This follows upon substituting the expansion off into ‖∙‖L2(D)⊗L2(Ω). �

THEOREM 2.3 The inequality

C1h2 6
((E ⊗ B)v, v)

(v, v)
(2.18)

holds for allv ∈ RM N , whereC1 is a constant.

Proof. The right-hand side of (2.18) is the Rayleigh quotient ofE⊗ B and this is bounded below by the
lowest eigenvalue ofE⊗ B. The eigenvalues ofE⊗ B are the products of the eigenvalues ofE and the
eigenvalues ofB. Denoting the minimum eigenvalues ofE andB asλmin(E) andλmin(B), respectively,
we thus have

λmin(E)λmin(B) 6
((E ⊗ B)v, v)

(v, v)
. (2.19)

For a quasi-uniform and shape-regular mesh, the minimum eigenvalue ofB is bounded below byC1h2,
whereC1 is a constant, as shown in, e.g.Elmanet al. (2005), andλmin(E) = 1 asE is an identity
matrix. �

THEOREM 2.4 Let f ∈ S⊗ T . Thenh
√

C1‖ f ‖L2(D)⊗L2(Ω) 6 ‖f‖2, whereC1 is as in Theorem2.3.

Proof. Using Theorem2.1, we have‖f‖22 = ((E ⊗ B)f̂, (E ⊗ B)f̂). Now settingg = (E ⊗ B)
1
2 f̂ and

using Theorems2.2and2.3, we have

C1h2 6
((E ⊗ B)g, g)

(g, g)
=
((E ⊗ B)f̂, (E ⊗ B)f̂)

((E ⊗ B)f̂, f̂)
=

‖f‖22
‖ f ‖2L2(D)⊗L2(Ω)

(2.20)

as required. �

2.6 Semi-discrete formulation

In proving the approximation property used in the analysis of multigrid in Section3.5, it will be useful
to introduce the solution of a semi-discrete version of the finite-element formulation where only the
stochastic space is discretized. This is given by the following: findup ∈ H1

0 (D)⊗ T such that

a(up, v) = l (v) ∀ v ∈ H1
0 (D)⊗ T. (2.21)

This has a unique solution under the same conditions as apply to the weak formulation in Section2.2.

THEOREM 2.5 The solution to the semi-discrete problem,up, and the finite-element approximation,
uhp, defined in Section2.3, satisfy

‖up − uhp‖a 6
√
βC2h‖D2up‖L2(D)⊗L2(Ω), (2.22)
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whereβ is defined in (2.6), ‖D2v‖L2(D)⊗L2(Ω) is defined by

‖D2v‖2L2(D)⊗L2(Ω)
=
∫

Ω
|v|2H2(D) ∀ v ∈ H2(D)⊗ L2(Ω) (2.23)

andC2 is a constant.

Proof. From Galerkin orthogonality, we have

‖up − uhp‖a 6 ‖up − v‖a ∀ v ∈ S⊗ T. (2.24)

Now, let ũp ∈ S⊗ T be the spatial interpolant ofup ∈ H1
0 (D) ⊗ T , i.e. if xj , j = 1, . . . , N, are the

nodes of the spatial triangulationT , thenũp(xj , ω) = up(xj , ω) ∀ω ∈ Ω. Then

‖up − uhp‖
2
a 6 ‖up − ũp‖

2
a 6 β

∫

Ω
|up − ũp|

2
H1(D). (2.25)

A standard interpolation result, as given in, e.g.Johnson(1987), tells us that

|up − ũp|H1(D) 6 C2h|up|H2(D) ∀ω ∈ Ω, (2.26)

whereC2 is only dependent on the spatial domain. Therefore,

‖up − uhp‖
2
a 6 βC2

2h2
∫

Ω
|up|

2
H2(D) = βC2

2h2‖D2up‖
2
L2(D)⊗L2(Ω)

, (2.27)

which proves the theorem. �

THEOREM 2.6 TheH2-regularity bound

‖D2up‖L2(D)⊗L2(Ω) 6 C3‖ f ‖L2(D)⊗L2(Ω) (2.28)

holds, whereC3 is a constant.

Proof. From elliptic regularity, we have

|up|H2(D) 6 C3‖ f ‖L2(D) ∀ω ∈ Ω, (2.29)

whereC3 is dependent on the spatial domain andβ. Squaring and integrating overΩ give the desired
result. �

3. Multigrid

In this section, we give a two-grid correction scheme for solving the system of equations given in
Section2.4. This scheme varies the mesh parameter from grid to grid, i.e. there is a coarse grid and a fine
grid, while the polynomial chaos order,p, is held constant. Thereby, the scheme resembles that which
would be applied to the regular deterministic problem. It is known that such a scheme when applied
to the deterministic problem will converge at a rate independent of the value of the mesh parameter,h.
We show that this is also the case for the stochastic problem. Moreover, the convergence rate for the
stochastic problem will also be independent of the parametersm andp. To show this, we follow a regular
multigrid analysis, as given in, e.g.Braess(2001) or Elmanet al. (2005), and show that a smoothing
property and an approximation property hold. Once the convergence rate of the two-grid scheme has
been shown to be independent of the discretization parameters, then inductive arguments can be used
to show that multigrid algorithms, derived from applying the two-grid scheme recursively, also have a
convergence rate independent of the discretization parameters.
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3.1 Stationary iteration

Central to the idea of multigrid is the understanding that certain stationary iterations when applied to
particular matrix problems tend to ‘smooth’ the associated error. Given the problemAu = f, the matrix
splitting A = Q− Z inspires the stationary iteration

u(k+1) = Q−1Zu(k) + Q−1f (3.1)

= Q−1(Q− A)u(k) + Q−1f

= (I − Q−1A)u(k) + Q−1f.

The matrixI − Q−1A is the iteration matrix of the method and in the context of multigrid is called the
‘smoother’.

3.2 Two-grid correction scheme

Let T ⊂ L2(Ω) andS2h ⊂ Sh ⊂ H1
0 (D) be as defined in Section2.3. Then definingV2h = S2h ⊗ T

andVh = Sh⊗T , we haveV2h ⊂ Vh ⊂ H1
0 (D)⊗ L2(Ω). Finite-element formulations inVh andV2h

give rise to matrix equations which we represent asAu = f and Āū = f̄, respectively.
We now define a prolongation operatorI h

2h: V2h → Vh via natural inclusion, i.e. forv2h ∈ V2h,
I h
2hv2h = v2h. To see howI h

2h can be represented, we note that any basis functionφ2h
j of S2h can be

expanded in the basis functions ofSh, viz.,

φ2h
j =

Nh∑

i=1

pi j φ
h
i , j = 1, . . . , N2h. (3.2)

We define a matrixP using the coefficients above, i.e. [P]i j = pi j . Now we have, forv2h ∈ V2h,

v2h =
N2h∑

j=1

M∑

k=1

v2h
jkφ

2h
j ψk =

N2h∑

j=1

M∑

k=1

v2h
jk

Nh∑

i=1

pi j φ
h
i ψk

=
Nh∑

i=1

M∑

k=1




N2h∑

j=1

pi j v
2h
jk



φh
i ψk =

Nh∑

i=1

M∑

k=1

[ Pv2h
k ]iφ

h
i ψk. (3.3)

As v2h ∈ Vh, we also have the expansion

v2h =
Nh∑

i=1

M∑

k=1

vh
ikφ

h
i ψk. (3.4)

Comparing (3.3) and (3.4), we see that [Pv2h
k ]i = vh

ik or Pv2h
k = vh

k . From this, it follows that ifv2h is
the coefficient vector ofv2h in V2h, then(I ⊗ P)v2h is the coefficient vector ofv2h in Vh. (Here I is
an M × M identity matrix.) We therefore callI ⊗ P the prolongation matrix and introduce the notation
P = I ⊗ P.

We next define a restriction operatorI 2h
h : Vh → V2h such that the corresponding restriction

matrixR satisfiesR = PT (or equivalentlyR = I ⊗ R, whereR = PT). That is to say that if
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I 2h
h mapsvh ∈ V2h to v2h ∈ V2h andvh andv2h are the respective coefficient vectors of these func-

tions, thenv2h = Rvh =PTvh. With the prolongation and restriction operators related in this way, we
have the desirable relationshipsf̄ = Rf and Ā = RAP.

Using these definitions, we have the following algorithm for a two-grid iterative correction scheme:

choose initial guessu
for i = 0, 1, . . .

for j = 1: k
u← (I − Q−1A)u+ Q−1f

end
r̄ = R(f − Au)
solve Āē= r̄
u← u+Pē

end

The success of this algorithm necessarily depends on how well the smoother works and how well the
functions are passed between the coarse and the fine grids.

3.3 Convergence of two-grid correction scheme

We wish to establish that the two-grid algorithm given in Section3.2converges and that the convergence
rate is independent ofh, m and p. That the scheme converges can be shown to be true provided that
the ‘smoothing property’ and the ‘approximation property’ are satisfied, as is shown in the following
theorem.

THEOREM 3.1 Provided that the smoothing property,

‖A(I − Q−1A)ky‖2 6 η(k)‖y‖A ∀ y ∈ RM Nh, (3.5)

with η(k)→ 0 ask→∞, and the approximation property,

‖(A−1−P Ā−1R)y‖A 6 C4‖y‖2 ∀ y ∈ RM Nh, (3.6)

whereC4 is a constant, are satisfied, then, provided thatk is sufficiently large, the two-grid algorithm
given in Section3.2converges.

Proof. It can be shown that the error associated with the two-grid algorithm obeys the recursive
relationship

e(i+1) = (A−1−P Ā−1R)A(I − Q−1A)ke(i ). (3.7)

Hence,

‖e(i+1)‖A = ‖(A
−1−P Ā−1R)A(I − Q−1A)ke(i )‖A

6 C4‖A(I − Q−1A)ke(i )‖2 6 C4η(k)‖e(i )‖A. (3.8)

Sinceη(k)→ 0 ask→∞, there exists some minimal number of smoothing steps such thatC4η(k)< 1.
�

That the smoothing property and approximation hold and thatη(k) andC4 are independent ofh, m
and p are discussed in Sections3.4and3.5.
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3.4 Smoothing property

The proof that the smoothing property holds is dependent on the choice of smoother, i.e. the choice
of Q. For the case ofQ = θ I , θ ∈ R, whose choice corresponds to Richardson’s iterative method, the
proof follows that given inBraess(2001) andElmanet al. (2005) where the damped Jacobi iteration
is applied to the deterministic diffusion problem andη(k) is shown to be independent ofh. Moreover,
it can be shown, though we omit the details, thatθ can be chosen such thatη(k) is also independent
of m and p.

3.5 Approximation property

We here wish to show that the approximation property given in (3.6) is satisfied.

THEOREM 3.2 For the problem under consideration, the approximation property given in Theorem3.1
holds.

Proof. Giveny ∈ RM Nh , we can find somef ∈ Sh ⊗ T such thaty = f. Let uhp andu2h,p be the fine-
and coarse-grid solutions, respectively, with coefficient vectorsu = A−1f and ū = Ā−1f̄ = Ā−1Rf.
Then, we have

‖(A−1−P Ā−1R)y‖2A = ‖u−Pū‖2A = (u−Pū, u−Pū)A

= a(uhp− I h
2hu2h,p, uhp− I h

2hu2h,p)

= a(uhp− u2h,p, uhp− u2h,p) = ‖uhp− u2h,p‖
2
a. (3.9)

Now introducing the solution of the semi-discrete problem,up, defined in Section2.6, and applying
Theorems2.5and2.6give

‖(A−1−P Ā−1R)y‖A 6 ‖up − uhp‖a + ‖up − u2h,p‖a

6
√
βC2h‖D2up‖L2(D)⊗L2(Ω) + 2

√
βC2h‖D2up‖L2(D)⊗L2(Ω)

6 3
√
βC2C3h‖ f ‖L2(D)⊗L2(Ω). (3.10)

Finally, applying Theorem2.4gives

‖(A−1−P Ā−1R)y‖A 6
3
√
βC2C3√

C1
‖f‖2 =

3
√
βC2C3√

C1
‖y‖2, (3.11)

which establishes the approximation property. �

3.6 Extension to multigrid

The two-grid correction scheme given in Section3.2 only contains pre-smoothing. In practice, post-
smoothing is often also applied, as in the numerical experiments given in Section4. We have neglected
post-smoothing in the preceding analytic argument in order to keep things a little simpler. It can be
shown, though we omit the details here, that the two-grid correction scheme with post-smoothing also
converges with a convergence rate independent ofh, m and p.
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Recursively applying the two-grid correction scheme gives rise to a multigrid scheme. A number of
variations are possible, see, e.g.Briggset al. (2000). That multigrid converges with a convergence rate
independent of the parametersh, m and p can be established by an inductive argument. This inductive
argument will be no different for the stochastic problem than for the analogous deterministic problem
and is discussed in, e.g.Braess(2001) andElmanet al. (2005).

4. Numerical experiments

We now perform some numerical experiments to provide practical support for the theoretical results
obtained in Section3. The model that we use follows that given inGhanem & Spanos(1991) and
Xiu & Karniadakis(2002).

4.1 Model problem

We take the spatial domain to beD = (−1, 1)2 and consider the deterministic source functionf = 1. To
construct the diffusion coefficient, we consider a process with mean functionc0(x), constant varianceν
and covariance functionr (x, y). Such a process will have a Karhunen–Loéve expansion of the form

c(x, ω) = c0(x)+
∞∑

k=1

√
λkck(x)ξk(ω), (4.1)

where(ξk) is a sequence of uncorrelated and identically distributed random variables with varianceν
and mean zero and(λk) and(ck) can be computed by solving the eigenvalue equation

∫

D

r (x, y)

ν
ck(x)dx = λkck(y). (4.2)

If need be we make the further assumption that(ξk) is a sequence of independent random variables.
The sequence(λk) is ordered so as to be nonincreasing. Forr (x, y), we use the exponential covariance
function given by

r (x, y) = ν e−
1
b |x1−y1|−

1
b |x2−y2|, (4.3)

wherex = (x1, x2), y = (y1, y2) ∈ D. The constantb is called the correlation length and will affect the
decay of(λk), a larger value producing faster decay. We setb = 10. Analytic solutions to (4.2) for this
choice of covariance function are given inGhanem & Spanos(1991).

For computational purposes, we need a finite-term expansion, so we curtail (4.1) to obtain

c(x, ω) = c0(x)+
m∑

k=1

√
λkck(x)ξk(ω). (4.4)

From the modelling perspective, the replacement of the infinite expansion with the finite expansion is
justified provided that(λk) decays rapidly, which is discussed inGhanem & Spanos(1991).

We will consider two cases for the distributions of the random variablesξk. In Section4.2, we take
ξk to be uniformly distributed on(−1, 1) with c0(x) = 10 andν = 1/3. In Section4.3, we takeξk to be
normally distributed withc0(x) = 1 andν = 0.01.
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4.2 Multigrid for diffusion with uniform distributions

We now letξk to be uniformly distributed on(−1, 1). Therefore,Ω = (−1, 1)m and dP = dω/2m. We
also setν = 1/3 andc0(x) = 10. Applying the generalized polynomial chaos method as described in
Section2.3, the basis ofT will be the set ofm-dimensional Legendre polynomials of degreep or less.

For the triangulation ofD, we will use a uniform mesh consisting of an underlying grid ofn × n
squares each of which is further subdivided into two equal triangles. A full V-cycle is used with a 2× 2
coarsest mesh. For the smoother, we use the damped Jacobi method with the damping parameter set
to 2/3. Three pre-smoothing and three post-smoothing iterates are carried out. The iterations stop when
the relative residual reaches a tolerance of 10−6. Table1 shows the number of iterations required for
convergence for varying values ofm, n andp. The results clearly support the theoretical conclusion that
the conversion rate of the multigrid algorithm is independent ofh, m and p.

4.3 Multigrid for diffusion with normal distributions

We now letξk to be normally distributed with zero mean and varianceν. Now, we haveΩ = Rm

and dP = e−ω
2/(2ν)/(2πν)m/2 dω. We takec0(x) = 1. Applying the generalized polynomial chaos

method as described in Section2.3, the basis ofT will be the set ofm-dimensional generalized Hermite
polynomials of degreep or less.

Note that the diffusion coefficient as defined in Section4.1 will now fail to satisfy condition (2.6)
no matter what the choice ofν. However, we have reason to believe that the theory still applies. We give

TABLE 1 Number of iterations required for multigrid to converge for diffusion defined via
uniform distributions

n = 4 m= 1 m= 2 m= 3 m= 4

p = 1 6 6 6 6
p = 2 6 6 6 6
p = 3 6 6 6 6
p = 4 6 6 6 6

n = 8 m= 1 m= 2 m= 3 m= 4

p = 1 7 7 7 7
p = 2 7 7 7 7
p = 3 7 7 7 7
p = 4 7 7 7 7

n = 16 m= 1 m= 2 m= 3 m= 4

p = 1 7 7 7 7
p = 2 7 7 7 7
p = 3 7 7 7 7
p = 4 7 7 7 7

n = 32 m= 1 m= 2 m= 3 m= 4

p = 1 7 7 7 7
p = 2 7 7 7 7
p = 3 7 7 7 7
p = 4 7 7 7 7
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TABLE 2 Number of iterations required for multigrid to converge for diffusion defined
via normal distributions

n = 4 m= 1 m= 2 m= 3 m= 4

p = 1 6 6 6 6
p = 2 7 7 7 7
p = 3 7 7 7 7
p = 4 7 7 7 7

n = 8 m= 1 m= 2 m= 3 m= 4

p = 1 8 8 8 8
p = 2 8 8 8 8
p = 3 9 9 9 9
p = 4 10 10 10 10

n = 16 m= 1 m= 2 m= 3 m= 4

p = 1 8 8 8 8
p = 2 8 8 8 8
p = 3 9 9 9 9
p = 4 9 10 10 10

n = 32 m= 1 m= 2 m= 3 m= 4

p = 1 7 7 8 8
p = 2 8 8 8 8
p = 3 8 8 9 9
p = 4 9 9 9 9

here only a heuristic argument. Given a sufficiently small variance, the probability ofc being outside two
positive bounds becomes negligibly small. That is to say that if the normal distributions were replaced
by similar distributions that looked like the normal distributions with their tails cut off so as to ensure
thatc satisfies (2.6), then the difference would not be noticed computationally. We emphasize that we
have not pursued this reasoning analytically. We have found that sufficiently small variance results in
positive definite systems that yield sensible results. We takeν = 0.01.

For the triangulation ofD, we will use a uniform mesh consisting of an underlying grid ofn × n
squares each of which is further subdivided into two equal triangles. A full V-cycle is used with a 2× 2
coarsest mesh. For the smoother, we use the damped Jacobi method with the damping parameter set to
2/3. Three pre-smoothing and three post-smoothing iterates are carried out. The iterations stop when
the relative residual reaches a tolerance of 10−6. Table2 shows the number of iterations required for
convergence for varying values ofm, n and p. The results support the theoretical conclusion that the
conversion rate of the multigrid algorithm is independent ofh, m and p.
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