
SIAM J. NUMER. ANAL.
Vol. 31, No. 6, pp. 1645-1661, December 1994

1994 Society for Industrial and Applied Mathematics
OO7
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Abstract. Variants of the Uzawa algorithm for solving symmetric indefinite linear systems are
developed and analyzed. Each step of this algorithm requires the solution of a symmetric positive-
definite system of linear equations. It is shown that if this computation is replaced by an approximate
solution produced by an arbitrary iterative method, then with relatively modest requirements on the
accuracy of the approximate solution, the resulting inexact Uzawa algorithm is convergent, with a
convergence rate close to that of the exact algorithm. In addition, it is shown that preconditioning
can be used to improve performance. The analysis is illustrated and supplemented using several
examples derived from mixed finite element discretization of the Stokes equations.
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1. Introduction. Consider the linear system of equations

(1) ( A BT u

where A is symmetric positive definite and C is symmetric positive semidefinite. Prob-
lems in this class arise frequently in the context of minimization of quadratic forms
subject to linear constraints; see, e.g., [13], [18], and [35]. In this paper, we develop
and analyze variants of the classical Uzawa algorithm for solving (1).

We briefly review this method here; see, e.g., [2], [13], and [16]
and [21] for a recent treatment for use with spectral methods. Starting with an initial
approximation P0 of p, the Uzawa algorithm constructs a sequence of approximations
u u and pa p as follows:

for k 0 unt+/-l convergence, do

B p(2)
Solve Auk+l f_ T

Compute pk+l p + a(BU+l Cpa)
enddo

Elimination of Uk+ from the construction of Pk+l gives the iteration

(3) pa+ pa + a(BA-lf (JA-ljT q- C)pk)

for the unknowns {Pk }. This is a fixed-parameter first-order Richardson iteration [28,
p. 141] applied to the system

(4) (BA-1BT + C)p BA-l f.
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Good choices of the scalar c are determined from this observation.
(3)-(4) imply that the errors satisfy

Equations

P Pk (I o(t3A-1BT + C))k(p Po).

Let (x, y) denote the Euclidean vector inner product, Ilxll the associated norm, and

IIXII2 the induced matrix norm. Since BA-1BT + C is symmetric, it follows that
p(I c(BA-1BT + C)) IlI c(BA-IBT + C)112, so that the error norm satisfies

Let ,1 denote the minimum eigenvalue of BA-113T -t- C, and A2 its maximum eigen-
value. The Uzawa algorithm is convergent provided p(I-c(BA-BT + C)) < 1, i.e.,
0 < c < 2//2. We will take p(I- c(BA-1BT + C)) as a measure of the effective-
ness of the algorithm, and refer to it as the convergence factor. With respect to this
measure, the optimal rate of convergence is achieved with the choice of a for which
the algebraically smallest and largest eigenvalues of I- c(BA-1BT + C) are equal in
absolute value. This gives

(6) o 2/(A1 + ,2),

and ’for this choice, we have

(7) p(I o(t3A-1BT + C)) (t 1)/( + 1),

where n ,,2/,, is the condition number of BA-BT + C.
Each step of the Uzawa algorithm requires the solution of a linear system with

coefficient matrix A. Our primary concern in this paper is to show that if this system
is not solved exactly, then the resulting "inexact" Uzawa algorithm can also be made
to be convergent. In particular, we derive bounds on the rate of convergence that
show that with relatively modest requirements on the accuracy of the approximate
solution, the rate of convergence of the inexact algorithm is close to that of the exact
version. Thus, if the linear solve is expensive, an approximate solution obtained by an

"inner iteration" can be used without significant degradation of the outer iteration.
The analysis is independent of the method used for the inner iteration. In addition, we
show that preconditioning can be used with the inexact Uzawa method, and essentially
the same convergence analysis applies.

The use of an approximate "inner" system solution has been considered in the
context of preconditioners for iterative methods for linear systems (see [17] and refer-
ences therein) and to develop inexact Newton methods for nonlinear systems [11]. The
results presented here answer a long-standing question concerning the possibility of
using inexact solutions for the Uzawa algorithm. For example, for solving the discrete
Stokes equations (see 4), Fortin and Glowinski [13, pp. 66ff] empirically document
the effect of using a fixed number of successive overrelaxation (SOR) steps for the
inner solve, observing that a relatively small number (on the order of 10) steps is

needed to reproduce the convergence rate of the exact algorithm. Inexact solutions
to the Poisson equation have also been incorporated into other solution algorithms
for the Stokes equations. Our approach is in some ways related to that of Verfiirth
[29], who uses the conjugate gradient method (CG) to solve (4). It is well known
that CG displays faster convergence than what (7) provides, but for (4), it requires
an accurate computation of the action of A-1. The method of [29] avoids this issue
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by applying CG to a modification of (4) in which A-1 is replaced by an approxima-
tion, M; the accuracy of the resulting solution as an approximation to the solution
of the differential equation is a function of the accuracy with which M approximates
A-1. Several other methods have been developed that replace exact Poisson solutions
with preconditioners applied to the complete system (1); see Bramble and Pasciak [5],
Bank, Welfert and Yserentant [4], Rusten and Winther [25], and Silvester and Wathen
[27], [30]. Cf. also Queck [24] for an analysis of the Arrow-Hurwicz algorithm, which
can be viewed as an inexact Uzawa method. The recent report by Welfert [33] gives
additional analysis of the inexact Uzawa algorithm.

An outline of the rest of the paper is as follows. In 2, we present the inexact
Uzawa algorithm and the analysis of its convergence, and in 3, we show how the
results extend to handling preconditioned problems. We will use the discrete Stokes
equations as a model problem, and in 4, we outline some properties of this example.
Finally, in 5, we present the results of numerical experiments that demonstrate the
effectiveness of the ideas developed here.

2. The inexact Uzawa algorithm. The inexact version of the Uzawa algo-
rithm starts with an initial guess P0 and performs the following iteration:

(s)

for k- 0 until convergence, do
Compute uk+i such that Auk+l f- BTpk + 5
Compute Pk+I P + a(Buk+l Cp)

enddo

The vector 5 is the residual of the approximate solution uk+ to the system Av
f- BTpk. The magnitude of 5 depends on the stopping criterion used with the
iterative method applied to this system. As we will show below, a natural choice is

(9)

for k > 1, where - is a parameter. Note that the quantity Buk- Cp-I appearing in
the right-hand side of this expression is the residual of the second block row of (1) for
the approximate solution pair (uk,pk-1); this quantity has already been computed
for the update of p in the previous step. Moreover, let c u uk and p p
denote the error vectors. From (1), the right side of (9) is equal to

Before considering the inexact algorithm, we derive one result for the exact version
that shows that there is a bound analogous to (5) involving the errors c.

LEMMA 2.1. For k > 1, the errors associated with the Uzawa algorithm (2) satisfy

(10) (ek+l Cf-k) [I ct(JA-1tT + C)](Bek Ck-1),

and therefore

(11) IIBek+l Cek[[2 <_ [p (I oz(BA-1BT -t- C))] k
II/e Co112.

Proof. It follows from the definition of Uk+l and p+l in (2) that

A(uk uk+) BT(pk pk_) cBTBu cBTCpk_ for k > 1.

Consequently,

ek+ ek + cA-BBTuk cA-1BTCpk_I.
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Subtracting 0 aA-1BTBu -aA-BTCp fi’om the right side of this expression and
then premultiplying both sides by B gives

(12) Bek+ Bek oBA-BTBek + oBA-1BTCek_I.

It also follows from (1) and the definition of p+ that

(13) Cek Ck-1 oC(Ck_l) + oCBek.

Subtracting (13) from (12) yields (10).
Thus, p(I- a(BA-BT + C)) also governs the convergence of the quantities

{Bek+l Ce}. This result for the case C 0 can be found in [13, pp. 8ff.].
In the inexact version, the iterates {u} satisfy

Au+l f BTp +
Auk f BTp#-I + 5k-1,

SO that

Thus, exactly as in the proof of Lemma 2.1, we have for k _> 1

(Bek+ Cek) [I c(BA-BT + C)](Bek Cek_l) BA-15 +
These quantities are bounded in norm by

I1+1 Cll II1 c(BA-1BT +- C)ll I1 c-lll

<_ Ill (A-IBT / C)112 IIB C-1112
(14)

where the second inequality is a consequence of the choice of stopping criterion (9),
and it holds only for k >_ 2.

Now, let us adopt the notation

(15) P [lI- oz(BA-1BT + C)ll, -IIBA-11I.
Our notivation for the criterion (9) is that from (14), II -ck-ll[2 is bounded by, the solution to the three-term recurrence

3k+1 P 3k -[- 7] (/k -[- 3k-1) for k >_ 2,

where 31 libel -Ceo[12 and 32 IIBe2 -Cecil2 are given. The solution is

Z al + a
where

P + / (1 + V/1 + 4?/(p +2

The coefficients are given by

2(/2 1r_
al (p q- r/)2s(s + 1)’

2(2 1’+)
a2 (p+ r/)2s(s- 1)’
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where s V/1 + 4rl/(p + rl) 2. Thus, r+ and al are greater than zero, and r_ is less
than zero. More importantly, we have

Iflkl <- max (al, la21)(r + Ir_l k) < 2max (al, lal)r_.
Let c max (al, lag.I). Expressing r+ in slightly different form, we have the following
result.

THEOREM 2.2. The errors generated by the inexact Uzawa algorithm satisfy

for k > 2, where

(16) =r+--p++(p+) l+4/(p+)-I

and the constant c is idependent of .
Comparison with (11) shows that the quantity

1
+ + + + 1)

is a bound on the degradation of performance associated with inexact computation of
A-l(f-Brp). In the limit as r 0, this perturbation is approximately (1+ 1/(p+
)), and from the definition of in (15), it is evident that the perturbation tends to
ero with r. We will examine the extent to which the bound predicts performance in

Although Theorem 2.2 applies only to the quantities {Be-Ce_ }, we now show
that this result can be used to derive bounds for both errors e and e leading to the
same convergence Nctors. It follows from (8) that

p+ p + BA-(f BTp) + BA-5
for all k 0, so that

+ [I a(BA-B + C)]e aBA-6.
Therefore,

[[ek+]2 P + vBA-I[[ [[Bek Cek-[[2 for k 1, by (9),
p ]]e]] + TcllBA-1]]2# for k 2, by Theorem 2.2.

We rewrite the second inequality concisely as

for k 3, where arc ]]BA-1]]2. Applying this result recursively gives the bound

k-3

j=0

But
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Combining this with (17) gives the following result.
COROLLARY 2.3. The errors e p-p for the inezact Uzawa algorithm satisfy

for k > 3, where ,5 cvrcllBA-11l./(, p) is independent of k.
As k increases, this bound is dominated by t5k, so that fi is a bound on the

convergence factor associated with {p}.
Finally, we can use Theorem 2.2 and Corollary 2.3 to derive a bound on the norms

of the errors ek. We will consider both the energy norm Ilella (e, Ae)/ and the
Euclidean norm IIll=. For the former, we will assume, as is true for finite element
discretizations of the Stokes equations (see [29]), that there exists a positive definite
matrix M and positive F such that

(18) I(, Zrq)l < r IIlla (q,A’Iq) 1/2.

COROLLARY 2.4. The errors ck u-u for the inczact Uzawa algorithm satisfy

for k >_ 3, where 1 and 2 are independent of k.

Proof. From (1) and the definition of ,+1 in (8), we have

(19) Aek+l --BTek

First, consider the energy norm. The errors in the velocities satisfy

(20) BTIle+lll (ek+l,Aek+l) (ek+l, Sk)- (ek+l,

Using (18) and Corollary 2.3, the first term is bounded by

(21)
I(e+l, Be)l _< r Ile+lllAAmx(M)/llell2

<_ r

where 5 is independent of k. By the Cauchy-Schwarz inequality, (9), and Theorem
2.2, the second term satisfies

(22) I(+,)1- II+IIAIIA-IIIA <--II+IIA Amx(A-)llll2
< Ile+l IIA Amax(A-1)oTk"

The bound for the energy norm follows from (20)-(22).
For the Euclidean norm, we premultiply (19) by A-1 and use (9), which gives

(23)

The first term is bounded by Corollary 2.3, and the second by Theorem 2.2. S

Remark 2.1. A bound for [[ell coud be derived directly from the bound on the
energy norm; the argument above avoids reference to (18).
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3. Preconditioning. Preconditioned exact and inexact Uzawa algorithms are
defined as follows. Let Q LLT denote a symmetric positive-definite matrix of
the same order as BA-1BT. Formally, a preconditioned version of (4) with Q as a
preconditioner is given by

[L-I(BA-1BT + C)L-T][LTp] [L-1BA-l f].

This is precisely the Schur complement for the preconditioned version of (1) given by

or, in compact form,

where /) L-1B, L-1CL-T, and /5 LTp. Formally applying the Uzawa
algorithm to the system (24) would produce a set of approximations 15 to i5. Letting
p L-TD leads to the preconditioned Uzawa algorithm:

for k 0 until convergence, do
Solve Au+l f- BTp
Compute pk+l Pk + oQ-l(Buk+l Cpt)

enddo

Each iteration requires the computation of a preconditioning solve of the form Qw v

for w.
The inexact version of the preconditioned Uzawa algorithm is defined exactly as

in (8): U+l is chosen so that Au+I f- BTp + 6. The natural generalization of
the stopping criterion (9) is

< Cp-IlIQ-.

The vector Q-I(Bu Cpk-1) needed here is available from the computation of p.
Let pq p(I a(A-T + d)). The analysis of both the exact and inexact

Uzawa algorithms applies to the preconditioned versions essentially verbatim, except
that norms depending on Q are involved. In particular, straightforward algebraic
manipulations give the following analogues of (5), (11), Theorem 2.2, and Corollaries
2.3 and 2.4.

THEOREM 3.1. The errors associated with the preconditioned exact Uzawa algo-
rithm satisfy

The errors associated with the preconditioned incaact Uzawa algorithm with stopping
criterion (25) satisf

^k

II  IIA < I1  11 . co, po

fork>2,
fork>3,
fork>3,
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where c is defined as in (16),
1 (V/ )Q PQ + l + - (P +) 1 + 4l (pQ +) 1

and Q 7A-12.
The constants c, q, q,, and , arise exactly as in 2; we omit the details.

4. Model problem: The discrete Stokes equations. We will use the Stokes
equations

-Au+p-f on-(0,1) (0,1),
(26)

-div u 0
u 0 on 0,
fp=O

to illustrate and supplement the analysis. In this section, we review some basic
facts about finite element discretization of this problem and outline some numerical
properties of two specific discretizations. See [8], [15], [16], and [19] for more general
discussions of this issue.

Remark 4.1. We are using this example to compare the analytic results of 2-
3 with experimental performance. We note that a variety of methods have been
proposed for solving discretizations of (26), including applications of the conjugate
gradient method to symmetric positive-definite reformulations of (1) [4], [5], [29]; the
conjugate residual method applied directly to the indefinite system [25], [27], [30]; and
multigrid methods applied directly to (1); see, e.g., [6], [22], and [34]. We expect some
of these methods to converge more rapidly than the Uzawa method for the discrete
Stokes equations. A detailed comparison of these ideas is beyond the scope of this
paper.

Let H() denote the Sobelev space of functions satisfying homogeneous Dirichlet
boundary conditions, and whose first derivatives are in L2(); let L() {
L() f 0}; and let Vh C H()H(), Ph C L() denote finite-dimensionM
subspaces. In addition, let Ch denote a continuous symmetric positive-semidefinite
bilinear form defined on Ph Ph. The finite element solution to (26) is the unique
pair (u, Ph) Vh Ph such that

(27) (grad Uh, grad )- (Ph, div ) (f, ) for all Vh,
div 0 all

where (,) represents the L inner product in H()zH() or L(), as appropriate.
Let Uh Eu and Ph EjPjj, where {.i} and {} are bases for Vh and
Ph, respectively. In matrix notation, (27) has the form (1), where A is the global
stiffness matrix [(grad i,grad Cj)], B is the Gram matrix [(,divCj)], C is the
Gram matrix [Ch(, Cj)], and , Cj and , range over the bases for and Ph.
In addition, let M [(,j)] denote the global mass matrix associated with the
pressure discretization.

We assume that the discretization satisfies

< (q’ + C)q) <

where ? and F are independent of h. In the case C 0, the lower bound holds for
discretizations satisfying the inf-sup condition

(v, B q)
(29) inf sup

q6P v6Vu (v, Av)l/2(q, Mq) 1/2
> ’
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and the condition (18) holds with r _< x/; see, e.g., [3], [7], [29], and [30]. The upper
bound follows from this. The purpose of the stabilization matriz C is to impose (28)
in cases where (29) is not satisfied; in this case, the value of F in (28) will be larger
than that derived from (18)[9], [26].

We will consider two discretizations of (26), on uniform triangular meshes:
1. P1 (h)P1 (2h)" continuous piecewise linear velocities on a mesh of width h, and

continuous piecewise linear pressures on a mesh of width 2h;
2. Stabilized P1 (h)P1 (h)" continuous piecewise linear velocities and pressures on

a mesh of width h, together with the stabilization matrix C h2An, where
An is a discrete Laplace operator defined on the pressure space, subject to
Neumann boundary conditions [9].

The first choice satisfies the inf-sup condition. The second one is equivalent to the
mini-element discretization [1] after elimination of the internal degrees of freedom,
and it satisfies (28) with F dependent on [26]. The usual hat functions are used
as the basis for both velocities and pressures. For stabilized P(h)P(h), we use

/ .025, as recommended in [26]. In tables of experimental results shown below, we
refer to this discretization simply as "P (h)P1 (h)."

It follows from (28) that for q - 0,

(30) 72p, <_ (q, (BA-1BT + C)q) <_ p2].t2
(q,q)

where #1 and #2 are the smallest and largest eigenvalues, respectively, of M. There-
fore, the condition number of BA-1BT + C is bounded above by

(31) _<

In light of (7), it is desirable to have as small as possible. The condition numbers for
these discretizations with a uniform triangulation of t (0, 1) x (0, 1) on a mesh of
width h- 1/32 are shown in Table 1 (with preconditioning "None"). The table also
shows the bound (31), computed values of the quantities F2/2 and #2/#1, and the
convergence factor p(I- c(BA-1BT + C)). The bound (31) is qualitatively similar
to the condition number for the P(h)P(2h) discretization, but it is pessimistic for
stabilized P1 (h)P1 (h).

Remark 4.2. For the bases used for these discretizations, the mass matrix has the
form M h22I, where both the magnitudes of the nonzero entries and the extreme
eigenvalues of M are independent of h [14]. Consequently, from (30), the optimal
value of c is of magnitude O(h-2).

Remark 4.3. It is also shown in [14] that the condition number #./# of the mass

matrix can be bounded by n(#.,e/#l,), where #1,, #2, are the smallest, respectively,
largest eigenvalues of the element mass matrices, and n is the maximum number of
elements around any nodal point. For the discretizations under consideration, this
bound is 24, somewhat larger than the computed value of 14.50.

The convergence factors can be reduced by preconditioning. The extreme eigen-
values of the preconditioned matrix/)A-1T

_
d are given by the smallest and largest

With these bases, the matrix B is rank deficient. For the discretizations under consideration,
the coetticient matrices of (1) and the Schur complements BA-1 BT + C are also rank deficient, with
deficiency 1. The condition numbers discussed below correspond to the ratio of the largest eigenvalue
to the smallest nonzero eigenvalue.
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TABLE
Condition numbers, bounds, and convergence factors for h 1/32.

Discretization Preconditioning
Pl(h)Pl(2h) None
P1 (h)P (2h) Diagonal
P (h)P1 (2h) Tridiagonal
Pl(h)P(h) None
P h Pl h Diagonal
P (h)P1 (h) Tridiagonal

Bound F2/2

128.07 145.82
22.71 40.22
16.19 30.28
26.15 101.49
9.82 27.76
9.86 20.89

10.06 14.50
10.06 4.00
10.06 3.01
6.94 14.50
6.94 4.00
6.94 3.01

0.985
0.916
0.884
0.926
0.815
0.816

values of the Rayleigh quotient

(, (/)A-1/)T + 0)) (q, (BA-1BT + C)q)
(, (t) (q, Qq)

(q, (BA-IBT + C)q) (q, Mq)
(q, Mq) (q, Qq)

Consequently, as in (31), we have the bound

where k is the condition number of/A-1/)T -t-, and 1 and/2 are the smallest and
largest eigenvalues, respectively, of Q-1M.

We consider two preconditioners derived from a result due to Wathen [31]. This
idea has been used by Silvester and Wathen [27], [30] in the context of conjugate resid-
ual methods. Cf. [10] for other techniques developed for time-dependent problems.
The mass matrix M can be expressed as a sum of local element matrices LTML,
where M is the local element matrix associated with element e, and L is a Boolean
matrix that maps global unknowns into local ones. Let Q denote a nonsingular
symmetric matrix of the same order as M such that Q LTQL is symmetric
positive definite. Then

min min (q__2! Iq) < (q, Mq) (qe Meqe)
qe (qe, Qeqe) - Qq)

< meaxmaxq (q, Qq)

That is, the extreme eigenvalues of Q-1 ,,/are bounded by those of the preconditioned
local matrices Q[1M. Wathen shows that for the choice ofQ diag(M), producing
Q diag(M), the preconditioned condition number/52//1 is small for a variety of
discretizations, and it is bounded by 4 for piecewise linear pressures. It is also possible
to express Q tridiag(M), consisting of the three interior diagonals of M, as a sum of
element matrices; see [32]. Using the techniques of [31], [32], it can be shown that in
this case the preconditioned condition number is bounded by 2 + v. Recalling that
JJ h2/l/, we will consider the two choices Q sQdiag(J/) and Q sQtridiag(5/).
Condition numbers, bounds and convergence factors for the preconditioned exact
Uzawa algorithm are also shown in Table 1. We will discuss the scalings sQ below.

The bounds on the convergence factor for the inexact Uzawa algorithm also de-
pend on ][BA-11]2 -]]A-BT][2 (see (15)), or, for the preconditioned problem, on

II/)A-1112 (see Theorem 3.1). But

[IA-1Brll2 max
(A-1BTq’A-1BTq)

qPh (q,q)
(A-1BTq, A-1BTq) (A-1BTq, BTq)

max
qep. (A-1BTq, BTq) (q,q)_
.max(A-1)/max(BA-1BT).
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TABLE 2
Values of IIBA-1112 and bounds/or h 1/32.

Discretization Preconditioning
Pl(h)P(2h) None
P1 (h)P1 (2h) Diagonal
P (h) P1 (2h) Tridiagonal
P(h)P(h) None
P1 (h) P1 (h) Diagonal
P (h)P (h) Tridiagonal

Bound
0.32 0.45
0.21 0.70
0.19 0.78
0.16 0.45
0.10 0.70
O.O9 O.78

For the discretizations under consideration, kmx(A-1) 1/A,in(A) 1/(2rrh2),
and, from (30) and Remarks 4.2 and 4.3, Amax(BA-1tT) <_ 12/2h2 where /7t9. is

independent of h. It follows that

which is also independent of h. In the preconditioned case, we have [[BA-1[12
IIL-1BA-1ll2, so that the scaling of Q would appear to play a role. Because the
bounds on the velocities in Theorem 3.1 contain terms derived from both I111 and

IIBe - Ce -,llo,-, (el. (21)-(23)), we attempt to balance these contributions by
choosing sc to make Am,x(Q)- 1/Ami,(Q). It is then straightforward to show that

IIA-I[TII2 <_ /max(A-1) Amax(BA-1BT)/Amin(Q),

so that [IA-1/)T[[2 is also independent of h. Table 2 shows computed values and
bounds for [IBA-I[I and II/)A-111 for both discretizations and h 1/32. The
bounds for the preconditioned problem are pessimistic, but in experiments we found
performance to be completely insensitive to scaling, and we will not pursue this issue.

From these results, we see that the bounds t5 and p on the convergence factors
for the inexact Uzawa algorithm are independent of the mesh size h. However (for
brevity, restricting our remarks to the unpreconditioned case), g: of Corollary 2.3
contains c as a factor, and the terms defining 1 and e2 of Corollary 2.4 contain
either c or kmx(A-1) as factors. From the discussion above, c and ,max(A-1) are
of magnitude O(h-) (see 3). Thus, although the coefficients of in Corollaries 2.3
and 2.4 are independent of the iteration counter k, they are not independent of the
mesh size. This does not affect asymptotic convergence factors as k increases for fixed
h. That is, if d is a generic quantity representing any of the bounds on the error
norms derived in this section, then lim+ 114111/ < . We wil present empirical
results on convergence factors for the inexact algorithm in 5. The factor h-2 does
not appear in Theorem 2.2, or in the bounds for the exact method, where r 0.

5. Numerical experiments. We nmv discuss the performance of the inexact
and preconditioned Uzawa algorithms for solving discrete versions of (26). The ex-

periments were run on a Sun 630MP using Matlab 4.0. The right-hand side vector f
was a vector of random numbers uniformly distributed in [-1, 1]. 2 The results cor-

respond to the mesh size h 1/32; froth other tests with h 1/8 and 1/16, as well
as a limited number of tests with smaller h (= 1/64), we observed that the values of
all quantities were close to their asymptotic limits, and behavior for this mesh size

As noted above, the coefficient matrices are rank deficient by one. As a result, the pressure
solution is uniquely defined only up to an additive constant.
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TABLE 3
Comparison of asymptotic convergence factors and bounds for the iterates cornputed by the

inexact Uzawa algorithm, for h 1/32.

7"p (h)P (2h)
Diagonal preconditioner

1/4=0.
/1

Pe 0.92
1/64

SOR MIC MG Bound
1.07 0.92 0.92 1.28
0.95 0.92 0.92 1.02
0.92 0.92 0.92 0.94
0.92 0.92 0.92 0.92

7"
Pl(h)Pl(h)
Diagonal preconditioner

1/4=0.s
1/

Pe 0.80
1/64

SOR MIC MG Bound
0.93 0.79 0.79 1.02
0.82 0.80 0.79 0.88
0.80 0.80 0.80 0.83
0.80 0.80 0.80 0.82

7"
P(h)P(h)
Tridiagonal preconditioner
p 0.85 1/4

1/16pe 0.88
1/64

SOR MIC MG Bound
1.02 0.88 0.88 1.19
0.90 0.88 0.88 0.94
0.88 0.88 0.88 0.87
0.88 0.88 0.88 0.86

7"
P(h)P(h)
Tridiagonal preconditioner

1/4p =0.82
1/16pe 0.81
1/64

SOR MIC MG Bound
0.93 0.79 0.79 1.00
0.81 0.80 0.79 0.87
0.81 0.81 0.80 0.83
0.81 0.81 0.81 0.82

was representative. The outer iterations used the optimal values of c defined in (6),
determined empirically. The initial guess was P0 0, and the stopping criterion was

(32) [Irll2/llfI[2 < 10-6,

where

rk

For the inexact Uzawa algorithm, three iterative methods were used to compute the
approximate solution to Auk+l f- BTpk: successive overrelaxation (SOR), with
the optimal iteration parameter w [28], [36]; the modified incomplete Cholesky precon-
ditioned conjugate gradient method (MIC), with zero as the acceleration parameter
[12], [20]; and multigrid (MG) with damped Jacobi relaxation and a; 2/3 [23]. An
iteration of multigrid consists of one complete V-cycle with one presmoothing step
and one postsmoothing step. The stopping criterion for the inner iteration was (9) or

(25). For the first iteration, where u0 is not defined, we used the stopping criterion

lls0ll2 < rll f Brpo[[2. To assess the accuracy of the solutions (uk,p) computed
using (32), a more accurate solution (u,,p,) was computed satisfying the criterion

IIr, ll=/llfll2 < 10-2, and the differences u,- uk and p, -pk were used for the errors

ek and e in the velocities and pressures.
We first consider how well the convergence bounds of 2 predict performance. As

noted in 4, the convergence factors for the error norms 11112, 11112, and IlellA and
the partial residual norm IIBe Ce_1112 are all bounded by the same quantities, t5
or c. In our experiments, we observed that all these norms, as well as the residual
norms Ilrll2, displayed the same qualitive behavior. In the discussion below, we
consider only one measure of the error, the commonly used norm lick IlA + Ilekl[2
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FIG. 1. Error norms k for the stabilized P1 (h)P (h) discretization with h 1/32 and diagonal
preconditioning, for four values of T. Direct solver: --, SOR: MIC: Multigrid:

Table 3 compares estimates for the asymptotic convergence factors to the bounds
for each of the discretizations, with h 1/32 and four values of -. We restrict our
attention to the preconditioned versions of the problems; some results for the unpre-
conditioned algorithm are shown below. The estimates for the asymptotic convergence
factors are

(33) (k/k-lO) 1/10,

where k is the index of the last iteration. (If this quantity is denoted by #, then
log# is the slope of the line segment corresponding to the last 10 iterations of the
computations, as in Figs. 1 and 2 below; these give a more accurate picture of the
asymptotic behavior for finite k than ((k/o)l/k.) In the table, p is the convergence
factor, and pc is the observed factor, (33) for the exact Uzawa algorithm.

The bounds for all these tests, shown in the rightmost column of Table 3, indicate
that the inexact algorithm is convergent even for large values of T; with one excep-
tion, they guarantee convergence for T _< 1/4. Although the bounds are somewhat
pessimistic, they are in good qualitative agreement with the asympotic factors for
7- _< 1/16. 3

Next, we consider the behavior of the errors in the outer iterations. Figure 1 shows
the error norms {} for one choice of test problem, corresponding to the stabilized

3 We attribute the fact that the bounds t5 are smaller than the observed convergence factors in
some instances to the possibility that the asymptotic regime in k has not been reached yet.
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FI. 2. Error norms (k for four discrete problems with h 1/32 and - 1/4. Direct solver:
--, SOR: MIC: Multigrid:

P1 (h)Pl(h) discretization and diagonal preconditioning. Results are shown for each
of the inner iteration strategies and the four values of - used above, together with the
error norms when a direct solve was used. The data indicate that the outer iteration
counts are largely unaffected by the accuracy of the inner solve. These results are
representative of the behavior for the other test problems. This is essentially indicated
by the data of Table 3. In addition, Fig. 2 shows the error norms for four discrete
problems, corresponding to two discretizations and two preconditioners for each, with
7 1/4; except for the case of SOR with the/91(h)Pl(2h) discretization, the errors
for all the solution strategies display the same qualitative behavior.

A more important indicator of performance is the number of inner iterations
required for convergence of the outer iteration. Results for this measure are shown
in Table 4, for both the constant and linear pressure discretizations. Examination of
any individual column of this data shows that in nearly all cases, the total number of
inner iterations increases as the stopping criterion becomes more stringent. Numbers
in parentheses correspond to cases where the outer iteration was not convergent within
500 steps.

Remark 5.1. Our primary objective in presenting the data shown thus far is
to examine the performance of the inexact Uzawa algorithm. It is evident that the
algorithm is effective for relatively modest requirements on the accuracy of the inner
iteration.

Remark 5.2. It is not our aim to compare the effectiveness of the methods used



INEXACT UZAWA ALGORITHMS 1659

TABLE 4
Number of inner iterations for convergence of the inexact Uzawa algorithm, for h 1/32.

Dia

1/4
1/16
1/64

P1 (h)P (2h) P1 (h)P (2h)
onal preconditioner Tridiagonal preconditioner
SOR MIC MG T SOR MIC MG
(6997) 571 212 (6962) 391 209
3902 795 415 1/4 2145 586 335
3502 1057 585 1/16 2677 845 488
3835 1290 836 1/64 2979 955 668

P (h)P1 (h) P (h)P (h)
,onal preconditioner Tridiagonal preconditioner
SOR MIC MG T SOR MIC MG
2137 308 121 2065 314 153
1317 462 217 1/411405 489 222
1728 577 360 1/16 1830 599 374
1900 662 472 1/64 2059 690 490

Dia
T

1/4
/1
/4

TABLE 5

Effect of preconditioning on iteration counts for the inexact Uzawa algorithm with multigrid,
for h 1/32.

1/4
1/16
/4

None
431
427
426
(500)

P(h)P(eh)
Diagonal Tridiagonal None

97 70 481
97 70 1045
99 78 2144
105 84 (3996)

Outer iterations

Diagonal Tridiagonal
212 209
415 335
585 488
836 668

Inner iterations

1/4
1/16
1/64

P(h)P(h)
None Diagonal Tridiagonal
79 36 39
100 44 45
129 52 54
135 53 55

Outer iterations

None Diagonal Tridiagonal
277 121 153
497 217 222
899 360 374
1210 472 490

Inner iterations

for the inner solves. Their asymptotic properties as h 0 are well understood, with
multigrid displaying the fastest convergence and SOR the slowest. With respect to
their use in this context, however, several trends are worth pointing out. In particular,
the convergence factors for SOR in Table 3 are closer to the upper bounds than those
for either MIC or MG, and if the stopping criterion is not stringent, SOR leads to
divergent outer iterations in some cases. In contrast, the convergence behavior for
MG, and to a lesser extent for MIC, is better than expected for mild stopping criteria;
indeed, in many cases with large -, convergence of the outer iteration is actually faster
than when a direct solve is used. Moreover, with stringent stopping criteria (small -),
all the inner iteration strategies often lead to smaller asymptotic convergence factors
than the exact algorithm. See [331 for an analysis of these phenomena.

Finally, we consider the effect of preconditioning on performance. We restrict
our attention to multigrid for the inner iteration. The iteration counts, for both the
outer and inner iterations, are shown in Table 5. These results are in agreement with
those for convergence factors in 3-4 (see Table 1). For the Pl(h)Pl(2h) discretiza-
tion, preconditioning by both the diagonal and tridiagonal parts of the mass matrix
dramatically improves performance, and with only marginally extra cost per step,
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the tridiagonal part is the more effective choice. For the Pl(h)Pl(h) discretization,
the two preconditioners are actually about equally effective. We have observed that
as h decreases from 1/8 to 1/64, the convergence factors for the tridiagonal precon-
ditioner grow less rapidly than for the diagonal one, and we expect the tridiagonal
preconditioner to produce lower iteration counts as h 0. Once again, we also find
that more stringent stopping criteria for the inner solve produces some degradation
of performance, including an increase in the number of outer iterations.

Acknowledgments. We thank David Silvester, Andy Wathen, and Bruno Welfert
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his multigrid code.
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