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Linear stability analysis of a dynamical system entails finding the rightmost eigenvalue for a series of
eigenvalue problems. For large-scale systems, it is known that conventional iterative eigenvalue solvers
are not reliable for computing this eigenvalue. A more robust method recently developed in Elman &
Wu (2013, Lyapunov inverse iteration for computing a few rightmost eigenvalues of large generalized
eigenvalue problems. SIAM J. Matrix Anal. Appl., 34, 1685–1707) and Meerbergen & Spence (2010,
Inverse iteration for purely imaginary eigenvalues with application to the detection of Hopf bifurcation in
large-scale problems. SIAM J. Matrix Anal. Appl., 31, 1982–1999), Lyapunov inverse iteration, involves
solving large-scale Lyapunov equations, which in turn requires the solution of large, sparse linear sys-
tems analogous to those arising from solving the underlying partial differential equations (PDEs). This
study explores the efficient implementation of Lyapunov inverse iteration when it is used for linear sta-
bility analysis of incompressible flows. Efficiencies are obtained from effective solution strategies for the
Lyapunov equations and for the underlying PDEs. Solution strategies based on effective preconditioning
methods and on recycling Krylov subspace methods are tested and compared, and a modified version of
a Lyapunov solver is proposed that achieves significant savings in computational cost.

Keywords: linear stability analysis; Lyapunov equation; rational Krylov subspace method; recycling
Krylov subspaces.

1. Introduction

In this paper, we will discuss efficient computational algorithms for linear stability analysis of a large-
scale dynamical system of the form

Mut = f (u,α), (1.1)

where M ∈R
n×n is called the mass matrix and is large and sparse, u ∈R

n is the state variable (velocity,
pressure, temperature, etc.) and α is a physical parameter. Such a dynamical system arises from spatial
discretization of two- or three-dimensional partial differential equations (PDEs).

Linear stability analysis is a standard approach to studying the sensitivity of a steady state ū of (1.1)
to small perturbations: roughly speaking, if all small perturbations introduced to ū will eventually die
out, then ū is stable; and if some of them will grow with time, then ū is considered unstable. We are
especially interested in identifying the critical point (ūc,αc) at which ū changes from being stable to

c© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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unstable. The linear stability of ū is determined by the rightmost eigenvalue (i.e., the eigenvalue with
an algebraically largest real part) of a generalized eigenvalue problem

J(ū,α)x=μMx, (1.2)

where J(ū,α)= (∂f /∂u)(ū,α) is the Jacobian matrix, which is often large, sparse and, in general, non-
symmetric. If the rightmost eigenvalue of (1.2) has negative real part, then ū is stable; otherwise, it is
unstable. At the critical point (ūc,αc), the rightmost eigenvalue of (1.2) has real part zero.

Consequently, (ūc,αc) can be located by monitoring the rightmost eigenvalue of (1.2) along a path
of stable steady states. Commonly used iterative eigenvalue solvers such as Arnoldi’s method and its
variants (see Stewart, 2001) work well when a small set of eigenvalues of (1.2) near a given point σ ∈C

(called the ‘shift’) are sought. Thus, a good estimate for the rightmost eigenvalue of (1.2) would be an
ideal choice for σ . Unfortunately, such an estimate is usually not available. In practice, it is common
to choose σ = 0, that is, to compute a number of eigenvalues of (1.2) closest to zero, hoping that the
rightmost one is among them. One major disadvantage of this strategy lies in its lack of robustness: a
rightmost eigenvalue with large imaginary part may not be found.

Recently, a more robust method for computing the rightmost eigenvalue of (1.2) has been developed
in Elman & Wu (2013). This method finds the rightmost eigenvalue of (1.2) by introducing a new
eigenvalue problem in the form of a Lyapunov equation and computing its eigenvalue with smallest
modulus. A brief description of this method is as follows. Let A= J(ū0,α0), where (ū0,α0) is any point
in the stable regime. In addition, let μ1 denote the rightmost eigenvalue of Ax=μMx and x1 (with
‖x‖2 = 1) the eigenvector associated with it. It was shown in Elman & Wu (2013) and Meerbergen &
Vandebril (2012) that if M is nonsingular, then the eigenvalue with smallest modulus of

SZ + ZST + λ(2SZST)= 0, (1.3)

where S =A−1M is − 1
2 (μ1 + μ̄1). Moreover, under the generic assumptions that μ1 is simple and that,

except for μ̄1, no other eigenvalue of Ax=μMx has the same real part as μ1, there is a unique (up
to a scalar multiplier), real, and symmetric ‘eigenvector’ of (1.3) associated with − 1

2 (μ1 + μ̄1) given
by x1x∗1 + x̄1xT

1 . This eigenvector is of rank 1 if μ1 is real or rank 2 otherwise. As a result, it can
be represented efficiently using its truncated eigenvalue decomposition V DV T, where the matrix V
consists of one or two orthonormal columns that form a basis for span{x1, x̄1}.

The observation above suggests the following approach to finding the rightmost eigenvalue of
Ax=μMx: first solve (1.3) for its eigenvalue with smallest modulus and the associated eigenvector,
and then solve the small eigenvalue problem (V TAV )y=μ(V TMV )y. The advantage of this strategy
is that, unlike for the rightmost eigenvalue, there are many robust methods for computing an eigenvalue
with smallest modulus, in particular, inverse iteration (also known as inverse power method; see Stewart
(2001)). In Elman & Wu (2013), a variant of inverse iteration referred to as Lyapunov inverse iteration
was used. This algorithm was first proposed in Meerbergen & Spence (2010) for eigenvalue problems
similar in structure to (1.3); the methodology was developed to take advantage of the special low-rank
structure of the ‘eigenvector’ Z of (1.3).

Applying Lyapunov inverse iteration to (1.3) requires solving a large-scale Lyapunov equation

SY + YST = PCPT (1.4)

at each step, where P ∈R
n×r with r= 1 or 2 (see Elman & Wu, 2013) consists of orthonormal

column(s). Hence, the implementation of Lyapunov inverse iteration depends on solving (1.4)
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efficiently. The solution to (1.4) often has low-rank approximation (see Penzl, 2000; Antoulas et al.,
2001; Grasedyck, 2004; Kressner & Tobler, 2010), and iterative methods for computing such an approx-
imation (see, for instance, Saad, 1990; Simoncini, 2007; Druskin & Simoncini, 2011) entail matrix–
vector products with matrices that are rational functions of S, which in turn require solving large, sparse
linear systems. For large-scale discretization of the PDEs, practical implementations entail the use of
preconditioned iterative methods for performing these solves. In addition, since many linear solves with
a common matrix are required, recycling Krylov subspace methods (see Parks et al., 2006) can also be
applied to accelerate the solves. Our aim in this work is to explore the effectiveness of several algo-
rithms for solving the sequence of linear systems arising from Lyapunov inverse iteration, and, more
importantly, to develop a way of reducing the number of these solves.

The rest of this paper is organized as follows. In Section 2, we review two iterative Lyapunov
solvers: the standard Krylov subspace method developed in Saad (1990) and the rational Krylov sub-
space method (RKSM) developed in Druskin & Simoncini (2011), both of which have been used in
Elman & Wu (2013). In particular, we introduce the types of linear systems that need to be solved in
the implementation of these two methods. In Section 3, we first review and test the iterative methods
developed for these systems arising from incompressible Navier–Stokes equations. Then we incorpo-
rate these methods as well as Krylov subspace recycling into the Lyapunov solvers, which are tested on
several examples considered. Based on the numerical results, we propose in Section 4 a modified version
of the RKSM, and demonstrate that it achieves significant savings in computational cost. In Section 5,
justification for this modification is provided. Some concluding remarks are given in Section 6.

2. Review of iterative Lyapunov solvers

In this section, we review two Lyapunov solvers that can be used for Lyapunov inverse iteration; see
Elman & Wu (2013): the standard Krylov subspace method (Saad, 1990; Jaimoukha & Kasenally, 1994)
and the RKSM (Druskin & Simoncini, 2011; Druskin et al., 2011). Both methods construct a low-rank
approximate solution to (1.4) of the form Ym = VmXmV T

m , where the columns of Vm form an orthonormal
basis for a small subspace of R

n, and Xm is the solution to a small Lyapunov equation that can be solved
using direct methods (Bartels & Stewart, 1972; Hammarling, 1982). Let the residual associated with
(1.4) be

R= S(VmXmV T
m)+ (VmXmV T

m)S
T − PCPT. (2.1)

The small Lyapunov equation is obtained by imposing a Galerkin condition of the form trace(RZT)= 0,
where Z is any matrix of the form VmQV T

m .
The right-hand side of the Lyapunov equation (1.4) that needs to be solved in the first step of

Lyapunov inverse iteration is of rank 1, i.e., P is a single vector with unit norm (see Elman & Wu,
2013). As the algorithm proceeds, in subsequent iterations, the rank of the right-hand side of (1.4) may
change to 2, in which case P will have two orthonormal columns. For simplicity, in the rest of this
paper, we focus on the solution of the first Lyapunov equation. It is straightforward to generalize the
algorithms presented here to the case where P has multiple columns.

In the standard Krylov subspace method, a Krylov subspace that we are familiar with,

Km(S, P)= span{P, SP, S2P, . . . , Sm−1P},

is built. This method is outlined in Algorithm 2.1.
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Algorithm 2.1 The standard Krylov subspace method for (1.4)
1. Given a tolerance τ . Let v1 = V1 = P.
2. For m= 1, 2, · · ·

2.1. w= Svm.
For i= 1, . . . , m

hi,m← vT
i w;

w←w− vihi,m.
2.2. Solve the small Lyapunov equation

HmXm + XmHT
m =

(
V T

m P
)

C
(
V T

m P
)T

where Hm = V T
m SVm. (Ym = VmXmV T

m is then the approximate solution to (1.4).)
2.3. Compute the reduced QR factorization of w: w= vm+1hm+1,m.
2.4. If the residual norm ‖R‖F < τ , then stop.
2.5. Else, Vm+1← [Vm, vm+1].

In Algorithm 2.1, the matrix Hm = Vm
TSVm is available at no cost since it is simply the upper

Hessenberg matrix [hi,j]m
i,j=1. As shown in Jaimoukha & Kasenally (1994), the residual norm ‖R‖F of

(1.4) can be computed cheaply as well. At each step of Algorithm 2.1, the matrix–vector product Svm is
formed. Since S =A−1M, where A is the Jacobian matrix, computing Svm entails one solve of the linear
system

Ax= b, (2.2)

where b=Mvm. This is precisely the kind of linear system that needs to be solved in the computation
of the steady-state solution for (1.1).

The RKSM was originally developed in Ruhe (1984, 1994) for the computation of the interior
eigenvalues of S. This method constructs a subspace

Km(S, P, s)= span

⎧⎨
⎩P, (S − s1I)−1P, (S − s2I)−1(S − s1I)−1P, . . . ,

m−1∏
j=1

(S − sm−jI)
−1P

⎫⎬
⎭ ,

where s= {sj}m−1
j=1 ∈C

m−1 is a set of shifts that need to be selected by some means. The utility of
this method for solving large-scale Lyapunov equations has recently been investigated in Druskin &
Simoncini (2011). An algorithmic description reads as follows:

Algorithm 2.2 The RKSM for (1.4)
1. Given a tolerance τ and a shift s1. Let v1 = V1 = P.
2. For m= 1, 2, · · ·

2.1. w= (S − smI)−1vm.
For i= 1, . . . , m

hi,m← vT
i w;

w←w− vihi,m.
2.2. Compute the reduced QR factorization of w: w= vm+1hm+1,m.
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2.3. Compute Tm = V T
m SVm and solve the small Lyapunov equation

TmXm + XmTT
m =

(
V T

m P
)

C
(
V T

m P
)T

.

(Ym = VmXmV T
m is then the approximate solution to (1.4).)

2.4. If ‖R‖F < τ , then stop.
2.5. Else, Vm+1← [Vm, vm+1] and compute the next shift sm+1.

In Druskin et al. (2010) (for symmetric S) and Druskin & Simoncini (2011) (for general S), adaptive
and parameter-free approaches for generating the shifts s were proposed. Both approaches require some
knowledge of the spectrum of S. In Druskin & Simoncini (2011), the first shift s1 is chosen to be a rough
estimate of either −Remin(θ) or −Remax(θ), where Remin(θ) and Remax(θ) denote the minimum and
maximum real parts of the eigenvalues of S, respectively. (Since we assume A to be the Jacobian matrix
evaluated at any stable point (ū0,α0), the eigenvalues of S all lie in the left half of the complex plane,
i.e., 0>Remax(θ) >Remin(θ).) Let I = [−Remax(θ),−Remin(θ)] and {θ̂j}mj=1 denote the eigenvalues of
Tm, which will be updated at each iteration of Algorithm 2.2 and reflect the most recent information on
the spectrum of S. Each subsequent shift sm+1 is then chosen as follows:

sm+1 = arg

(
maxs∈I

1

|rm(s)|
)

, where rm(s)=
∏m

j=1(s− θ̂j)∏m
j=1(s− sj)

. (2.3)

Once {θ̂j}mj=1 are known, this selection process only involves sampling the rational function rm(s) on the
interval I, which is cheap. By Druskin & Simoncini (2011, Proposition 4.2), the residual norm ‖R‖F of
this method is also easy to compute.

We now look into the linear systems that arise from Algorithm 2.2 when it is applied to (1.4). Since

(S − smI)−1 = (A−1M− smA−1A)−1 = (M− smA)−1A, (2.4)

computing (S − smI)−1vm entails the solution of a linear system of the form

(M− sA)x= b, (2.5)

where s> 0 and b=Avm. The structure of (2.5) is exactly like that of the linear systems that need to be
solved in the computation of a fully implicit iteration for a transient solution to (1.1), where s plays the
role of the time step Δt.

Unlike in the standard Krylov subspace method, extra work is required to obtain the matrix
Tm = V T

mSVm in step 2 of Algorithm 2.2. Computing it naïvely requires m matrix–vector products with S,
i.e., m solves with A. A more efficient way of generating this matrix was proposed in Ruhe (1994) (see
also Druskin & Simoncini, 2011, Proposition 4.1), which only requires knowing Svm+1, or equivalently,
one solve of (2.2) where b=Mvm+1.

To sum up, when applied to (1.4), each iteration of the standard Krylov subspace method requires
one solve of (2.2) in order to compute a new Krylov vector, whereas each iteration of RKSM requires
one solve of (2.5) to compute a new Krylov vector and an additional solve of (2.2) to construct the
matrix Tm = V T

mSVm.
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3. Numerical results

In the previous section, we have shown that solving the Lyapunov equation (1.4) arising from Lyapunov
inverse iteration requires multiple solves of the linear systems (2.2) and/or (2.5), which are essen-
tially the types of equations that arise in solving steady or transient PDEs. Therefore, iterative solution
methods developed for such PDEs can be applied directly in Lyapunov inverse iteration. These strate-
gies often involve designing efficient preconditioners that approximate the discrete versions of certain
differential operators.

The dynamical system (1.1) that we consider in this study is the spatial discretization of the Navier–
Stokes equations modelling incompressible flows,

ut − ν∇2u+ u · ∇u+∇p= 0,

∇ · u= 0
(3.1)

subject to appropriate boundary conditions, where u, p, ν denote the velocity, pressure and kinematic
viscosity, respectively. In order to examine the performance of Lyapunov solvers with iterative linear
solves, we proceed in two steps: review some preconditioners developed for (3.1) and test them on
(2.2) and (2.5), and then integrate these solution techniques into the Lyapunov solvers described in the
previous section and apply them to (1.4) arising from Lyapunov inverse iteration.

3.1 Iterative solves of the linear systems

The matrices A and M arising from div-stable mixed finite element discretization of (3.1) have the block
structure

A=
[

F BT

B 0

]
and M=

[−G 0
0 0

]
. (3.2)

The matrix blocks F ∈R
nu×nu , B ∈R

np×nu and G ∈R
nu×nu are all sparse, where nu + np = n and np < nu.

By G we denote the velocity mass matrix, B is the matrix representation of the discrete divergence
operator and F resembles the matrix representation of the discrete convection–diffusion operator. (The
precise definition of F can be found in Elman et al. (2005).) Since a nonsingular mass matrix is required
(see Elman & Wu, 2013), in the actual computation, we use instead a modified mass matrix

[−G ηBT

ηB 0

]
,

where η=−0.01. The rightmost eigenvalue of Ax=μMx remains unchanged when this new mass
matrix is used (see Cliffe et al., 1994).

Preconditioners for (2.2) of the form

P=
[

PF BT

0 −PS

]
(3.3)

were developed in Elman et al. (2005) and Elman (2005), where PF is a preconditioner for F and PS is
a preconditioner for the (dense) Schur complement BF−1BT. In (3.3), we can choose PF to be F itself
and apply its inverse using a multigrid process (see Elman et al., 2005). The main issue in designing P
is the choice of PS .
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In Elman et al. (2005), two effective preconditioning strategies for the Schur complement were
described: the pressure convection–diffusion (PCD) preconditioner and the least-squares commutator
(LSC) preconditioner. They are derived by approximately minimizing the discrete version of a commu-
tator of certain differential operators using two different heuristics (see Elman et al., 2005). The PCD
preconditioner is defined to be

ApF−1
p Gp,

where Ap and Fp are discrete Laplacian and convection–diffusion operators in the pressure space, respec-
tively, and Gp is the pressure mass matrix. The LSC preconditioner is defined to be

(BĜ−1BT)(BĜ−1FĜ−1BT)−1(BĜ−1BT),

where Ĝ is the diagonal matrix whose entries are taken from the diagonal of G.
The coefficient matrix M− sA of (2.5) has the block structure

[−(sF + G) (η − s)BT

(η − s)B 0

]

similar to that of A, and the PCD preconditioner and the LSC preconditioner can be derived in an
analogous manner for its Schur complement −(η − s)2B(sF + G)−1BT. They are

− (η − s)2Ap(sFp + Gp)
−1Gp (3.4)

and
− (η − s)2(BĜ−1BT)(BĜ−1(sF + G)Ĝ−1BT)−1(BĜ−1BT), (3.5)

respectively. The shift s in RKSM varies from one iteration to another. An important feature of both
preconditioners is that they do not require any extra work to construct as s changes.

We will explore both these preconditioning strategies, using improved variants of them developed
to account for boundary effects; see Elman & Tuminaro (2009) for details of these improvements.

Also, the description above is for ‘ideal’ versions of these methods. As described, their main compu-
tational costs are for linear system solves with F or sF + G (where F resembles a convection–diffusion
operator on the velocity space and G is a velocity mass matrix), Ap or BĜ−1BT (pressure Poisson oper-
ators) and Gp (a pressure mass matrix). These subsidiary systems could be solved efficiently using
multigrid for F or sF + G and for Ap, but it is actually more effective to replace accurate solutions
with approximate ones obtained, for example, by applying a single step of multigrid to the systems
(see Elman et al., 2005). In the results described below, PF is defined using one V-cycle of algebraic
multigrid (AMG) (implemented in the ifiss software package; see Elman et al., 2007); the pressure
Poisson solves are also replaced by a single V-cycle of AMG.1 The pressure mass matrix is replaced by
its diagonal approximation.

We investigate the utility of these preconditioning strategies for solving (2.2) and (2.5). The iterative
linear solver we use for the preconditioned systems is GMRES (without restarts). Recall from Section 2
that we need to solve an instance of (2.2) in each iteration of both Algorithms 2.1 and 2.2, and an
additional instance of (2.5) in each iteration of Algorithm 2.2. The right-hand side b in (2.2) and (2.5)
and the shift in (2.5) vary from one iteration to another. In this subsection, as a simple first test, we

1 On the velocity space, AMG is actually applied to the system with coefficient matrix F̂ or sF̂ + G, where F̂ is the block
convection–diffusion operator that would be obtained from a Picard linearization of the Navier–Stokes operator; see Elman et al.
(2005) for details.
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Fig. 1. The streamlines of driven-cavity flow (at RE = 4000) and flow over an obstacle (at RE = 350).

take b to be a constant vector with unit norm whose entries are all equal to n−0.5 and consider five
representative values of the shift, i.e., s= 10−3, 10−2, 10−1, 1, 10. The stopping criteria for GMRES are

‖Ax− b‖2 < 10−10 · ‖b‖2 (3.6)

for (2.2) and

‖(M− sA)x− b‖2 < 10−10 · ‖b‖2 (3.7)

for (2.5).
The following four examples are considered in this section, where (3.1) is discretized using Q2-Q1

mixed finite elements:

• two-dimensional flow over an obstacle (32× 128 mesh, n= 9512) at RE = 200 and RE = 350,
and

• two-dimensional driven-cavity flow (64× 64 mesh, n= 9539) at RE = 2000 and RE = 4000.

Here, RE denotes the Reynolds number UL/ν, where U is the maximum magnitude of velocity on
the inflow and L is a characteristic length scale for the domain. (In these tests, L= 2 and U = 1 for
the obstacle problem, so that RE = 2/ν, and L= 1, U = 1, RE = 1/ν for the cavity problem.) In all
four examples, n≈ 10,000. Stability analysis of these two flows has been considered in previous work
(Elman et al., 2012; Elman & Wu, 2013), and their streamlines are depicted in Fig. 1. The critical
Reynolds number is about 370 for the flow over an obstacle and approximately 8000 for the driven-
cavity flow (see Elman et al., 2012).

Figures 2 and 3 display the performance of the two preconditioners for solving (2.2) and (2.5) arising
from these four examples. In each subplot, the residual norms ‖Ax− b‖2 and ‖(M− sA)x− b‖2 are
plotted against the number of preconditioned GMRES steps. The number next to each curve indicates
the value of the shift s. The curves labelled with ‘∞’ correspond to (2.2) since formally, (2.2) can be
viewed as (2.5) with s=∞.

The performance of GMRES for these representative shifts shows that the smaller the shift s is, the
easier it is to solve (2.5). This is because the smaller s is, the better both preconditioners (3.4) and (3.5)
approximate the Schur complement −(η − s)2B(sF + G)−1BT. The number of GMRES steps needed
by (2.2) shows the limit of how expensive solving (2.5) can get as s increases. It can also be seen that
the performance of LSC is almost always stronger than that of PCD in these tests, and in the sequel we
restrict our attention to LSC. The conclusions reached below for LSC would also apply in a qualitative
sense to PCD.

From Figs 2 and 3, we can also observe that as the Reynolds number grows, when either precondi-
tioner is used, (2.2) and (2.5) with a large shift become increasingly difficult to solve.
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Fig. 2. The performance of the PCD preconditioner and the LSC preconditioner in flow over an obstacle. (a) PCD (Obstacle,
RE = 200), (b) LSC (Obstacle, RE = 200), (c) PCD (Obstacle, RE = 350), and (d) LSC (Obstacle, RE = 350).

3.2 Lyapunov solvers with iterative linear solves

We next consider the performance of the full Lyapunov solvers when the linear solution methods
described in Section 3.1 are integrated into the implementation.

We again consider the following four examples: flow over an obstacle at RE = 200 and RE = 350,
and driven-cavity flow at RE = 2000 and RE = 4000. The stopping criteria are

‖R‖F < 10−6 · ‖C‖F (3.8)

for the Lyapunov solve (outer iteration) and (3.6), (3.7) for the linear solves (inner iteration). All the
linear systems arising from the Lyapunov solvers will be solved using GMRES in conjunction with the
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Fig. 3. The performance of the PCD preconditioner and the LSC preconditioner in driven-cavity flow. (a) PCD (Cavity,
RE = 2000), (b) LSC (Cavity, RE = 2000), (c) PCD (Cavity, RE = 4000), and (d) LSC (Cavity, RE = 4000).

LSC preconditioner described in Section 3.1. In addition, as in the previous numerical experiments, the
subsidiary linear systems arising from the application of P−1 to a vector are solved approximately using
one multigrid V-cycle.

Recall that when applied to (1.4) where S =A−1M, both Lyapunov solvers considered in Section 2
require solving a sequence of linear systems (2.2) with different right-hand sides, a typical scenario
for which recycling Krylov subspaces (Parks et al., 2006) can achieve significant computational
savings. Suppose that preconditioned GMRES builds a Krylov subspace K (i)

d (AP−1, ri) for solving
the ith instance of (2.2). The motivation behind recycling is that since all the linear systems in the
sequence share the same coefficient matrix A, the existing Krylov subspace K (i)

d (AP−1, ri) may con-
tain certain information about the spectrum of AP−1 that will facilitate the solution of the (i+ 1)st
system and, therefore, should not be discarded completely. We can retain dr properly chosen linearly
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Fig. 4. The GMRES iteration count and shift in each step of the RKSM applied to the two obstacle cases (×: the number of
GMRES iterations needed for solving (2.2), 
: the number of GMRES iterations needed for solving (2.2) when recycling is
used, ◦: the number of GMRES iterations needed for solving (2.5), and �: the shift used in (2.5)). (a) GMRES iteration counts
(Obstacle, RE = 200), (b) Shifts (Obstacle, RE = 200), (c) GMRES iteration counts (Obstacle, RE = 350), and (d) Shifts
(Obstacle, RE = 350).

independent vectors in this subspace (dr < d), and then augment them to form a new Krylov subspace
K (i+1)

d (AP−1, ri+1) for solving the (i+ 1)st instance of (2.2). If we construct such a subspace from
scratch, d matrix–vector products with AP−1 are needed, whereas with recycling, only d − dr of them
are required. As will be seen from the numerical experiments below, recycling improves the efficiency
of both Lyapunov solvers considerably.

We first consider RKSM, which is shown in Algorithm 2.2. Besides the solve of (2.2), a solve of
(2.5) is also needed at each iteration of this algorithm. The results of Algorithm 2.2 are shown in Figs 4
and 5, in which we plot both the number of GMRES steps (inner iterations) and the shift s for each
iteration of RKSM (outer iteration).

In each of Figs 4(a,c), 5(a,c), there are three curves representing, respectively, the number of
GMRES steps needed for solving (2.2) without recycling (denoted by ‘×’), the number of GMRES
steps needed for solving the same system, but with recycling (denoted by ‘
’), and the number of
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Fig. 5. The GMRES iteration count and shift in each step of the RKSM applied to the two cavity cases (×: the number of
GMRES iterations needed for solving (2.2), 
: the number of GMRES iterations needed for solving (2.2) when recycling is
used, ◦: the number of GMRES steps needed for solving (2.5), and �: the shift used in (2.5)). (a) GMRES iteration counts
(Cavity, RE = 2000), (b) Shifts (Cavity, RE = 2000), (c) GMRES iteration counts (Cavity, RE = 4000), and (d) Shifts (Cavity,
RE = 4000).

GMRES steps for solving (2.5) (denoted by ‘◦’), as Algorithm 2.2 proceeds.2 As can be seen from
these four figures, when no recycling is used, the number of GMRES steps needed for (2.2) is nearly a
constant as the outer iteration advances. This constant is about 110 for RE = 200, 170 for RE = 350,
360 for RE = 2000 and 560 for RE = 4000, as given by the rightmost curve in Figs 2(b,d) and 3(b,d).
With recycling, after a few outer (RKSM) steps, the number of recycled GMRES iterations is reduced
considerably, to about 60, 70, 100 and 130 for these four cases. The improvements obtained from recy-
cling are strongest for the systems arising from the cavity case with large Reynolds numbers, where
(2.2) is rather difficult to solve. (Details of how the Krylov subspaces are recycled in these experiments
are as follows. After solving (2.2) at the ith iteration of RKSM, we select from the Krylov subspace

2 Since the shift s in (2.5) is often quite different from one iteration to the next, as demonstrated by Figs 4(b,d) and 5(b,d), the
Krylov subspace built for solving one linear system may be of little help in the solution of the next one and, thus, recycling was
not used for (2.5).
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Fig. 6. The GMRES iteration count in each step of the standard Krylov subspace method (×: the number of GMRES iterations
needed for solving (2.2) and 
: the number of GMRES iterations needed for solving (2.2) when recycling is used). (a) Obstacle,
RE = 200, (b) Obstacle, RE = 350, (c) Cavity, RE = 2000, and (d) Cavity, RE = 4000.

K (i)
d (AP−1, ri) dr harmonic Ritz vectors of AP−1 corresponding to its dr smallest harmonic Ritz val-

ues, and will reuse them in the construction of the new Krylov subspace K (i+1)
d (AP−1, ri+1) for solving

the next instance of (2.2). In our experiments, dr is chosen to be 60, 90, 200 and 300, respectively, for
the four examples, which is roughly half of the number of GMRES steps required to solve (2.2) when no
recycling is used.) From the same set of figures, it can be seen that the number of GMRES steps required
to solve (2.5) is quite oscillatory and can change drastically from one iteration to the next. The pattern
of oscillation matches perfectly with that of the shift, which is depicted in Figs 4(b,d), 5(b,d) (denoted
by ‘�’). The bigger the shift is, the more GMRES steps are needed to solve (2.5). This behaviour is
again expected from the numerical experiments in the previous section. In all four cases considered
here, when no recycling is performed, approximately 75% of all the GMRES steps taken to solve the
Lyapunov equation (1.4) are devoted to the solution of (2.2); recycling is able to cut this percentage to
40–60%, which is still large. In Section 4, we will present a technique that further reduces this part of
the cost.

Next, we perform a similar test for the standard Krylov subspace method (Algorithm 2.1). We con-
tinue to use (3.6) as the stopping criterion for the linear solve (2.2) and (3.8) as the stopping criterion
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for the Lyapunov solve. The numbers of GMRES iterations needed to solve each linear system arising
from Algorithm 2.1, applied to the same set of examples, are shown in Fig. 6. Each subplot contains two
curves representing, respectively, the number of GMRES iterations required to solve (2.2) with (denoted
by ‘
’) and without recycling (denoted by ‘×’). (The way recycling is performed remains the same as
in RKSM.) The behaviour of both sets of curves is very similar to that observed in Figs 4 and 5. More-
over, comparison between Figs 6 and 4, 5 shows that to solve (1.4) to the same order of accuracy, the
standard Krylov subspace method needs a subspace more than twice as large as that needed by RKSM.

4. Modified RKSM

As shown in Section 3, compared with the standard Krylov method, RKSM can find an approximate
solution to (1.4) with the same order of accuracy using a subspace of significantly smaller dimension.
However, it requires solving both linear systems (2.2) and (2.5) at each iteration and, with or with-
out recycling, a substantial portion of its total cost comes from solving (2.2). If the solution of (2.2)
can somehow be avoided without harming the convergence rate of RKSM, then the efficiency of this
method will increase significantly. In this section, we propose a modified version of RKSM for (1.4)
that achieves this goal.

Recall from Section 2 that when RKSM is applied to (1.4), the linear system (2.5) arises from
computing a new Krylov vector, and the linear system (2.2) arises from the computation of the matrix
Tm =VTSV. We see that Tm is needed in the construction of the approximate solution VmXmV T

m of (1.4),
and its eigenvalues are used to generate the next shift sm+1. However, it is not necessary to compute an
approximate solution to (1.4) at each step of Algorithm 2.2; moreover, we only need the eigenvalues of
Tm in (2.3), not Tm itself.

Thus, we can reduce the number of solves by not computing Tm at every step. We propose using
the eigenvalues of Tm = (V T

mAVm)
−1(V T

mMVm) in (2.3) to generate the shift, instead of those of Tm. The
reason is twofold: first, constructing Tm only requires matrix–vector products with A and M; second,
the eigenvalues of Tm approximate those of Tm well. The latter assertion is supported by numerical
evidence given below and in Section 5.

Consider again (1.4) arising from driven-cavity flow at RE = 2000. We compute the eigenvalues of
both Tm and Tm as Algorithm 2.2 proceeds. For m= 25, 50, 75, 100, the spectra of Tm and Tm are plotted
in Fig. 7, in which the crosses denote the eigenvalues of Tm and the circles represent the eigenvalues of
Tm. (Note that a logarithmic scale is used on the real axis for a clearer display of the eigenvalues.) As
shown in Fig. 7, the eigenvalues of Tm indeed approximate those of Tm well, especially for larger m.
This suggests that replacing the eigenvalues of Tm with those of Tm in the computation of the new shift
will not affect the asymptotic convergence rate of RKSM.

The variant of RKSM with this modification is outlined in Algorithm 4.1. In the modified algorithm,
we compute Tm and check the convergence of the Lyapunov solve only when the iteration count m is
an integer multiple of a prescribed integer k. (When k = 1, this is simply Algorithm 2.2.) Consequently,
(2.2) appears only in those iterations. In the iterations where Tm is not computed, we continue using the
approach proposed in Druskin & Simoncini (2011) to choose the next shift; the only change is to use
the eigenvalues of Tm instead of those of Tm in (2.3). The computation of Tm entails only two matrix–
vector products Avm and Mvm at each iteration. In fact, only the matrix–vector product Mvm is needed
since, according to (2.4), Avm is the right-hand side of (2.5) and has to be computed anyway. Thus, the
cost of constructing Tm is negligible.

Algorithm 4.1 The modified RKSM for (1.4)
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Fig. 7. The eigenvalues of Tm (crosses) and Tm (circles). (a) m= 25, (b) m= 50, (c) m= 75, and (d) m= 100.

1. Given a tolerance τ , a shift s1 and an integer k > 1. Let v1 = V1 = P.
2. For m= 1, 2, · · ·

2.1. w= (S − smI)−1vm.
For i= 1, . . . , m

hi,m← vT
i w;

w←w− vihi,m.
2.2. Compute the reduced QR factorization of w: w= vm+1hm+1,m.
2.3. If mod(m,k) = 0

2.3.1. compute Tm = V T
m SVm and solve the small Lyapunov equation

TmXm + XmTT
m =

(
V T

m P
)

C
(
V T

m P
)T

;

(Ym = VmXmV T
m is then the approximate solution to (1.4).)

2.3.2. if ‖R‖F < τ , then stop.
2.4. Else, compute Tm = (V T

m AVm)
−1(V T

m MVm).
2.5. Vm+1← [Vm, vm+1] and compute the next shift sm+1.
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Fig. 8. The GMRES iteration count in each step of the modified RKSM with k = 5 (×: the number of GMRES iterations needed
for solving (2.2), 
: the number of GMRES iterations needed for solving (2.2) when recycling is used, and ◦: the number of
GMRES iterations needed for solving (2.5)). (a) Obstacle, RE = 200, (b) Obstacle, RE = 350, (c) Cavity, RE = 2000, and
(d) Cavity, RE = 4000.

We apply Algorithm 4.1 (with k = 5) to the four examples considered in the previous section and
display the numerical results in Fig. 8. We continue to use the stopping criteria (3.6), (3.7) for the inner
iterations and (3.8) for the outer iterations. In Fig. 8, the triangle, the cross and the circle again denote
the numbers of preconditioned GMRES steps required to solve (2.2) with and without recycling and
(2.5), respectively. Since we only compute Svm+1 every k = 5 iterations, as seen in Fig. 8, the number of
GMRES iterations taken to solve (2.2) is simply zero in many iterations of Algorithm 4.1. By comparing
Figs 4, 5 and 8, we also observe that, for the same example, the sizes of the Krylov subspaces built by
Algorithm 2.2 and that built by Algorithm 4.1 are almost the same. (A slight increase (less than k) in the
size of the Krylov subspace can be observed when Algorithm 4.1 is used instead of Algorithm 2.2. This
is due to the fact that, in Algorithm 4.1, we only check convergence every k iterations and, therefore, the
algorithm may not terminate even if (3.8) has already been met.) This implies that the shifts generated
using the eigenvalues of Tm are essentially of the same quality as those generated using the eigenvalues
of Tm.

Figures 9 and 10 provide a summary statement of the results obtained in this section and the previous
one. The figures plot the residual norm ‖R‖F associated with (1.4) against the total number of GMRES
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Fig. 9. Comparison of the total number of GMRES iterations required by the standard Krylov subspace method, RKSM and
modified RKSM applied to the two obstacle cases. (a) Without recycling (Obstacle, RE = 200), (b) With recycling (Obstacle,
RE = 200), (c) Without recycling (Obstacle, RE = 350), and (d) With recycling (Obstacle, RE = 350).

steps required by the standard Krylov subspace method (Algorithm 2.1), RKSM (Algorithm 2.2) and
the modified RKSM (Algorithm 4.1) with k = 5 and 10. Figure 9 shows results for the obstacle problem
and Fig. 10 for the driven-cavity problem. In both figures, performance without recycling is shown on
the left and with recycling on the right. It can be seen that when no recycling is applied in solving (2.2),
RKSM is much more efficient, requiring approximately half as many GMRES steps as the standard
Krylov subspace method in all four examples. There are two reasons for this: first, RKSM requires a
much smaller Krylov subspace, and second, although an extra solve of (2.5) is needed per iteration of
RKSM, it is on average much cheaper to solve this system than to solve (2.2) without recycling (see
Figs 4 and 5). When recycling is incorporated, RKSM still outperforms the standard Krylov method in
three out of the four cases, though its superiority is less pronounced. By eliminating many of the system
solves for (2.2), the modified version of RKSM, with or without recycling, reduces costs significantly
in all four cases.
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Fig. 10. Comparison of the total number of GMRES iterations required by the standard Krylov subspace method, RKSM and
modified RKSM applied to the two cavity cases. (a) Without recycling (Cavity, RE = 2000), (b) With recycling (Cavity, RE =
2000), (c) Without recycling (Cavity, RE = 4000), and (d) With recycling (Cavity, RE = 4000).

5. Further analysis of Tm and Tm

The modified RKSM (Algorithm 4.1) proposed in Section 4 is based on the hypothesis that the
eigenvalues of Tm = (V T

mAVm)
−1(V T

mMVm) approximate those of Tm = V T
mSVm = V T

m(A
−1M)Vm well.

In this section, we analyse the relation between Tm and Tm, and provide more numerical evidence to
support this hypothesis.

As shown in Ruhe (1994) (also see the Druskin & Simoncini, 2011, proof of Proposition 4.2), the
RKSM computes the Arnoldi decomposition

SVm = VmTm + vm+1hm+1,meT
mDmH−1

m − (I − VmV T
m)Svm+1hm+1,meT

mH−1
m (5.1)

at each iteration, where em is the last column of the m× m identity matrix, Dm = diag({s1, s2, . . . , sm}) is
the diagonal matrix that holds all the previous shifts, and I is the n× n identity matrix. The definitions
of Vm, Hm, Tm, hm+1,m and vm+1 can be found in Algorithm 2.2.
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Table 1 ‖Em‖2/‖Tm‖2

Obstacle Obstacle Cavity Cavity
m RE = 200 RE = 350 RE = 2000 RE = 4000

25 0.25732 0.25663 0.03824 0.01553
50 0.14088 0.10365 0.03453 0.02342
75 0.05734 0.08111 0.02904 0.01784
100 0.04143 0.05611 0.01797 0.02037

Theorem 1 Tm = Tm + Em where Em is of rank 1. The single nonzero eigenvalue of Em is

ρm = hm+1,meT
mH−1

m (V T
mAVm)

−1V T
mA(I − VmV T

m)(smI − S)vm+1,

and the corresponding eigenvector is

ψm = (V T
mAVm)

−1V T
mA(I − VmV T

m)(smI − S)vm+1.

Proof. Left multiply both sides of (5.1) by V T
mA:

V T
mMVm = (V T

mAVm)Tm + V T
mAvm+1hm+1,meT

mDmH−1
m

− V T
mA(I − VmV T

m)Svm+1hm+1,meT
mH−1

m . (5.2)

Then, left multiply both sides of (5.2) by (V T
mAVm)

−1:

Tm = Tm + (V T
mAVm)

−1V T
mAvm+1hm+1,meT

mDmH−1
m

− (V T
mAVm)

−1V T
mA(I − VmV T

m)Svm+1hm+1,meT
mH−1

m . (5.3)

Since eT
mDm = smeT

m and vm+1 is orthogonal to the columns of Vm, the difference between Tm and Tm is

Em = hm+1,m(V
T
mAVm)

−1V T
mA(I − VmV T

m)(smI − S)vm+1eT
mH−1

m .

It is easy to check that Em has m− 1 zero eigenvalues whose eigenvectors are given by {ψj =Hmej}m−1
j=1 ,

and the single nonzero eigenvalue ρm whose corresponding eigenvector is ψm. �

Thus, Tm differs from Tm by a matrix of rank 1. We have seen that the eigenvalues of these two
matrices are very close to each other. In Table 1, we also report the ‘relative error’ ‖Em‖2/‖Tm‖2 for
several different values of m and each of the four examples considered in Sections 3 and 4. It can be
seen that these errors are small, giving further indication that Tm is close to Tm.

6. Conclusions

In this paper, we explore the performance of the standard Krylov subspace method and the RKSM
with iterative linear solves. Different preconditioners are tested and compared on the linear systems
arising from the two Lyapunov solvers. These systems can be divided into two categories: one with
structure identical to those that arise in the computation of steady states of a system of PDEs, and one
with structure like those arising from transient PDEs. We observe that the cost of solving the linear
systems of the first type dominates the total cost of the RKSM. One way of cutting this cost is to
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recycle the Krylov subspaces built for solving these systems, which is shown to be very effective for
all our examples, especially the ones that are challenging to begin with. To further reduce this cost, we
modify the RKSM in such a way that solution of the first type of linear systems can mostly be avoided.
The modification is simple yet effective, leading to significant savings in computational cost without
degrading the convergence of the Lyapunov solver.
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