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1. INTRODUCTION

This article describes the Incompressible Flow Iterative Solution Software (IFISS)
package, a collection of over 290 matlab functions and m-files organised as a
matlab toolbox. The toolbox can be used to compute numerical solutions of par-
tial differential equations (PDEs) that are used to model steady incompressible
fluid flow. It includes algorithms for discretization by finite element methods,
fast iterative solution of the algebraic systems that arise from discretization,
and a posteriori error analysis of the computed discrete solutions. The package
was produced in conjunction with the monograph Finite Elements and Fast Iter-
ative Solvers by Elman et al. [2005b], and it was used to perform the computa-
tional experiments described therein. It is structured as a stand-alone package
for studying discretisation algorithms for PDEs and for exploring and develop-
ing algorithms in numerical linear and nonlinear algebra for solving the asso-
ciated discrete systems. It can also be used as a pedagogical tool for studying
these issues, or more elementary ones such as the properties of Krylov subspace
iterative methods.

Four PDEs are treated: the Poisson equation, steady-state versions of the
convection-diffusion equation, Stokes equations, and Navier-Stokes equations.
The first two equations are ubiquitous in scientific computing, see for example
Ockendon et al. [1999], Miller et al. [1995], Morton [1996] or Roos et al. [1996].
The latter two PDEs constitute the basis for computational modelling of the
flow of an incompressible Newtonian fluid.

The first main feature of the package concerns problem specification and
finite element discretization. For each of the equations listed, IFISS offers a choice
of two-dimensional domains on which the problem can be posed, along with
boundary conditions and other aspects of the problem, and a choice of finite
element discretizations on a quadrilateral element mesh. The package allows
the study of

—accuracy of finite element solutions,
—different choices of elements,
—a posteriori error analysis.

In addition, special features associated with individual problems can be ex-
plored. These include the effects of boundary layers on solution quality for the
convection-diffusion equation, and the effects of discrete inf-sup stability on
accuracy for the Stokes and Navier-Stokes equations.

The second main feature of the package concerns iterative solution of the
discrete algebraic systems, with emphasis on preconditioned Krylov subspace
methods for linear systems of equations. The Krylov subspace methods are cho-
sen to match each problem. For example, the discrete Poisson equation, which
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has a symmetric positive definite coefficient matrix, can be treated by the con-
jugate gradient method (CG) [Hestenes and Stiefel 1952] whereas the discrete
convection-diffusion and Navier-Stokes equations require a method such as
the generalized minimum residual method (GMRES) [Saad and Schultz 1986],
which is designed for nonsymmetric systems (see §3.1 for details). The key for
fast solution lies in the choice of effective preconditioning strategies. The pack-
age offers a range of options, including algebraic methods such as incomplete
LU factorizations, as well as more sophisticated and state-of-the-art multigrid
methods designed to take advantage of the structure of the discrete linearized
Navier-Stokes equations. In addition, there is a choice of iterative strategies, Pi-
card iteration or Newton’s method, for solving the nonlinear algebraic systems
arising from the latter problem.

A unique feature of the IFISS package is its comprehensive nature, where for
each problem it addresses, it enables the study of both discretization and iter-
ative solution algorithms as well as the interaction between the two and the
resulting effect on solution cost. It is organized in a modular fashion, with sep-
arate program units (typically matlab functions) for individual tasks such as
discretization, error analysis, iterative solution, and other aspects such as prob-
lem definition and visualization tools grouped in separate subdirectories. The
package provides a convenient starting point for research projects that require
the construction of new problem classes, discretizations or solution algorithms.
A detailed description of how new problems can be incorporated into IFISS is
given in Elman et al. [2005b].

The remainder of the article is organized as follows. Section 2 identifies the
PDEs treated, describes the finite element methods used to approximate them,
and outlines the strategies used for a posteriori error estimation. Section 3
describes the iterative solution algorithms provided for the linear systems that
arise for each of the benchmark problems. Finally, Section 4 describes some of
the design features of the package.

2. APPROXIMATION

A key feature of the IFISS package is the facility to construct various finite el-
ement solutions for a range of PDE problems and to carry out a posteriori
error analysis of the computed discrete solutions. The theory of finite element
methods is well established (see for example Braess [1997]; Brenner and Scott
[1994]; Ciarlet [1978]; Elman et al. [2005b]; Gunzburger [1989]; and Johnson
[1987]). An outline of the specific approximation methods implemented in IFISS

is presented below for each PDE in turn.

2.1 The Poisson Equation

The problem considered here is

−∇2u = f in �, (1)

u = gD on ∂�D,
∂u
∂n

= 0 on ∂�N ,
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where � is a two-dimensional domain with boundary ∂� consisting of two
nonoverlapping segments ∂�D ∪∂�N . The function f is a given source (or load)
function and gD is given Dirichlet boundary data. In addition, �n is the outward-
pointing normal to the boundary and ∂u

∂n denotes the directional derivative in
the normal direction. The weak formulation of the PDE problem has a solution
u in the Sobolev space H1(�) that satisfies the Dirichlet boundary condition
together with the condition that

(∇u, ∇v) = ( f , v) ∀ v ∈ V := {v ∈ H1(�)|v = 0 on ∂�D},
where (·, ·) denotes the L2 inner product on �. Given some finite-dimensional
subspace Vh ⊂ V , the associated discrete solution uh satisfies uh = gD on ∂�D

and

(∇uh, ∇vh) = ( fh, vh) ∀ vh ∈ Vh, (2)

where fh is the L2(�) orthogonal projection of f into Vh. For a standard finite
element grid with nu interior nodes and n∂ Dirichlet boundary nodes, we choose
a set of basis functions φi, i = 1, . . . , nu for Vh, and look for an approximate
solution of the form

uh(x, y) =
nu∑

i=1

ui φi(x, y) +
nu+n∂∑

i=nu+1

ui φi(x, y), (3)

where the boundary coefficients ui, i = nu + 1, . . . , nu + n∂ are chosen to ensure
that

∑nu+n∂

i=nu+1 ui φi(x, y) interpolates the boundary data gD on ∂�D. This leads
to an nu × nu system of linear equations

Au = f, (4)

where the entries of the solution u are the unknown coefficients ui in (3).
Two standard finite element approximation methods are implemented in

IFISS:

—Bilinear quadrilateral Q1: The isoparametrically mapped square element
with bilinear basis functions of the form (ax + b)(c y + d ). There are four
unknowns per element.

—Biquadratic quadrilateral Q2: The bilinearly mapped square element with
biquadratic basis functions of the form (ax2 + bx + c)(d y2 + e y + f ). There
are nine unknowns per element, corresponding to the terms 1, x, y , x2, x y ,
y2, x y2, x2 y and x2 y2.

These finite element approximations typically have a discontinuous normal
derivative across interelement boundaries. Consequently, it is convenient to
define the flux jump across edge E adjoining elements T and S as[[

∂v
∂n

]]
:= (∇v|T − ∇v|S) · �nE,T = (∇v|S − ∇v|T ) · �nE,S , (5)

where �nE,T is the outward normal with respect to E and ∇uh · �nE,T is the
discrete (outward-pointing) normal flux. An a posteriori estimate of the dis-
cretization error e = u − uh may be computed from the equidistributed interior
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edge flux jump RE := 1
2 [[ ∂uh

∂n ]], together with the interior element residual

RT := { f + ∇2uh}|T .

This is a consequence of the fact that the error satisfies

∑
T∈Th

(∇e, ∇v)T =
∑
T∈Th

[
(RT , v)T −

∑
E∈E(T )

〈RE , v〉E

]
(6)

for all v ∈ V , where E(T ) is the set of edges associated with element T ; 〈·, ·〉E

denotes the L2 inner product on E; and Th is the set of all elements. See Elman
et al. [2005b, p. 50] for further details.

The IFISS software computes an a posteriori error estimate whenever Q1 ap-
proximation is used. This is particularly straightforward to implement, in that
RE is piecewise linear and RT = f |T can be approximated by a piecewise con-
stant function R0

T by evaluating f at the element centroid. Consider the higher
order correction space

QT = QT ⊕ BT ,

so that QT is the space spanned by biquadratic edge bubbles ψE , and BT is the
space spanned by interior biquadratic bubbles φT . The energy norm of the error
is estimated by solving a 5 × 5 local Poisson problem posed over each element
of the grid1:

(∇eT , ∇v)T = (
R0

T , v
)

T −
∑

E∈E(T )

〈RE , v〉E ∀v ∈ QT .

Once eT has been computed, the local, elementwise, error estimator is given by
ηT = ‖∇eT ‖T , and the global error estimator is given by

η :=
( ∑

T∈Th

η2
T

)1/2

≈ ‖∇(u − uh)‖.

This approach for error estimation was originally introduced in Bank and
Weiser [1985]. It belongs to a class of methods referred to as implicit estimators,
see Ainsworth and Oden [2000]. An analysis of its effectiveness as an estimator
can be found in Elman et al. [2005b].

2.2 The Convection-Diffusion Equation

The equation

−ε∇2u + �w · ∇u = 0 in �, (7)

(with ε > 0) arises in numerous models of flows and other physical phenomena.
In a typical application, the unknown function u represents the concentration
of a pollutant being transported (or ‘convected’) along a stream moving at ve-
locity, �w and also subject to diffusive effects. The convection-diffusion equation

1The local problem definition needs to be slightly modified for those elements having one or more
edges on the Dirichlet boundary ∂�D .
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considered in IFISS is (7) posed on a two-dimensional domain �, together with
the boundary conditions

u = gD on ∂�D,
∂u
∂n

= 0 on ∂�N . (8)

We will refer to the velocity vector �w as the wind.
It is well known that applying the Galerkin finite element method to (7) and

(8) will often result in a discrete solution that exhibits nonphysical oscillations.
This unwanted effect is minimized in IFISS through use of the streamline dif-
fusion method of Hughes and Brooks [1979]: the discrete problem is stabilized
by adding diffusion in the streamline direction. The resulting discrete formu-
lation, which is the analogue of (2) for the convection-diffusion equation with
discrete stabilization, is

ε(∇uh, ∇vh) + ( �w · ∇uh, vh) +
∑

k

δk( �w · ∇uh, �w · ∇vh) k = 0 ∀vh ∈ Vh, (9)

where the sum is taken over all elements k in the grid.
To implement (9), we need a way of choosing locally defined parameters δk .

One way of doing this is suggested by the analysis in Fischer et al. [1999] and
Elman and Ramage [2002]. Specifically, we choose

δk =
⎧⎨
⎩

hk
2| �wk |

(
1 − 1

Pk
h

)
if Pk

h > 1

0 if Pk
h ≤ 1 .

(10)

Here, | �wk| is the Euclidean norm of the wind at the element centroid, hk is
a measure of the element length in the direction of the wind,2 and Pk

h :=
| �wk|hk/(2ε) is the so-called element Peclet number.

For all convection-diffusion problems solved in IFISS, the discretization is
done using Q1 approximation on either uniform or stretched grids with sta-
bilization parameter (10). There is also scope for a user-defined stabilization
parameter so that the effect of adding streamline diffusion can be studied in
detail. Further information specific to finite element modelling of convection-
diffusion problems can be found in Elman et al. [2005b], Gresho and Sani [1998],
Morton [1996], Quarteroni and Valli [1997] and Roos et al. [1996]. The a posteri-
ori error estimation strategy built into the IFISS software is a natural extension
of that used for the Poisson equation. Given the discrete solution uh, the error
e = u − uh ∈ V is estimated locally by solving the 5 × 5 local Poisson problem

ε(∇eT , ∇v)T = (
R0

T , v
)

T − ε
∑

E∈E(T )

〈RE , v〉E ∀v ∈ QT

posed over each element of the grid, where the right hand side data is given by
the equidistributed interior edge flux jumps RE := 1

2 [[ ∂uh
∂n ]], together with the

piecewise constant interior residuals

R0
T := { f − �w · ∇uh}|T .

2On a rectangle with sides of length hx , hy in which the wind forms an angle θ = arctan(|wy/wx |)
at the centroid, hk is given by min(hx/ cos θ , hy/ sin θ ).
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In this case, the local, elementwise, error estimator is given by ηT = ‖∇eT ‖T ,
and the global error estimator is again given by

η :=
( ∑

T∈Th

η2
T

)1/2

≈ ∥∥∇(u − uh)
∥∥ .

This approach was originally suggested by Kay and Silvester [2001] and is a
simplified version of the implicit estimator introduced and analyzed in Verfürth
[1998].

2.3 The Stokes Equations

The Stokes equations, given by

−∇2 �u + ∇ p = �0, (11)
∇ · �u = 0, (12)

together with boundary conditions (analogous to (8))

�u = �w on ∂�D,
∂ �u
∂n

− �np = �0 on ∂�N , (13)

represent a fundamental model of viscous flow. The variable �u is a vector-
valued function representing the velocity of the fluid, and the scalar function
p represents the pressure. The equation (11) represents conservation of the
momentum of the fluid (the momentum equation), and equation (12) enforces
conservation of mass (the incompressibility constraint). The crucial modelling
assumption is that the flow is ‘low speed,’ so that convection effects can be
neglected.

The formal aspects of finite element discretization of the Stokes equations
are the same as for the Poisson equation. However, two different types of test
function are needed in this case, namely vector-valued velocity functions �vh =
[vx , vy ]T and scalar pressure functions qh. By extending this notation to the
discrete case in an obvious way, the weak formulation can be written as

(∇ �uh, ∇ �vh) − (ph, ∇ · �vh) = 0 ∀�vh ∈ Xh,
(qh, ∇ · �uh) = 0 ∀qh ∈ Mh,

where Xh and Mh are appropriate finite dimensional subspaces of H1(�) and
L2(�), respectively. The fact that the velocity and pressure spaces are approxi-
mated independently leads to the nomenclature, mixed approximation. Imple-
mentation again entails defining appropriate bases for the velocity and pressure
finite element spaces and constructing the associated finite element coefficient
matrix (see Elman et al. [2005b, section 5.3]). In matrix form, the resulting
linear system is [

A BT

B O

] [
u
p

]
=

[
f
g

]
. (14)

This is a system of dimension nu + np, where nu and np are the numbers of
velocity and pressure basis functions, respectively. The matrix A is a 2×2 block
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diagonal matrix with scalar Laplacian matrices defining the diagonal blocks,
and the matrix B is an np × nu rectangular matrix.

If (14) is to properly represent a continuous Stokes problem, then the finite
dimensional approximation spaces need to be chosen carefully. The theory of
how to choose basis functions appropriately is dealt with by the inf-sup stability
condition. We omit a discussion of this analysis; full details can be found in
Brezzi and Fortin [1991], and an accessible discussion is available in Elman
et al. [2005b, Section 5.3.1]. Two inf-sup stable mixed methods are implemented
in IFISS:

—Q2–Q1. The so-called Taylor-Hood method uses Q2 approximation for velocity
and continuous Q1 approximation for pressure.

—Q2–P−1. This uses Q2 approximation for velocity together with a discontin-
uous linear pressure. Specifically, the P−1 element has a central node with
three associated degrees of freedom, the pressure at the centroid, and its x
and y derivatives.

It is an unfortunate fact of life that the simplest mixed approximations,
such as the case when velocities and pressures are defined on the same set
of grid points, are not inf-sup stable. In such cases however, it is possible to
use stabilization techniques to circumvent the inf-sup condition. Details can
be found in Elman et al. [2005b, section 5.3.2]. In practice, stabilisation of the
lowest order methods leads to a Stokes system of the form[

A BT

B −βC

] [
u
p

]
=

[
f
g

]
(15)

for some np × np symmetric positive semidefinite matrix C and a stabilization
parameter β > 0. Two stabilized element pairs are implemented in IFISS:

—Q1–P0. This is the most famous example of an unstable element pair, using
bilinear approximation for velocity and a constant approximation for the
pressure.

—Q1–Q1. Here the velocity and pressure degrees of freedom are defined at the
same set of grid points. This is very appealing from the point of view of ease
of programming and computational efficiency.

Stokes flow test problems can be solved with IFISS using any of the four dis-
cretizations listed above, with stabilization applied where necessary. An opti-
mal value of the stabilization parameter is determined automatically, although
the parameter value can also be changed by a user who wishes to investigate
the effects of stabilization on solution accuracy.

An efficient strategy for a posteriori estimation for the Stokes flow problem
can be realized by building on the Poisson error estimation strategy and solving
an analogous local problem for each velocity component. Note that the velocity
approximation typically has a discontinuous normal derivative across interele-
ment boundaries, so it is natural to generalize the flux jump (5) to give a stress
jump across edge E adjoining elements T and S:

[[∇ �uh − ph
�I ]] := ((∇ �uh − ph

�I )|T − (∇ �uh − ph
�I )|S) �nE,T .
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If a C0 pressure approximation is used, then the jump in ph
�I is zero. Exactly as

for the characterization (6) for the Poisson problem, the mixed approximation
error functions �e := �u − �uh ∈ X and ε := p − ph ∈ M can be shown to satisfy a
set of localized Stokes problems:

∑
T∈Th

{
(∇�e, ∇ �v)T − (ε, ∇ · �v)T

} =
∑
T∈Th

[
( �RT , �v)T −

∑
E∈E(T )

〈 �RE , �v〉E

]

−
∑
T∈Th

(q, ∇ · �e)T =
∑
T∈Th

(RT , q)T

for all (�v, q) ∈ X × M . Here, the equidistributed stress jump is �RE :=
1
2 [[∇ �uh − ph

�I ]], and the elementwise interior residuals are given by �RT :=
{∇2 �uh − ∇ ph}|T and RT := {∇ · �uh}|T , respectively.

The IFISS software computes an estimate of the approximation error when-
ever Q1 velocity approximation is used (that is, if either stabililized Q1–P0 or
stabilized Q1–Q1 mixed approximation is used). Using the space �QT := (QT )2,
the velocity errors are given by solving a pair of 5 × 5 Poisson problems. Specif-
ically, �eT ∈ �QT is computed satisfying

(∇�eT , ∇ �v)T = ( �RT , �v)T −
∑

E∈E(T )

〈 �RE , �v〉E ∀�v ∈ �QT , (16)

for every element in the grid. The local error estimator is given by the combi-
nation of the ‘energy norm’ of the velocity error and the L2 norm of the element
divergence error, that is,

η2
T := ‖∇�eT ‖2

T + ‖RT ‖2
T . (17)

The global error estimator is η :=
(∑

T∈Th
η2

T

)1/2
.

This method of error estimation was introduced by Kay and Silvester [1999],
and is a modification of an approach devised by Ainsworth and Oden [1997].
For an assessment of its effectiveness, see Elman et al. [2005b, section 5.4.2].

2.4 The Navier-Stokes Equations

The steady-state Navier-Stokes equations can be written as

−ν∇2 �u + �u · ∇ �u + ∇ p = �f , (18)
∇ · �u = 0,

where ν > 0 is a given constant called the kinematic viscosity. Associated bound-
ary conditions are given by

�u = �w on ∂�D, ν
∂ �u
∂n

− �np = �0 on ∂�N . (19)

This system is the basis for computational modelling of the flow of an incom-
pressible Newtonian fluid such as air or water. The presence of the nonlinear
convection term �u · ∇ �u means that boundary value problems associated with
the Navier-Stokes equations can have more than one solution.
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The discrete formulation of the Navier-Stokes flow problem is determined
almost exactly as in the previous section, the main difference being the pres-
ence of the convection term. An important point is that inf-sup stability is a
necessary condition for the mixed approximation to be effective in the absence
of stabilization.

Mixed finite element discretization of the weak formulation of the Navier-
Stokes equations gives rise to a nonlinear system of algebraic equations.
Two classical iterative procedures for solving this system are implemented in
IFISS:

—Newton iteration. With this approach, if the initial velocity estimate is ‘suffi-
ciently close’ to a branch of nonsingular solutions, then quadratic convergence
to a uniquely defined fixed point is guaranteed for large enough values of ν.
See Girault and Raviart [1986, pp. 362–366] for details.

—Picard iteration. This corresponds to a simple fixed point iteration strategy,
with the convection coefficient evaluated at the current velocity. Although
the rate of convergence of Picard iteration is only linear in general, the ball
of convergence is often much bigger than that of Newton iteration.

Either strategy can be used in IFISS. The default option is a hybrid method that
performs a small user-specified number of Picard steps (the default is 2) with
the aim of generating a good starting value for Newton’s method, followed by
Newton iteration.

At each step of the nonlinear iteration, a system of equations must be solved.
The coefficient matrix has the form[

F BT

B − 1
ν
C

] [
u
p

]
=

[
f
g

]
, (20)

where the structure of F depends on the nonlinear solution algorithm. For
Picard iteration, F is a block diagonal matrix in which each of the diagonal
blocks is a discrete convection-diffusion operator. For Newton iteration, F has
a more complex structure; the details can be found in Elman et al. [2005b,
section 7.3]. The matrix C is the Stokes stabilization matrix in the case of Q1–
P0 or Q1–Q1 mixed approximation, and is the zero matrix otherwise.

An efficient a posteriori estimation strategy for the Navier-Stokes equations
can be realized by combining the convection-diffusion estimator with the Stokes
error estimation strategy, and solving a local Poisson problem for each compo-
nent of velocity. Further details are given in Elman et al. [2005b, section 7.4.2].

3. SOLVER FEATURES

The second feature of the IFISS code is its facility for exploring the performance
of iterative solvers and preconditioning techniques for the solution of the finite
element linear systems described in the previous section. Details of standard
iterative methods can be found in many textbooks (see for example Axelsson
[1994], Greenbaum [1997] or Saad [2003]) and so are not reproduced here.

ACM Transactions on Mathematical Software, Vol. 33, No. 2, Article 14, Publication date: June 2007.



Algorithm 866: IFISS, A Matlab Toolbox for Modelling Incompressible Flow • 11

3.1 Krylov Subspace Solvers

The iterative methods implemented in IFISS are all Krylov subspace methods.
The two methods available in IFISS for solving symmetric systems are

—The conjugate gradient method (CG) [Hestenes and Stiefel 1952]. This method
is applicable when the coefficient matrix A is symmetric positive definite. IFISS

uses the standard (preconditioned) matlab routine pcg.
—The minimum residual method (MINRES) [Paige and Saunders 1975]. This

is applicable to any symmetric system; in particular, MINRES is a robust
algorithm for symmetric indefinite coefficient matrices. The implementa-
tion in preconditioned form used in IFISS is the standard matlab routine
minres.

There are also two iterative methods for solving nonsymmetric systems:

—The generalized minimum residual method (GMRES) [Saad and Schultz 1986].
For nonsymmetric problems, this method represents the standard approach
for constructing iterates satisfying an optimality condition. The implemen-
tation of GMRES with right preconditioning used in IFISS is a modification of a
routine written by Kelley [1995].

—BICGSTAB(�) [Sleijpen and Fokkema 1993]. In contrast to GMRES this algorithm
does not satisfy an optimality condition but has fixed computational costs at
each step. The implementation used in IFISS has � = 2 and is a modification
of a routine written by Sleijpen.

The methods used in IFISS are tailored to the PDEs modelled, so not all of
the methods are available for every type of PDE problem. For the benchmark
problems described in Section 2, preconditioned versions of appropriate choices
of these Krylov subspace methods are available, as follows:

—The Poisson equation: CG or MINRES.
—The convection-diffusion equation: GMRES or BICGSTAB(�).
—The Stokes equations: MINRES.
—The Navier-Stokes equations: GMRES or BICGSTAB(�).

3.2 Preconditioners

Whatever Krylov subspace method is used, it is usually necessary to acceler-
ate convergence by applying preconditioning. The various preconditioners M
implemented in IFISS are described below.

When solving PDEs, the underlying physical problem plays an important
role in dictating the efficiency (or otherwise) of a particular preconditioning
strategy. The following preconditioners are available for the scalar (Poisson
and convection-diffusion) equations implemented in IFISS:

—Diagonal scaling. M is the diagonal matrix whose entries are those on the
main diagonal of the system coefficient matrix.

—Incomplete Cholesky and LU factorizations [Meijerink and van der Vorst
1977]. The preconditioner is the matrix M = LU , where L and U are the
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incomplete Cholesky (if A is symmetric) or LU (if A is nonsymmetric) factors
of A. The factors have no fill: the nonzero structure of L + U is the same as
that of the coefficient matrix.

—Geometric multigrid preconditioning (GMG). The IFISS code uses one multi-
grid V-cycle as a preconditioner, with direct approximation at the coarse grid
level, and bilinear interpolation and its transpose, as grid transfer opera-
tors. (See, for example, Briggs et al. [2000], Hackbusch [1985], or Wessel-
ing [1992] for definitions and properties of multigrid.) There is a choice
of smoothing operator: weighted Jacobi, ILU and point or line versions of
Gauss-Seidel. The number of pre- and post-smoothing steps is selected by
the user. For the convection-diffusion equation on a square domain, a ‘multi-
directional’ line Gauss-Seidel smoother is available to handle recirculating
flows.3

—Algebraic multigrid preconditioning (AMG). When gaining access to geomet-
ric data is difficult, purely algebraic multigrid processes can be employed
instead; see Briggs et al. [2000] or Trottenberg et al. [2001] for details. The
IFISS code provides an interface to the algebraic multigrid solver of the com-
mercial finite element code FEMLAB,4 which enables the use of AMG as a
preconditioner.

For the block systems arising from the Stokes (15) and Navier-Stokes (20) equa-
tions, several preconditioners specifically designed for these problems are avail-
able. All Stokes preconditioners in IFISS have the structure proposed by Wathen
and Silvester [1993] and Silvester and Wathen [1994], namely,

M =
[

P 0
0 T

]
. (21)

—Stokes ideal preconditioning. Here, P = A and T = Q p where A and Q p are
the velocity Laplace and pressure mass matrices, respectively.

—Stokes diagonal preconditioning P = diag(A) and T = diag(Q p).
—Stokes multigrid preconditioning. P is defined implicitly by the condition that

P−1 corresponds to one GMG V -cycle applied to the Laplacian component,
and T = diag(Q p).

The Navier-Stokes preconditioners implemented in IFISS are all of the form

M =
[

MF BT

0 −MS

]
(22)

where MF approximates the convection-diffusion operator F and MS approxi-
mates the Schur complement S = BF−1 BT + 1

ν
C.

—Pressure convection-diffusion preconditioning [Silvester et al. 2001; Kay et al.
2002]. Here, MS = Q̂ pF −1

p Ap, where Q̂ p = diag(Q p) is the diagonal of the
mass matrix on the pressure space, and Fp and Ap are discrete convection-
diffusion and Laplace operators, respectively, on the pressure space.

3GMG may also be applied as a stand-alone solver without Krylov subspace iteration.
4Available from http://www.comsol.com.
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—Least-squares commutator preconditioning [Elman 1999; Elman et al. 2006].
With this preconditioner, M is also of the form (22) but here, for stable
discretizations, the Schur complement matrix is approximated by

MS = (
BQ̂−1

v BT ) (
BQ̂−1

v FQ̂−1
v BT )−1(BQ̂−1

v BT )
,

where Q̂v is the diagonal of the velocity mass matrix. The analogue for sta-
bilized elements is discussed in Elman et al. [2006].

With both of these strategies, for MF , there is a choice of using ideal precon-
ditioning, with MF = F, or replacing MF with an operator defined by one step
of GMG or AMG iteration to approximate the action of F−1. Similarly, the ac-
tion of A−1

p (or (BQ̂−1
v BT )−1) required for M−1

S can be replaced by a multigrid
approximation.

4. DESIGN FEATURES

We now discuss some important aspects of the design and organization of the
IFISS package. More details can be found in the user manual [Elman et al. 2005a].

4.1 Model Problems

As stated in the introduction, IFISS focuses on four specific PDEs. Easy investi-
gation of approximation properties and behaviour of solvers for each of these is
facilitated via a set of built-in drivers that set up and solve four reference test
problems for each PDE. The test problems have been selected to illustrate the
interesting features of examples of each type of equation, and to allow users
to experiment with various aspects of the modelling and solution processes. A
full description of the reference problems can be found in Elman et al. [2005b].
Further details can be found in the user manual accompanying the software
[Elman et al. 2005a], along with a description of how the model problems can be
easily adapted to deal with new domains, PDE features or boundary conditions.

4.2 Modules and Directory Structure

The IFISS package groups the code required to define and solve each individual
PDE problem into modular components. In particular, specification of the dis-
crete version of each of the PDEs requires choices of domain, finite element,
and boundary conditions; each of these operations is defined in a set of self-
contained modules. For example, the choice of whether discretization is based
on linear or quadratic elements is independent of the choice of boundary con-
ditions in the problem. Moreover, once a problem has been posed, the choice of
iterative method to solve it also includes a set of independent modules defining
the preconditioning operators.

The IFISS directory is organized into subdirectories according to tasks per-
formed. The individual PDE reference problems each have their own directory:

—\ifiss\diffusion\ the Poisson equation,
—\ifiss\convection\ the convection-diffusion equation,
—\ifiss\stokes flow\ the Stokes equations,
—\ifiss\navier flow\ the Navier-Stokes equations.
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Within each of these directories, there is a subdirectory \test problems\ con-
taining all function files that define the boundary conditions and coefficients
associated with the reference PDE problems. There are also task-specific direc-
tories for other purposes:

—\ifiss\grids\ domain geometry and grid generation,
—\ifiss\graphs\ visualization tools,
—\ifiss\solvers\ iterative solution algorithms.

Two directories are used to store data accumulated during execution of the
program:

—\ifiss\datafiles\ finite element matrices or multigrid data
that can be reused,

—\ifiss\plotfiles\ repository for graphical displays.

All files are viewable using the matlab editor.

4.3 Implementation Issues

An effort has been made to implement the underlying mathematical ideas in
a manner that produces efficient matlab code while at the same time taking
advantage of matlab features that enable flexibility and clarity of code. We
highlight two examples of this philosophy below.

—Long inner loops (vectorization). In standard finite element implementa-
tions, the assembly of global stiffness matrices entails an outer loop over ele-
ments with local stiffness matrices constructed and accumulated into the global
matrix. A high level depiction of the conventional construction of the global ma-
trix A from 4 × 4 local matrices {Aloc(k,:,:)} defined on element k is

for k=1:#elements
for j=1:4

for i=1:4
A(P(k,i),P(k,j)) = A(P(k,i),P(k,j)) + Aloc(k,i,j)

end
end

end

Here P maps local to global indices, and the local matrices require construc-
tion via quadrature. The short inner loops (including those used for quadra-
ture) make this inefficient in matlab. To circumvent this, the IFISS imple-
mentation constructs a three-dimensional array of local stiffness matrices
Ae(#elements,4,4) using a loop of the form:

for j=1:4
for i=1:4

construct Ae(:,i,j)
end

end

The global matrix (of order n) is then assembled via
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for i=1:4
nrow=ev(:,i);
for j=1:4

ncol=ev(:,j);
A = A + sparse(nrow,ncol,Ae(:,i,j),n,n);

end
end

Here, for each local row and column index pair (i,j), the arrays nrow and ncol
delineate the row and column indices in Awhere the local matrix entries (one for
each element) are accumulated. The ‘inner loop’ in both of these constructions
is a vectorized computation performed on all elements and is very efficient in
matlab.

—Structures for preconditioned solvers. The portion of the package concerned
with iterative solvers is designed to facilitate experimentation with different
benchmark problems and preconditioning operators. This is done through the
use of matlab structures, by means of which, information about the problem
and preconditioners is passed to the Krylov subspace solvers. In particular,
the nonsymmetric solvers accept two parameters, afun par, which contains
all of the information associated with the coefficient matrix, and mfun par,
containing all information associated with the preconditioning operator. For
example, solution of the convection-diffusion equation by GMRES with geometric
multigrid preconditioning entails a function call of the form

[x it,flag,iter,resvec] = gmres r(afun par,mfun par,fsupg,params,x0);

The argument afun par is a structure that defines the coefficient matrix:

afun par = struct(’Afun’,’a cdt’,’A’,Asupg);

where a cdt is the name of the matlab function that performs a matrix-vector
product, and Asupg is the coefficient matrix. The argument mfun par defines the
preconditioning operator:

mfun par = struct( ’Mfun’,’m mg’,’mgdata’,mgdata,...
’smooth data’,smooth data, ’nc’,nc,...
’npre’,npre, ’npost’,npost, ’sweeps’,sweeps);

Here, m mg is the name of the matlab function that performs one GMG step,
which is used as a preconditioner; mgdata contains all hierarchical multigrid
data such as coarse grid and grid transfer operators; and smooth data contains
the multigrid smoothing operators. Note that mgdata and smooth data are struc-
tures themselves. The remaining arguments are other multigrid parameters,
such as the number of presmoothing and postsmoothing steps to perform. Using
this naming convention, we have found it easy to augment the package with
new preconditioning operators.5

5Systems with symmetric coefficient matrices arising from the diffusion and Stokes equations use
the built-in matlab pcg and minres functions. For these, we found it easier to pass the coefficient
matrices explicitly rather than with structures.
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4.4 Graphics and Visualization

For each model problem, graphical output includes depictions of

—the computational domain and finite element grid,
—contour and mesh plots of the computed solutions,
—contour and mesh plots of error estimates, and
—for iterative solution, plots of the behavior of the residual during the course

of the iteration.

4.5 Running Jobs in batchmode

The model problems available with the package can be generated interactively
by running one of the driver routines provided. Sometimes, however, it is more
convenient to do this without having interactive input from the user. To this
end, IFISS also provides a batchmode facility via which data may be input from
a preprepared file rather than directly from the terminal. The specific param-
eters that need to be input will of course vary from problem to problem, and
the input file must be prepared accordingly. Sample input files for each of the
model problems are provided; these can be easily modified by the user for a
particular run. The names of these input files must have the form “* batch.m”
where “*” begins with one of “P”, “CD”, “S” or “NS” for the Poisson, convection-
diffusion, Stokes or Navier-Stokes equations, respectively. For example, typing
the command

batchmode(’NS2’)

uses the file NS2 batch.m.
A similar batchmode facility is available for running the driver it solvewith-

out interactive input after a discrete system has been generated in batchmode.
Input files must have names of the form itsolve* batch.m, and a template is
provided within the software package.
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