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H(div) PRECONDITIONING FOR A MIXED FINITE ELEMENT

FORMULATION OF THE DIFFUSION PROBLEM

WITH RANDOM DATA

HOWARD C. ELMAN, DARRAN G. FURNIVAL, AND CATHERINE E. POWELL

Abstract. We study H(div) preconditioning for the saddle-point systems
that arise in a stochastic Galerkin mixed formulation of the steady-state diffu-
sion problem with random data. The key ingredient is a multigrid V-cycle for

an H(div) operator with random weight function acting on a certain tensor
product space of random fields with finite variance. We build on the Arnold-
Falk-Winther multigrid algorithm presented in 1997 by varying the spatial dis-
cretization from grid to grid whilst keeping the stochastic discretization fixed.
We extend the deterministic analysis to accommodate the modified H(div) op-
erator and establish spectral equivalence bounds with a new multigrid V-cycle
operator that are independent of the spatial and stochastic discretization pa-
rameters. We implement multigrid within a block-diagonal preconditioner for
the full saddle-point problem, derive eigenvalue bounds for the preconditioned
system matrices and investigate the impact of all the discretization parameters
on the convergence rate of preconditioned minres.

1. Introduction

In deterministic modeling of physical processes, input variables that represent
material properties, boundary conditions, or source terms are assumed to be known
explicitly. This results in deterministic partial differential equations (PDEs) whose
numerical solution can be effected via traditional discretization methods. In situa-
tions where complete knowledge of an input variable is lacking, it is more fitting to
pose the problem in a probabilistic setting and solve the resulting stochastic PDEs.
Note that by stochastic PDEs, we mean PDEs with random data as opposed to
the stochastic PDEs encountered in stochastic analysis that are PDEs perturbed
by white noise. The present work is concerned with the numerical solution of the
steady-state diffusion equation with random data, written in mixed form. Here,
the source of uncertainty is the diffusion coefficient which is modeled as a random
field with a prescribed mean and correlation function.

In the last few years there has been a great deal of interest in so-called stochastic
Galerkin methods for solving elliptic PDEs with random field coefficients (e.g., see
[7], [2], [23]). This body of work has developed rigorous analysis for the pioneer-
ing work [12] which advocates coupling a polynomial chaos basis for a subspace
of random functions with finite variance, with a traditional finite element spatial
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discretization. The advantage of this so-called stochastic finite element methodol-
ogy is that a single linear system needs to be solved, the solution to which can be
post-processed to obtain probabilistic information of interest. However, this sys-
tem is typically orders of magnitude larger than those obtained from corresponding
deterministic models, and specialized solvers are essential.

If the Galerkin discretization of the stochastic PDE in question is based on a
primal weak formulation, the resulting linear system is symmetric and positive
definite. An efficient multigrid solver for those systems was proposed in [14] and
[8]. If the discretization is based on a mixed formulation, then we have to solve a
large-scale symmetric, indefinite system of equations, which is more challenging. A
mean-based preconditioning scheme was suggested in [9]. However, it loses efficiency
if the variance of the random field coefficients is large relative to the mean field.

In [1], Arnold et al. pointed out that the saddle-point matrices that arise from
mixed finite element discretizations of the deterministic steady-state diffusion equa-
tion (with unit coefficients) have the same mapping properties as a block-diagonal
matrix whose blocks are discrete representations of the deterministic H(div) and L2

operators. If exact solves are assumed, this matrix is known to provide a precondi-
tioner for minres that yields convergence independent of the spatial discretisation
parameter. Computing the action of the inverse of the leading block is not a trivial
task, however, and so a multigrid algorithm for H(div) operators was suggested,
leading to a practical preconditioner. Other authors have also suggested determin-
istic H(div) multigrid algorithms (e.g., see [15], [25], [13]). The work of Arnold et
al. [1] is attractive, however, since it takes the form of a standard multigrid V-cycle
method with a specialized smoother.

In this work, we propose and analyze a new H(div) multigrid method. We ex-
tend the deterministic analysis from [1] to accommodate an H(div) operator which
is weighted by random diffusion coefficients and we establish spectral equivalence
bounds with the proposed multigrid V-cycle operator that are totally independent
of the spatial and stochastic discretization parameters. We implement multigrid
within a block-diagonal preconditioner for the full saddle-point system and inves-
tigate the impact of all the discretization parameters on the convergence rate of
preconditioned minres. Numerical results are presented in §8, and we include
experiments with a cheaper variant of the analyzed method.

2. Steady-state diffusion problem with random data

Here we introduce the stochastic PDE to be solved, derive a weak mixed for-
mulation and an inf-sup stable finite-dimensional problem. As noted in §1, the
finite-dimensional problem is obtained by application of a Galerkin finite element
method with the solution variables being expressed using curtailed polynomial chaos
expansions. A semi-discrete formulation of the problem, which will be used in the
subsequent analysis, is also introduced.

2.1. Boundary value problem. The stochastic steady-state diffusion equation
with homogeneous Dirichlet boundary value conditions is given by{

−∇ · (c∇p) = f in D ×Ω,
p = 0 on ∂D ×Ω,

(1)

where D is the spatial domain, Ω is a sample space, c : D×Ω → R is the diffusion
coefficient, and f : D × Ω → R is the source function. The sample space in turn
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belongs to a probability space (Ω,F , P ), where F is a σ-algebra and P is a prob-
ability measure. Note that the divergence and gradient operators are considered
to act on spatial components only. We will consider the spatial domain, D, to be
a convex two-dimensional bounded open set with piecewise smooth boundary. In
particular, we take D to be the interior of a polygon.

Often in solving the diffusion problem the quantity c∇p is of more interest than
the quantity p. Instead of seeking an approximation to p in (1) and then post-
processing this to obtain an approximation to c∇p, a preferred approach is to
obtain an approximation for c∇p directly by converting the second-order system to
a first-order system. This is achieved by making the substitution �u = c∇p which
gives ⎧⎨

⎩
c−1�u−∇p = 0 in D ×Ω,
−∇ · �u = f in D ×Ω,
p = 0 on ∂D ×Ω.

(2)

We will refer to p as the displacement and �u as the flux.
In order to characterize the random aspect of the problem, we start by assuming

that c−1 is expressed as a curtailed Karhunen-Loève expansion, i.e.

c(�x, �ξ(ω))−1 = c0(�x) +
m∑
r=1

√
λrcr(�x)ξr(ω),(3)

where ξr, r = 1, . . . ,m, are assumed to be continuous, independent, and identically
distributed random variables, and (λr, cr) are acquired by solving an eigenvalue
problem in the form of a Fredholm integral equation as discussed, e.g., in [12].

Introducing the random vector �ξ = (ξ1, . . . , ξm) and assuming that f = f(�x, �ξ), we

then define F = σ(�ξ), which is understood to be the minimal σ-algebra generated

by �ξ. With the problem defined in this manner, then providing random fields p and
�u can be found that satisfy (2), the Doob-Dynkin lemma, which is given, e.g., in

[5], tells us that they will be expressible as Borel functions of �ξ for each �x ∈ D, i.e.

p = p(�x, �ξ) and �u = �u(�x, �ξ).
Now note, that given ξr(Ω) = Γ , r = 1, . . . ,m, and denoting the density function

of ξr by ρr, we have, for any Borel function g = g(�y),∫
Ω

g(�ξ(ω)) dP =

∫
Γm

g(�y)ρ(�y) d�y,(4)

where ρ(�y) = ρ1(y1) · · · ρm(ym) and d�y = dy1 · · · dym. Here ρ is the joint density

function of �ξ, and the above integrals represent the expected value of g(�ξ). As all

the random fields in this paper are Borel functions of �ξ for each �x ∈ D, (4) can be
used to evaluate all integrals over the sample space, Ω, that appear in the sequel.

As mentioned above, the expression for c−1 given by (3) is derived from curtailing
an infinite Karhunen-Loève expansion, retaining only the m most significant terms
(cf. [12] and [2]). The number of terms required, m, is computed a priori, usually by
considering the decay of the eigenvalues, (λr), of the covariance function of c−1 (see
[10] for a discussion). Ideally, m should be chosen so that the truncation error and
the numerical discretization errors (to be introduced) are balanced. We will assume
that m is chosen large enough so that the reciprocal of the diffusion coefficient (and
hence the diffusion coefficient itself) is bounded between two positive constants
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independent of m almost everywhere, i.e.

amin ≤ c(�x, �ξ(ω))−1 ≤ amax ∀�x ∈ D P -a.e.,(5)

where by P -a.e. we mean that there exists a set E ∈ F with P (E) = 0 such
that the proposition holds on the complement of E. Under these assumptions, the
convergence rate of the proposed algorithm will be shown to be independent of m
but, as is usual for diffusion problems, not of amin and amax. Numerical results will
be given in §8 to support this conclusion. Note that (5) will not hold in general for
arbitrary distributions of the random variables and arbitrary covariance functions.
Sufficient conditions are discussed in [10]. In particular, it is necessary that the
random variables be bounded.

2.2. Function space notation. We will make use of the Lebesgue spaces L2 and
L∞ on D and Ω, and the Sobolev spaces Hm, where m is an integer, on D. These
spaces and their associated inner products and norms are defined in numerous texts,
e.g., [11]. Note that when m = 0, Hm(D) = L2(D).

The spaces Hm(D)2 are understood to contain vector fields whose components
are in Hm(D), i.e. given �v = (v1, v2) ∈ Hm(D)2, then v1, v2 ∈ Hm(D). Inner
products on these vector function spaces are defined by summing the inner products
on the components, i.e.

(�v, �w)Hm(D)2 = (v1, w1)Hm(D) + (v2, w2)Hm(D),

with the induced norms following. The space H(div;D) is understood to be the
space of functions in L2(D)2 whose divergence is in L2(D). It has the inner product

(�v, �w)H(div;D) = (�v, �w)L2(D)2 + (∇ · �v,∇ · �w)L2(D)

from which the norm || · ||H(div;D) is induced.
The random fields in this paper will live in tensor products of spaces defined

on the spatial domain, D, with spaces defined on the sample space, Ω. The space
Hm(D)⊗ L2(Ω) is given by

Hm(D)⊗ L2(Ω) = {v : D ×Ω → R | Dγv ∈ L2(D)⊗ L2(Ω), |γ| ≤ m },
with inner product

(v, w)Hm(D)⊗L2(Ω) =
∑

|γ|≤m

∫
Ω

∫
D

Dγv Dγw,

where Dγv represents weak derivatives of v, i.e.

Dγv =
∂|γ|v

∂xγ1

1 ∂xγ2

2

with γ = (γ1, γ2) ∈ N
2 and |γ| = γ1 + γ2. This inner product induces the norm

|| · ||Hm(D)⊗L2(Ω). The spaces H
m(D)2⊗L2(Ω) and H(div;D)⊗L2(Ω) are defined

in an analogous fashion. Tensor products of Hilbert spaces are discussed more
formally in [2] and [22].

The space L∞(D) ⊗ L∞(Ω) is the space of all random fields on D × Ω whose
absolute value has a finite essential supremum. The norm associated with this space
is defined via this essential supremum, i.e.

||v||L∞(D)⊗L∞(Ω) = ess. sup
(�x,ω)∈D×Ω

|v(�x, ω)|.
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From this definition, we see that ||c−1||L∞(D)⊗L∞(Ω) ≤ amax, where amax is as in
(5).

2.3. Weighted H(div;D) ⊗ L2(Ω) bilinear form. We define the Hilbert space
U to consist of the vector space L2(D)2 ⊗ L2(Ω) paired with the inner product

(�v, �w)U =

∫
Ω

∫
D

1

c
�v · �w.

This induces the norm ||�v||U .
We define a weighted H(div;D)⊗ L2(Ω) bilinear form Λ: H(div;D)⊗ L2(Ω)×

H(div;D)⊗ L2(Ω) → R by

Λ(�v, �w) = (�v, �w)U + (∇ · �v,∇ · �w)L2(Ω)⊗L2(D).(6)

This differs from the standard H(div;D)⊗L2(Ω) bilinear form only by the weight
c−1 in the first term. As c−1 is bounded almost everywhere between two positive
constants, as noted in (5), Λ(·, ·) induces a norm, to be denoted as || · ||Λ. Note that
this norm is equivalent to || · ||H(div;D)⊗L2(Ω).

2.4. Weak formulation. Let c ∈ L∞(D)⊗ L∞(Ω) and f ∈ L2(D)⊗ L2(Ω). The
weak formulation of the first-order boundary value problem given in §2.1 is: find
�u ∈ H(div;D)⊗ L2(Ω) and p ∈ L2(D)⊗ L2(Ω) such that

a(�u,�v) + b(p,�v) = 0 ∀�v ∈ H(div;D)⊗ L2(Ω),

b(q, �u) = −l(q) ∀q ∈ L2(D)⊗ L2(Ω),

where

a(�v, �w) = (�v, �w)U , b(q,�v) = (q,∇ · �v)L2(D)⊗L2(Ω), l(q) = (f, q)L2(D)⊗L2(Ω).

This will possess a unique solution, as shown in [4], provided that the bilinear forms
a(·, ·) and b(·, ·) are continuous, a(·, ·) is coercive on the null-space of b(·, ·), and that
there exists a constant β > 0, called the inf-sup constant, such that

sup
�v∈H(div;D)⊗

L2(Ω)\{0}

b(q,�v)

||�v||H(div;D)⊗L2(Ω)
≥ β||q||L2(D)⊗L2(Ω) ∀q ∈ L2(D)⊗ L2(Ω).(7)

The continuity and coercivity conditions on a(·, ·) and b(·, ·) are readily demon-
strated, with the conditions on a(·, ·) being satisfied as a consequence of (5). The
existence of β was established in [9], where, moreover, it was shown to depend
only on the spatial domain D and to be equal to its counterpart in the analogous
deterministic analysis.

2.5. Polynomial chaos. The polynomial chaos expansion method, as pioneered
in [12] and generalized in [23], consists of constructing a finite-dimensional sub-
space of L2(Ω), here denoted by T , that is the span of the m-variate polyno-
mials from the Askey scheme of hypergeometric polynomials (discussed in [20])
that are orthogonal with respect to the underlying probability measure. That is,
T = span{χ1, . . . , χM}, where∫

Ω

χk(�ξ)χl(�ξ) dP =

∫
Γm

χk(�y)χl(�y)ρ(�y) dy = κkδkl

and

M =
(m+ n)!

m!n!
.(8)
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Note that if ρ is the density function corresponding to an m-dimensional Gaussian
distribution, then the polynomial chaos will consist of m-variate Hermite polyno-
mials. If ρ is the density function corresponding to an m-dimensional uniform
distribution, then the polynomial chaos will consist of m-variate Legendre polyno-
mials. For polynomials corresponding to other distributions, see [24].

2.6. Finite element formulation. Let T = {�1, . . . ,�K} be a triangulation on
D. We assume that the triangulation belongs to a family of triangulations that are
quasi-uniform and shape regular. Let hk be the length of the longest side of �k

and define h = maxhk to be the mesh parameter of T .
In the following we will use tensor products of finite-dimensional vector spaces.

Note that such spaces are spanned by products of basis functions from the vector
spaces that comprise the tensor product. The zeroth-order Raviart-Thomas space
is defined by

R = {�v ∈ H(div;D) | v|�k
∈ P0(�k)

2 + P0(�k)�x },
where P0(�k) denotes polynomials of zero degree, i.e. constants on �k. Let

{�φ1, . . . , �φNR
} be a basis of R and let Q = span{ψ1, . . . , ψNQ

} be the set of piece-
wise constants on the triangulation T . Then R ⊗ T ⊂ H(div;D) ⊗ L2(Ω) and
Q ⊗ T ⊂ L2(D) ⊗ L2(Ω). Note that R and Q are known to satisfy a discrete
deterministic inf-sup condition, as shown, for example, in [4] and [19].

The finite element formulation of the weak formulation given in §2.4 is given by:
find �uhn ∈ R ⊗ T and phn ∈ Q⊗ T such that

a(�uhn, �v) + b(phn, �v) = 0 ∀�v ∈ R ⊗ T,

b(q, �uhn) = −l(q), ∀q ∈ Q⊗ T.

This possesses a unique solution under the same conditions that apply for the
weak formulation. The discrete continuity and coercivity conditions on a(·, ·) and
b(·, ·) follow in an analogous way to the infinite-dimensional case considered in §2.4.
Existence and uniqueness are then assured if it can be shown that there exists a
constant βhn > 0 such that

sup
�v∈R⊗T\{0}

b(q,�v)

||�v||H(div;D)⊗L2(Ω)
≥ βhn||q||L2(D)⊗L2(Ω) ∀q ∈ Q⊗ T.(9)

The existence of βhn can be demonstrated by employing Fortin’s Lemma (see [3])
as follows. First we note that by considering ∇ ·∇s = w, where w ∈ L2(D)⊗ T , it
can be shown that there exists a unique �z ∈ H1(D)2 ⊗ T such that

||�z||H(div;D)⊗L2(Ω) ≤ CD||w||L2(D)⊗L2(Ω),

where CD is only dependent on the spatial domain. Using standard arguments it
then follows that the constant β > 0 satisfying (7) also satisfies a semi-discrete
inf-sup condition given by

sup
�v∈H1(D)2⊗T\{0}

b(q,�v)

||�v||H(div;D)⊗L2(Ω)
≥ β||q||L2(D)⊗L2(Ω) ∀q ∈ L2(D)⊗ T.(10)

Now suppose there exists an operator Π : H1(D)2 ⊗ T → R⊗ T such that for each
�v ∈ H1(D)⊗ T ,

b(Π�v − �v, q) = 0 ∀q ∈ L2(D)⊗ L2(Ω),

||Π�v||H(div;D)⊗L2(Ω) ≤ CΠ ||�v||H(div;D)⊗L2(Ω),
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where CΠ is independent of h, m, and n. Then

sup
�v∈R⊗T\{0}

b(q,�v)

||�v||H(div;D)⊗L2(Ω)
= sup

�v∈H1(D)2⊗T\{0}

b(q,Π�v)

||Π�v||H(div;D)⊗L2(Ω)

= sup
�v∈H1(D)2⊗T\{0}

b(q,Π�v − �v) + b(�v, q)

||Π�v||H(div;D)⊗L2(Ω)

≥ β

CΠ
||q||L2(D)⊗L2(Ω) ∀q ∈ Q⊗ T.

An operator Π satisfying the above properties is given by the Raviart-Thomas
interpolation operator described in §2.8. Therefore, the existence of the discrete
inf-sup constant is established and, moreover, it is independent of the discretization
parameters h, m, and n.

In [6], the well-posedness of a stochastic saddle-point problem arising in the
solution of a PDE with stochastic boundary was analyzed. In that work, an inf-sup
stability result was established under the assumption that a particular discrete space
is chosen. Here, we note that (9) holds independently of the choice of T ⊂ L2(Ω).

2.7. Matrix formulation. The finite element formulation given in §2.6 can be
written as a matrix problem. This is obtained by using the expansions

�uhn =

NR∑
j=1

M∑
l=1

ujl
�φjχl, phn =

NQ∑
j=1

M∑
l=1

pjlψjχl(11)

and allowing �v to vary over the basis functions of R ⊗ T and q to vary over the
basis functions of Q⊗ T . This leads to a matrix problem of the form[

A BT

B 0

] [
u
p

]
=

[
0
f

]
.(12)

The matrices that appear in the system matrix can be decomposed as

A = G0 ⊗K0 +

m∑
r=1

√
λr Gr ⊗Kr, B = G0 ⊗B0,

with entries given by

[Gr]kl =

∫
Ω

ξrχkχl

(
=

∫
Γm

yrχkχlρ

)
,

[Kr]ij =

∫
D

cr �φi · �φj , [B0]ij =

∫
D

ψi∇ · �φj ,

where ξ0 = 1 in the definition of G0. The vector f has entries given by

f =

⎡
⎢⎣

f1
...
fM

⎤
⎥⎦ , [fk]i = −

∫
Ω

∫
D

fψiχk.

The solution vector contains the coefficients of �uhn and phn stacked columnwise.
Once it has been computed, we have approximations to the random fields �u and p
that satisfy the weak formulation of the diffusion problem. These approximations
can then be post-processed to obtain probabilistic information about the solution
variables. The means and variances can be trivially computed, and the probability

distributions of quantities of interest can be computed via sampling of �ξ.
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2.8. Interpolation operator. We here define a spatial interpolation operator

Π : H1(D)2 ⊗ L2(Ω) → R ⊗ L2(Ω) such that for each ω ∈ Ω, Π maps v(�x, �ξ)
to a function in R in the conventional manner (see, e.g., [3, p. 147]); i.e. , Π acts
only on the spatial components of the random fields in its domain and does so in
a manner analogous to its deterministic counterpart. To be more precise, we first
define Πk : H

1(�k)
2 ⊗ L2(Ω) → R⊗ L2(Ω) such that for �v ∈ H1(�k)

2 ⊗ L2(Ω),∫
ei

(�v −Πk�v) · �ni = 0, i = 1, 2, 3, ∀ω ∈ Ω,

where ei, i = 1, 2, 3, are the edges of �k, and �ni, i = 1, 2, 3, are the respective unit
normal vectors to these edges. Then Π is defined such that for �v ∈ H1(D)2⊗L2(Ω),

(Π�v)|�k
= Πk(�v|�k

).

Following [1], we have the approximation property

||�v −Π�v||L2(D)2 ≤ C0h||�v||H1(D)2 ∀ω ∈ Ω,

where C0 is a constant. Squaring and integrating over Ω gives

||�v −Π�v||L2(D)2⊗L2(Ω) ≤ C0h||�v||H1(D)2⊗L2(Ω).(13)

2.9. Semi-discrete formulation. We here introduce a semi-discrete formulation
of the weak formulation of the diffusion problem where only the space T ⊂ L2(Ω) is
finite-dimensional. This is given by: find �un ∈ H(div;D)⊗ T and pn ∈ L2(D)⊗ T
such that

a(�un, �v) + b(pn,∇ · �v) = 0 ∀v ∈ H(div;D)⊗ T,

b(q,∇ · �un) = −l(q) ∀q ∈ L2(D)⊗ T.

This possesses a unique solution under an analogous set of conditions as for the
weak formulation and the finite element formulation discussed in §2.4 and §2.6,
respectively. In particular, the inf-sup condition that is required, over the relevant
semi-discrete space, was established in §2.6 and is given by (10).

In order to obtain a bound on the error between the flux solutions to the semi-
discrete and the fully discrete problems we make the following assumption. Given

f ∈ L2(D)⊗T we assume that �un ∈ H1(D)2⊗T and that for each realization of �ξ,

||�un||H1(D)2 ≤ Cr||f ||L2(D),

from which it follows that

||�un||H1(D)2⊗L2(Ω) ≤ Cr||f ||L2(D)⊗L2(Ω).(14)

Theorem 1. Given f ∈ L2(D) ⊗ T , then the flux solution to the semi-discrete
problem, �un, and the flux solution to the fully discrete problem, �uhn, satisfy

||�un − �uhn||U ≤ C∗h||f ||L2(D)⊗L2(Ω),

where C∗ is independent of h, m, and n, and amax is as in (5).

Proof. Using the upper bound on c−1 in (5) and following [4] we have

||�un − �uhn||U ≤ a1/2max||�un − �uhn||L2(D)⊗L2(Ω)

≤ a1/2maxC� inf
�v∈R⊗T

||�un − �v||L2(D)⊗L2(Ω),
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where C� is a constant. Now, as Π�un ∈ R ⊗ T , using (13) and (14) we have

||�un − �uhn||U ≤ a1/2maxC�C0h||�un||H1(D)2⊗L2(Ω)

≤ a1/2maxC�C0Crh||f ||L2(D)⊗||L2(Ω),

which demonstrates the theorem with C∗ = a
1/2
maxC�C0Cr. �

3. Helmholtz decomposition, projection and H(div;D) operators

In this section we describe a Helmholtz decomposition of �v ∈ R⊗T analogous to
its deterministic counterpart given in [1]. We also introduce some projection oper-
ators and a weighted H(div;D)⊗L2(Ω) operator which, along with the Helmholtz
decomposition, will be used in §§5, 6 and 7.

3.1. Helmholtz decomposition. Let W = span{ϕ1, . . . , ϕNW
} be the set of

piecewise linear functions defined on the triangulation T . Here NW will equal
the number of nodes in the triangulation. It is well known, e.g., see [1], that

{�v ∈ R | ∇ · �v = 0 } = {∇ × w | w ∈ W }.

As divergence and curl are purely spatial operators, i.e. they don’t affect the sto-
chastic nature of the random fields they act upon, it follows that

{�v ∈ R⊗ T | ∇ · �v = 0 } = {∇ × w | w ∈ W ⊗ T }.(15)

Here ∇× w = (−∂w/∂x2, ∂w/∂x1).
We now define a weighted discrete gradient operator (cf. [1, eq. (3.1)]), denoted

gradch : Q⊗ T → R⊗ T , such that for q ∈ Q⊗ T ,

(gradch q,�v)U = −(q,∇ · �v)L2(D)⊗L2(Ω) ∀�v ∈ R⊗ T.(16)

The superscript c denotes the dependence of the operator on the random field c
through the definition of (·, ·)U .

Theorem 2 (Helmholtz Decomposition). Given �v ∈ R⊗T , there exists q ∈ Q⊗T
and w ∈ W ⊗ T such that

�v = gradch q +∇× w.(17)

Proof. To establish the given decomposition, it is sufficient to show that
gradch (Q ⊗ T ) and ∇ · (W ⊗ T ) are orthogonal complements on R ⊗ T with re-
spect to (·, ·)U . To see this, let w ∈ W ⊗ T ; then

∇ · (∇× w) = 0 ⇔ (∇ · (∇× w), q)L2(D)⊗L2(Ω) = 0 ∀q ∈ Q⊗ T

⇔ (∇× w, gradch q)U = 0 ∀q ∈ Q⊗ T

⇔ ∇× w ∈ (gradch (Q⊗ T ))⊥. �

Note that, for q ∈ Q⊗T and w ∈ W ⊗T , gradch q and ∇×w are also orthogonal
with respect to (·, ·)Λ, where (·, ·)Λ is as defined in §2.3.
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3.2. Projection operators. We define the projection operator Θ : L2(D)⊗L2(Ω)
→ Q⊗ T such that for each v ∈ L2(D)⊗ L2(Ω),

(Θv, q)L2(D)⊗L2(Ω) = (v, q)L2(D)⊗L2(Ω) ∀q ∈ Q⊗ T.

The operator Θ affects both the spatial and the stochastic aspect of the random
fields on which it operates. It will be in our interest to define an operator that only
affects the spatial aspect of the random fields it acts upon. Therefore, we define
Σ : L2(D)⊗ L2(Ω) → Q⊗ L2(Ω) such that for each v ∈ L2(D)⊗ L2(Ω),

(Σv, q)L2(D) = (v, q)L2(D) ∀q ∈ Q ∀ω ∈ Ω, ;

that is, for each ω ∈ Ω, Σ is the L2(D)-projection of v(�x, �ξ) onto Q. It can then
be shown that given �v ∈ H1(D)2 ⊗ L2(Ω) we have the commutativity property

∇ ·Π�v = Σ∇ · �v, ∀ω ∈ Ω,

the proof of which follows that given in [3] for the deterministic case. Using this,
we also have for �v ∈ R⊗ T and q ∈ Q⊗ T ,

(Θ∇ · �v, q)L2(D)⊗L2(Ω) =

∫
Ω

(∇ · �v, q)L2(D) =

∫
Ω

(Σ∇ · �v, q)L2(D)(18)

=

∫
Ω

(∇ ·Π�v, q)L2(D) = (∇ ·Π�v, q)L2(D)⊗L2(Ω),

which is analogous to the deterministic result given in [1].
We define P : H(div;D)⊗ L2(Ω) → R ⊗ T such that for each �w ∈ H(div;D)⊗

L2(Ω),

Λ(P �w,�v) = Λ(�w,�v) ∀�v ∈ R⊗ T.

That is, P is the projection operator onto R ⊗ T defined with respect to Λ(·, ·).

3.3. Weighted H(div;D)⊗ L2(Ω) operator. We next define the weighted
H(div;D)⊗ L2(Ω) operator H : R⊗ T → R ⊗ T such that for each �w ∈ R ⊗ T ,

(H�w,�v)U = Λ(�w,�v) ∀�v ∈ R⊗ T.

Note that H is a positive-definite symmetric operator. Therefore we can define its
inverse H−1 : R ⊗ T → R⊗ T such that for each �w ∈ R⊗ T ,

Λ(H−1 �w, v) = (�w,�v)U ∀�v ∈ R⊗ T.

Note also that H maps gradch (Q ⊗ T ) onto itself. To see this, let �w = gradch q for
some q ∈ Q⊗ T . Then, using (6) and (16),

(H�w,�v)U = (gradch q,�v)U + (∇ · gradch q,∇ · �v)L2(D)⊗L2(Ω)

= (gradch q,�v)U − (gradch ∇ · gradch q,�v)U
= (gradch (q −∇ · gradch q), �v)U ∀�v ∈ R⊗ T.

As q −∇ · gradch q ∈ Q⊗ T it follows that given q ∈ Q⊗ T there exists q′ ∈ Q⊗ T
such that Hgradch q = gradch q

′. Similarly, for q ∈ Q⊗T , it can be shown that there
exists q′ ∈ Q⊗ T such that H−1gradch q = gradch q

′.
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4. Solving the first-order diffusion problem

The coefficient matrix given in (12), denoted here by C, is sparse, symmetric, and
indefinite. Hence, a suitable solution scheme is the minres algorithm, described
e.g., in [16]. This is a Krylov subspace method that minimizes the Euclidean norm
of the residual error at each step. In order to ensure that the iteration is efficient,
preconditioning is essential. Ideally, we want the number of minres iterations
required to reduce the error to within a specified tolerance to be independent of
all the discretization parameters, and so we seek a preconditioner P such that the
eigenvalues of P−1C are independent of the discretization parameters h, n, and m.

4.1. Deterministic H(div;D) preconditioning. Recall that in the determinis-
tic diffusion problem, where the diffusion coefficient, c = c0(�x), and the source
function, f = f0(�x), are known (deterministic) fields, the standard mixed Galerkin
discretization gives rise to a linear system of the form

(19)

[
K0 BT

0

B0 0

] [
u0

p0

]
=

[
0
f0

]
,

where B0 ∈ R
NQ×NR and K0 ∈ R

NR×NR are defined as in §2.7. The so-called ideal
H(div;D) preconditioner given by

P0 =

[
K0 +D0 0

0 N0

]
,(20)

where D0 ∈ R
NR×NR and N0 ∈ R

NQ×NQ are defined via

[D0]ij =

∫
D

(∇ · �φi)(∇ · �φj), [N0]ij =

∫
D

ψiψj ,

was proposed in [1] for the case c0(�x) = 1 and subsequently analyzed in [18] and
[17] for arbitrary diffusion coefficients. This choice of preconditioner is motivated
by the observation that ∀�v ∈ R and ∀q ∈ Q,

||c− 1
2�v||2L2(D)2 + ||∇ · �v||2L2(D) = (v, (K0 +D0)v), ||q||2L2(D) = (q, N0q).

Consequently, the diagonal blocks of P0 provide representations of a pair of norms
in which the chosen mixed finite element discretization is known to be inf-sup stable
(see [4, 19]). Hence, P0 mimics the mapping properties of the underlying saddle-
point matrix. The following theorem gives bounds for the eigenvalues of P−1

0 C0,
where C0 is the system matrix in (19).

Theorem 3. The NR +NQ eigenvalues of[
K0 BT

0

B0 0

] [
v
q

]
= ν

[
K0 +D0 0

0 N0

] [
v
q

]

lie in (−1,−µ0] ∪ {1}, where µ0 ∈ (0, 1) is a constant independent of h.

Proof. See [18]. �

To obtain a practical scheme we need to approximate the action of the inverse
of K0 +D0. Suppose then that there exists some (any) matrix V0 satisfying,

θ0 ≤ (v, (K0 +D0)v)

(v, V0v)
≤ θ0 ≤ 1, ∀v ∈ R

NR×NR\ {0} ,(21)
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where (·, ·) indicates the Euclidean inner product. The following theorem gives
bounds for the eigenvalues of the preconditioned system obtained by replacing K0+
D0 in (20) with V0.

Theorem 4. The (NR +NQ) eigenvalues of[
K0 BT

0

B0 0

] [
v
q

]
= ν

[
V0 0
0 N0

] [
v
q

]

lie in (
−1,

1

2

(
θ0 (1− µ0)−

√
θ20 (µ0 − 1)

2
+ 4µ0θ0

)]
∪ [ θ0, 1 ] ,

where µ0 is the quantity defined in Theorem 3 and θ0 is the constant from (21).

Proof. See [17]. �

In [1], Arnold et el. demonstrated that, in the case c0(�x) = 1, choosing V0 to be
the matrix that represents the inverse of a certain multigrid V-cycle operator yields
θ0 = 1− δ0 and θ0 = 1 in (21), where δ0 is a constant independent of h. Theorem
4 then tells us that the preconditioner[

V0 0
0 N0

]
(22)

is h-optimal. For a general diffusion coefficient, both µ0 and δ0 depend on c0(�x)
and in [17] it was shown that (22) is not always c-optimal.

4.2. Stochastic H(div;D)⊗L2(Ω) preconditioning. We base our precondition-
ing strategy for (12) on the deterministic preconditioner described in §4.1. That is,
we define, first, the analogous ideal preconditioner

P =

[
A+ F 0

0 N

]
,(23)

where A is the (1, 1) block of (12), F = G0⊗D0 and N = G0⊗N0. Now, ∀�v ∈ R⊗T
and ∀q ∈ Q ⊗ T, the blocks of the preconditioner provide representations of the
tensor product norms,

||�v||2Λ = (v, (A+ F )v), ||q||2L2(D)⊗L2(Ω) = (q, Nq).

The efficiency of this preconditioner can be analyzed in exactly the same way as in
the deterministic case. Recalling that M is the dimension of the space T defined
in §2.5, and NR and NQ are the dimensions of the deterministic spaces R and Q
defined in §2.6, we have the following theorem.

Theorem 5. The M×(NR+NQ) eigenvalues of the generalized eigenvalue problem[
A BT

B 0

] [
v
q

]
= ν

[
A+ F 0

0 N

] [
v
q

]

lie in (−1,−µ] ∪ {1}, where µ ∈ (0, 1) is a constant independent of h, m, and n.

Proof. The proof follows that for the deterministic case and will be given here in
outline. First note that since ∇ ·R = Q, we have D0 = BT

0 N
−1
0 B0 and

BTN−1B = (G0 ⊗ B0)
T
(G0 ⊗N0)

−1
(G0 ⊗B0)

= G0 ⊗
(
BT

0 N
−1
0 B0

)
= G0 ⊗D0 = F.
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It immediately follows that there areMNR eigenvalues equal to one. The remaining
eigenvalues are negative and satisfy

B (A+ F )−1 BTq = −νNq.

Now, using (9) along with the equivalence of || · ||H(div;D)⊗L2(Ω) and || · ||Λ, gives

βhn||q||L2(D)⊗L2(Ω) ≤
1

min{1, a−1/2
max }

sup
�v∈R⊗T\{0}

b(q,∇ · �v)
||�v||Λ

∀q ∈ Q⊗ T.

Converting this to matrix notation one then obtains

β2
hnmin{1, a−1

max} ≤ (q, B(A+ F )−1BTq)

(q, Nq)
∀q ∈ R

M×NQ .

Therefore, we can choose µ = β2
hnmin{1, a−1

max}. �

To obtain a practical preconditioning scheme, we need a computationally optimal
way to approximate the inverse of A + F in each minres iteration. If we have at
our disposal a matrix V that satisfies

(24) θ ≤ (v, (A+ F )v)

(v, V v)
≤ θ ≤ 1, ∀v ∈ R

MNR\ {0} ,

then the analogue of Theorem 4 holds. Specifically, we have the following result.

Theorem 6. The M × (NR +NQ) eigenvalues of[
A BT

B 0

] [
v
q

]
= ν

[
V 0
0 N

] [
v
q

]

lie in (
−1,

1

2

(
θ (1− µ)−

√
θ2 (µ− 1)

2
+ 4µθ

)]
∪ [ θ, 1 ] ,

where µ is as in Theorem 5 and θ is the constant from (24).

Proof. Follow the proof of Theorem 4.1 in [17], replacing deterministic matrices
with their larger Kronecker product counterparts. �

In the next sections, we will extend the deterministic analysis presented in [1] to
construct a hybrid multigrid V-cycle operator, V : R ⊗ T → R ⊗ T whose matrix
representation V provides spectral equivalence bounds (24) for A+F with constant
θ = 1 and θ = 1−δ, where δ is a constant independent of h, m, and n. The efficiency
of the resulting preconditioner,

(25)

[
V 0
0 N

]
,

is then determined by the spectral inclusion bounds in Theorem 6.

5. Two-grid results

In the following, two triangulations Th and TH on the spatial domain are used
with mesh parameters h and H, respectively, with H > h. Throughout the remain-
der of this section, the spaces and operators defined in §2 will carry a subscript h or
H to indicate the underlying triangulation with respect to which they are defined.
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5.1. Two-grid bounds. Here we obtain some bounds between functions defined
on the coarse grid and related functions defined on the fine grid. The bounds are
analogous to those given in Lemma 3.1 in [1].

We first note that given an arbitrary function qh ∈ Qh ⊗ T and defining �vh =
gradch qh ∈ Rh ⊗ T , we can uniquely define qH and �vH such that �vH = gradcH qH
and ∇ · �vH = ΘH∇ · �vh. Moreover, given f = −∇ · gradch qh, (qh, �vh) and (qH , �vH)
will be finite element approximations to the diffusion problem given by (2), as can
be demonstrated using the finite element formulation of the diffusion problem given
in §2.6.

Lemma 1. Given qh ∈ Qh ⊗ T there exists �σ ∈ Rh ⊗ T such that

∇ · �σ = qh −ΘHqh, ||�σ||H1(D)2⊗L2(Ω) ≤ C1||qh −ΘHqh||L2(D)⊗L2(Ω),

where C1 is independent of h, m, and n.

Proof. Consider the semi-discrete variational problem: find p ∈ H1
0 (D) ⊗ T such

that ∫
Ω

∫
D

∇p · ∇v =

∫
Ω

∫
D

(qh −ΘHqh)v ∀v ∈ H1
0 (D)⊗ T.

This can be seen as the weak formulation of the second-order diffusion problem
with source function f = qh − ΘHqh. From regularity considerations (cf. [2]) we
have

||p||H2(D) ≤ CD||qh −ΘHqh||L2(D) ∀ω ∈ Ω,

where CD is only dependent on the boundary of the spatial domain. From this it
follows that

||p||H2(D)⊗L2(Ω) ≤ CD||qh −ΘHqh||L2(D)⊗L2(Ω).

Since p solves the diffusion problem we have

−∇2p = qh −ΘHqh a.e.

Now set �σ = −∇p ∈ Rh ⊗ T . Then

||�σ||H1(D)2⊗L2(Ω) = ||∇p||H1(D)2⊗L2(Ω)

≤ ||p||H2(D)⊗L2(Ω) ≤ CD||qh −ΘHqh||L2(D)⊗L2(Ω),

which, equating CD with C1, establishes the lemma. �

Theorem 7. For qh ∈ Qh ⊗ T ,

||qh −ΘHqh||L2(D)⊗L2(Ω) ≤ C2H||gradch qh||U ,

where C2 is independent of h, m, and n.

Proof. Define ∇ · �σ = qh −ΘHqh as in Lemma 1. Then

||qh −ΘHqh||2L2(D)⊗L2(Ω) = (∇ · �σ, qh −ΘHqh)L2(D)⊗L2(Ω)

= (∇ · �σ, (Θh −ΘH)qh)L2(D)⊗L2(Ω)

= ((Θh −ΘH)∇ · �σ, qh)L2(D)⊗L2(Ω)

= (∇ · (Πh −ΠH)�σ, qh)L2(D)⊗L2(Ω),
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where in the last line we used the commutativity result given in (18). Applying
the definition of the discrete gradient operator and the Cauchy-Schwarz inequality
gives

||qh −ΘHqh||2L2(D)⊗L2(Ω) = ((ΠH −Πh)�σ, grad
c
h qh)U

≤ ||(ΠH −Πh)�σ||U ||gradch qh||U
≤ (||�σ −ΠH�σ||U + ||�σ −Πh�σ||U )||gradch qh||U .

Now applying the equivalence between || · ||U and || · ||L2(D)2⊗L2(Ω), the approxima-
tion bound given by (13), and noting that h < H gives

||qh −ΘHqh||2L2(D)⊗L2(Ω) ≤ a1/2max(||�σ −ΠH�σ||L2(D)2⊗L2(Ω)

+ ||�σ −Πh�σ||L2(D)2⊗L2(Ω))||gradch qh||U
≤ a1/2max(H + h)||�σ||H1(D)2⊗L2(Ω)||gradch qh||U
≤ a1/2maxC02HC1||qh − ΘHqh||L2(D)⊗L2(Ω)||gradch qh||U ,

which establishes the theorem with C2 = 2C0C1a
1/2
max. �

Theorem 8. Let qh ∈ Qh ⊗ T and �vh = gradch qh ∈ Rh ⊗ T . Define qH and �vH
such that vH = gradcH qH and ∇ · �vH = ΘH∇ · �vh. Then

||�vh − �vH ||U ≤ C3H||∇ · �vh||L2(D)⊗L2(Ω),

where C3 is independent of h, m, and n.

Proof. As noted above, �vh and �vH can be considered to be finite element approxi-
mations to the flux solution of a first-order diffusion problem with source function
f = −∇ · gradch qh. Let �v∗ ∈ H(div;D) ⊗ T be the solution to the related semi-
discrete problem, as described in §2.9. Then, using Theorem 1 and noting H > h,

||�vh − �vH ||U ≤ ||�v∗ − �vh||U + ||�v∗ − �vH ||U ≤ 2C∗H||∇ · gradch qh||L2(D)⊗L2(Ω)

= 2C∗H||∇ · �vh||L2(D)⊗L2(Ω),

which establishes the theorem with C3 = 2C∗. �

Theorem 9. Let qh ∈ Qh ⊗ T and �vh = gradch qh ∈ Rh ⊗ T . Define qH and �vH
such that �vH = gradcH qH and ∇ · �vH = ΘH∇ · �vh. Then

||�vh − �vH ||Λ ≤ C4H||Hh�vh||U
where C4 is independent of h, m, and n.

Proof. First, note that ∇ · �vh ∈ Qh ⊗ T . Applying Theorem 7 gives

||∇ · �vh −∇ · �vH ||L2(D)⊗L2(Ω) = ||∇ · �vh −ΘH∇ · �vh||L2(D)⊗L2(Ω)

≤ C2H||gradch ∇ · �vh||U .
Then, using this along with Theorem 8 gives

||�vh − �vH ||2Λ = ||�vh − �vH ||2U + ||∇ · �vh −∇ · �vH ||2L2(D)⊗L2(Ω)

≤ C2
3H

2||∇ · �vh||2L2(D)⊗L2(Ω) + C2
2H

2||gradch ∇ · �vh||2U .
It can be shown, using the definition of the weighted H(div;D) ⊗ L2(Ω) operator
given in §3.3, that

||Hh�vh||2U = ||�vh||2Λ + ||∇ · �vh||2L2(D)⊗L2(Ω) + ||gradch ∇ · �vh||2U .
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Therefore,

||�vh − �vH ||Λ ≤ max{C2, C3}H||Hh�vh||U ,
which establishes the theorem with C4 = max{C2, C3}. �
5.2. Λ-projection bounds. In this section we obtain two bounds involving a func-
tion in Rh ⊗ T and its projection with respect to Λ(·, ·) onto RH ⊗ T . These two
bounds comprise the analogue of Lemma 3.2 in [1].

Theorem 10. Let �v ∈ Rh ⊗ T and define �w = �v − PH�v ∈ Rh ⊗ T with Helmholtz
Decomposition �w = gradch q +∇× z. Then

||gradch q||U ≤ C4H||�w||Λ,
where C4 is as in Theorem 9,

Proof. First note that

Λ(gradch q,H−1
h gradch q) = (gradch q, grad

c
h q)U = ||gradch q||2U .

Let �τh = H−1
h gradch q. Now, using (15), we have

Λ(∇× z, �τh) =

∫
Ω

∫
D

1

c
∇× z · �τh +

∫
Ω

∫
D

(∇ · ∇ × z)(∇ · �τh)

=

∫
Ω

∫
D

1

c
∇× z · �τh = (∇× z, �τh)U .

As Hh (and hence H−1
h ) maps gradch (Qh ⊗ T ) onto itself (as noted in §3.3) there

exists q′ ∈ Qh ⊗ T such that �τh = gradch q
′. So, using (16),

Λ(∇× z, �τh) = (∇× z, gradch q
′)U = −(∇ · ∇ × z, q′)L2(D)⊗L2(Ω) = 0,

on account of (15) again. Define �τH in relation to �τh as in Theorem 9. Then

Λ(gradch q, �τh) = Λ(�v − PH�v, �τh) = Λ(�v − PH�v, �τh − �τH)

≤ ||�v − PH�v||Λ||�τh − �τH ||Λ ≤ C4H||�w||Λ||gradch q||U ,
which completes the proof. �
Theorem 11. Let �v ∈ Rh ⊗ T and define �w = �v − PH�v ∈ Rh ⊗ T with Helmholtz
Decomposition �w = gradch q +∇× z. Then

||z||L2(D)⊗L2(Ω) ≤ C5H||�w||Λ,
where C5 is independent of h, m, and n.

Proof. A standard result from the deterministic analysis (cf. [1]) yields

||z||L2(D) ≤ C6H||∇ × z||L2(D)2 ∀ω ∈ Ω

for some constant C6. Therefore,

||z||L2(D)⊗L2(Ω) ≤ C6H||∇ × z||L2(D)2⊗L2(Ω) ≤ C6a
−1/2
min H||∇ × z||U .

Now, using the properties of the Helmholtz decomposition noted in §3.1,
||∇ × z||2U = (�w − gradch q,∇× z)U = (�w,∇× z)U

= (�w,∇× z)U + (∇ · �w,∇ · ∇ × z)L2(D)⊗L2(D)

= Λ(�w,∇× z) ≤ ||�w||Λ||∇ × z||U .
Therefore ||∇×z||U ≤ ||�w||Λ, which combined with the above result establishes the

theorem with C5 = C6a
−1/2
min . �
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6. Additive Schwarz method

A constitutive part of multigrid is the smoother, where by smoother we mean an
iterative method that successively smoothes the error associated with the iterates
of the system that multigrid is applied to. Following [1] we will use the additive
Schwarz method (extended to incorporate the random nature of the problem) as
our smoother. This method is defined with respect to a decomposition of the
spatial domain D. In this section we will define the additive Schwarz operator and
establish some results that will ultimately be used to demonstrate the convergence
of the multigrid algorithm defined in §7.1.

6.1. Domain decomposition results. Let D = {D1, . . . , DL} be an overlapping
covering of D. Let γ be an integer such that no point in D occurs in more than γ
elements of D. Then

∑
k

∫
Dk

≤ γ
∫
D
and γ is called the overlap parameter. Though

we need not be specific here we note that in practice we will take each element of
D to be a set of triangles in T that share a common node. For the partitions that
we use to generate the numerical results in §8 this gives γ = 3. Now define

Rk ⊗ T = {�v ∈ R⊗ T | supp(v) ⊂ Dk ×Ω }.

Given �v ∈ R ⊗ T there exists a decomposition �v =
∑

k �vk where �vk ∈ Rk ⊗ T .

Let { θk : D → R }Lk=1 be a partition of unity subordinate to the covering D, i.e.∑
k θ

k = 1 and supp(θk) ⊂ Dk.

Theorem 12. Let �v ∈ R⊗ T and �vk = Πθk�v ∈ Rk ⊗ T . Then �v =
∑

k �vk and

L∑
k=1

Λ(�vk, �vk) ≤ C7((1 + h−2)||�v||2U + ||∇ · �v||2L2(D)⊗L2(Ω)),

where C7 is a constant.

Proof. Following [1], there exists a constant C8 such that

||�vk||L2(D)2 ≤ C8||�v||L2(Dk)2 ∀ω ∈ Ω.

Introducing the notation || · ||Uk
to denote a norm defined in the same manner as

|| · ||U but restricted to Dk, we have

||�vk||2U ≤ amax||�vk||2L2(D)2⊗L2(Ω) ≤ C2
8amax||�v||2L2(Dk)2⊗L2(Ω) ≤

C2
8amax

amin
||�v||2Uk

.

Also following [1], there exists a constant C9 such that

||∇ · �vk||L2(D) ≤ C9(h
−1||�v||L2(Dk)2 + ||∇ · �v||L2(Dk)) ∀ω ∈ Ω.

Therefore,

||∇ · �vk||2L2(D)⊗L2(Ω) ≤ 2C2
9 (h

−2a−1
min||�v||2Uk

+ ||∇ · �v||2L2(D)⊗L2(Ω)).

Then, using these two results, we have

L∑
k=1

Λ(�vk, �vk) =
L∑

k=1

(||�vk||2U + ||∇ · �vk||2L2(D)⊗L2(Ω))

≤
L∑

k=1

(
C2

8amax

amin
||�vk||2Uk

+ 2C2
9

(
1

h2amin
||�v||2Uk

+ ||∇ · �v||2L2(Dk)⊗L2(Ω)

))
,
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which establishes the theorem with

C7 = γmax

{
C2

8amax

amin
, 2C9 max

{
1

amin
, 1

}}
,

where γ is the overlap parameter noted above. �

6.2. Additive Schwarz operator. We define the projection operator Pk : R ⊗
T → Rk ⊗ T such that for �v ∈ R⊗ T ,

Λ(Pk�v, �w) = Λ(�v, �w) ∀�w ∈ Rk ⊗ T.

Note the similarity between Pk and the projection operator P defined in §3.2. The
additive Schwarz operator is now defined by

S = η
L∑

k=1

PkH−1,

where η is some constant chosen such that Theorem 13 below holds.
The additive Schwarz operator thus defined is symmetric with respect to (·, ·)U .

To see this let �v, �w ∈ R⊗ T . Then

(S�v, �w)U = η

L∑
k=1

(PkH−1�v, �w)U = η

L∑
k=1

Λ(PkH−1�v,H−1 �w)

= η
L∑

k=1

Λ(H−1�v,PkH−1 �w) = Λ(H−1�v,S �w) = (�v,S �w)U .

The operator S can also be shown to be positive definite with respect to (·, ·)U
provided that, given �v ∈ R ⊗ T , there exists a decomposition �v =

∑L
k=1 �vk, �vk ∈

Rk ⊗ T such that

L∑
k=1

Λ(�vk, �vk) ≤ C	Λ(�v,�v),(26)

where C	 is a positive constant. To see this, we employ a standard argument as

given, e.g., in [21]. Let PS =
∑L

k=1 Pk. Then

Λ(�v,�v) =
L∑

k=1

Λ(�v,�vk) =
L∑

k=1

Λ(Pk�v,�vk) ≤
L∑

k=1

||Pk�v||Λ||�vk||Λ

≤
( L∑

k=1

Λ(Pk�v,Pk�v)

)1/2( L∑
k=1

Λ(�vk, �vk)

)1/2

≤
(
Λ(PS�v,�v)

)1/2(
C	Λ(�v,�v)

)1/2

.

Therefore,

Λ(PS�v,�v) ≥
1

C	
Λ(�v,�v).



H(div) PRECONDITIONING FOR MIXED FINITE ELEMENT FORMULATION 751

Returning to the additive Schwarz operator and letting �w = H−1�v gives

(S�v,�v)U = η
L∑

k=1

(PkH−1�v,�v)U = η
L∑

k=1

Λ(PkH−1�v,H−1�v)

= η

L∑
k=1

Λ(Pk �w, �w) = ηΛ(PS �w, �w) ≥ 1

C	
ηΛ(�w, �w).

As �v = 0 ⇔ �w = 0 this shows that S is positive definite and hence invertible. That
(26) holds for all v ∈ R ⊗ T can be shown by following a similar line of reasoning
as in [1]. However, here we show that (26) holds on a necessary subspace of R⊗T .
This is done in the following section.

7. Multigrid

In the following we consider a family of triangulations Tj , j = 1, . . . , J , with mesh
parameters hj , where hi > hj for i < j. We assume these triangulations give rise to
a nested sequence of finite-dimensional spaces denoted by R1⊗T ⊂ · · · ⊂ RJ ⊗T ⊂
U , as defined in §2.6. For the remainder of this section the various operators and
spaces defined in §§2, 3 will carry a subscript to denote the underlying triangulation
on which they are defined. We let Dj be a covering of D defined with respect to Tj ,
as discussed in §6.1, and we let Sj , j = 2, . . . , J , be the additive Schwarz operator
defined with respect to Dj .

7.1. Multigrid V-cycle. We now define a multigrid algorithm, analogous to that
given in [1], for solving the vector equation HJ�v = �z. Let �z ∈ Rk ⊗ T . Then we
define V−1

k : Rk ⊗ T → Rk ⊗ T such that V−1
1 �z = H−1

1 �z and V−1
k �z, k = 2, . . . , J , by

the recursive algorithm:

�v = 0
for j = 1, . . . , k

�v ← �v + Sj(�z −Hj�v)
end
�v ← �v + V−1

j−1Θj−1(�z −Hj�v)

for j = 1, . . . , k
�v ← �v + Sj(�z −Hj�v)

end

This corresponds to a multigrid V-cycle with one multigrid iteration at each level.
Moreover, at each level there are k pre-smoothing and post-smoothing steps.

The matrix representation of the operator HJ is A−1
J (AJ + FJ ), where AJ and

FJ are as in §4.2. Therefore, the vector equation HJ�v = �z can be expressed as
the linear system (AJ + FJ )v = AJz, where v and z are the coefficient vectors
of �v and �z. This relationship along with the convergence properties of the above
algorithm will be used in §7.2 to demonstrate that the spectral bounds in (24) will
be independent of the parameters h, m, and n if the matrix VJ is chosen such that
V −1
J is the matrix representation of the multigrid operator V−1

J .
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7.2. Multigrid convergence. We here establish that the multigrid algorithm
given in §7.1 converges and that VJ and HJ are spectrally equivalent.

Theorem 13. The inequality

Λ((I − SjHj)�v,�v) ≥ 0 ∀�v ∈ Rj ⊗ T

holds for j = 1, . . . , J .

Proof. For j = 1, Sj = H−1
j and the result holds as Λ(·, ·) is an inner product on

R1 ⊗ T . Let 2 < j ≤ J . Then

Λ((I − SjHj)�v,�v) = Λ(�v,�v)− Λ(SjHj�v,�v) = Λ(�v,�v)− η

Lj∑
k=1

Λ(Pk
j �v,�v)

= Λ(�v,�v)− η

Lj∑
k=1

Λ(Pk
j �v,Pk

j �v) = Λ(�v,�v)− η

Lj∑
k=1

||Pk
j �v||2Λ.

Let || · ||Λk
be the norm induced on Dk ×Ω by || · ||Λ. Then

||Pk
j �v||2Λ = Λ(Pk

j �v,Pk
j �v) = Λ(Pk

j �v,�v) ≤ ||Pk
j �v||Λk

||�v||Λk
= ||Pk

j �v||Λ||�v||Λk
.

Therefore,

Λ(I − SjHj�v,�v) ≤ (1− ηγ)Λ(�v,�v),

where γ is the overlap parameter discussed in §6.1. So the theorem holds providing
η ≤ γ−1. �

Lemma 2. Let �v ∈ Rj⊗T and let �w ∈ (I−Pj−1)�v ∈ Rj⊗T . Then, for j = 2, . . . , J ,

there exists a decomposition �w =
∑Lj

k=1 �wk, �wk ∈ Rk
j ⊗ T such that

Lj∑
k=1

Λ(�wk, �wk) ≤ C10Λ(�w, �w)(27)

where C10 is independent of h, m, and n.

Proof. Let �w have the Helmholtz decomposition �w = gradchj
q + ∇ × s, where

q ∈ Qj ⊗ T and s ∈ Wj ⊗ T . Define �w′ = gradchj
q and �w′′ = ∇ × s. Then given

the decompositions �w′ =
∑

k �w′
k and �w′′ =

∑
k �w′′

k and taking into account that
the Helmholtz decomposition is orthogonal with respect to Λ(·, ·), it is sufficient to
show that

Lj∑
k=1

Λ(�w′
k, �w

′
k) ≤ C ′

10Λ(�w, �w),

Lj∑
k=1

Λ(�w′′
k , �w

′′
k) ≤ C ′′

10Λ(�w, �w)

for some constants C ′
10 and C ′′

10. This will result in C10 = 2max{C ′
10, C

′′
10}. To

show the first of these, let w′
k = Πjθ

k
jw

′, where θkj is as in §6.2. Invoking Theorems
10 and 12 gives

Lj∑
k=1

Λ(�w′
k, �w

′
k) ≤ C7((1 + h−2

j )||�w′||2U + ||∇ · �w′||2L2(D)⊗L2(Ω))

= C7(||�w′||2Λ + h−2
j ||�w′||2U ) ≤ C7(||�w′||2Λ + C2

4h
−2
j h2

j−1||�w||2Λ).
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Assume that for j = 2, . . . , J , there exists � > hj−1/hj . Then, as ||�w′||Λ ≤ ||�w||Λ,
Lj∑
k=1

Λ(�w′
k, �w

′
k) ≤ 2C7 max{1, C2

4�
2}Λ(�w, �w).

Next, following [1], there exists a decomposition �w′′ =
∑

�w′′
k such that

Lj∑
k=1

(�w′′
k , �w

′′
k)L2(D)2 ≤ C11(||�w′′||2L2(D)2 + h−2

j ||s||2L2(D)) ∀ω ∈ Ω,

where C11 is a constant. From this it follows that

Lj∑
k=1

Λ(�w′′
k , �w

′′
k) ≤ amaxC11(a

−1
min||w′′||2Λ + h−2

j ||s||2L2(D)⊗L2(Ω)).

Applying Theorem 11 and noting that ||�w′′||Λ ≤ ||�w||Λ gives

Lj∑
k=1

Λ(�w′′
k , �w

′′
k) ≤ 2 amaxC11 max{a−1

min, C
2
5�

2}Λ(�w, �w).

Therefore the theorem is established. �
Lemma 3. Let �v ∈ Rj ⊗ T and �w = (I − Pj−1)�v. Then for j = 2, . . . , J ,

(S−1
j �w, �w)U =

1

η
inf

Lj∑
k=1

Λ(�wk, �wk),

where the infinum is taken over all decompositions of the form �w =
∑

k �wk, �wk ∈
Rk

j ⊗ T .

Proof. Let Ej = { �w ∈ Rj ⊗ T | �w = (I − Pj−1)�v, �v ∈ Rj ⊗ T } for j = 2, . . . , J .
As a consequence of Lemma 2, (24) is satisfied on each of these sets and, therefore,
Sj is invertible on Ej . The rest of the proof follows in an analogous fashion to the
proof for the deterministic case given in Appendix B of [1]. �
Theorem 14. The inequality

(S−1
j (I − Pj−1)�v, (I − Pj−1)�v)U ≤ C12Λ((I − Pj−1)�v, (I − Pj−1)�v) ∀�v ∈ Rj ⊗ T

holds for j = 2, . . . , J , where C12 is independent of h, m, and n.

Proof. Let �w = (I − Pj−1)�v. Then for each �v ∈ Rj ⊗ T it is required to show that

(S−1 �w, �w)U ≤ C12Λ(�w, �w).

From Lemma 2 we know that there exists a decomposition �w =
∑

k �wk, �wk ∈ Rk
j ⊗T

such that
Lj∑
k=1

Λ(�wk, �wk) ≤ C10Λ(�w, �w).

Now using Lemma 3 gives the required inequality with C12 = η−1C10. �
Theorem 15. The eigenvalues of V−1

J HJ are contained in the interval [1 − δ, 1],
where

δ =
C12

C12 + 2k
.
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Proof. Given Theorem 13 and Theorem 15, the proof follows that for Corollary 5.2
in [1]. �

Note that δ, thus defined, depends on k, which denotes the number of pre-
smoothing and post-smoothing steps in the multigrid algorithm, and C12 = η−1C10,
where C10 is independent of the discretization parameters, h, m, and n, but does
depend on the lower and upper bounds of the diffusion coefficient, amin and amax.

From Theorem 15 we have

1− δ ≤ (HJ�v,�v)U
(VJ�v,�v)U

≤ 1 ∀�v ∈ VJ .

As noted in §7.1 the multigrid algorithm finds an approximation, �v1 say, to the
solution of HJ�v = �z. Moreover, HJ�v = �z can be expressed as (AJ + FJ )v = AJz,
where AJ and FJ are as in §4.2 and v and z are the coefficient vectors of �v and �z.
Now we define the matrix VJ such that V −1

J AJz = v1, where v1 is the coefficient

vector of �v1. That is to say, V −1
J is the matrix representation of the multigrid

operator V−1
J . With VJ defined in this way we have

(HJ�v,�v)U
(VJ�v,�v)U

=
Λ(�v,�v)

(VJ�v,�v)U
=

((AJ + FJ )v,v)

(A−1
J VJv,v)AJ

=
((AJ + FJ)v,v)

(VJv,v)
.

Therefore, (24) is satisfied with θ = 1−δ and θ = 1. Consequently, as θ governs the
values of the eigenvalue bounds described in Theorem 6, we expect the precondi-
tioned minres scheme given in §4.2 to converge independently of the discretization
parameters but not of the upper and lower bounds of the diffusion coefficient.

8. Numerical implementation

Our aim is to solve (12) via minres using the preconditioner (25). Recall that
N is a diagonal matrix and the action of V −1 is achieved by applying a V-cycle of
the multigrid algorithm analyzed in §7 to a system with the coefficient matrix

A+ F = G0 ⊗ (K0 +D0) +
m∑
r=1

√
λr Gr ⊗Kr.

The cost of computing the action of V −1 is clearly a crucial consideration, and we
now offer some practical insight into this.

The intergrid transfer operators are defined in the usual way. That is, prolon-
gation is achieved via natural inclusion and restriction is defined via transposition.
To describe the additive Schwarz smoother, let Hj = Aj +Fj denote the stochastic
weighted H(div) matrix associated with the triangulation Tj . This triangulation
is decomposed into Lj overlapping patches which constitute the elements of Dj as
described in §6.1. Then the matrix representation of Sj is given by

Sj = η

Lj∑
k=1

P k
j H

−1
j , P k

j = (I ⊗ Jk
j )

T (Hk
j )

−1(I ⊗ Jk
j )Hj ,

where (I ⊗ Jk
j ) is the patch restriction matrix, I is the M × M identity matrix,

and Jk
j ∈ R

NRj
×NRj is the standard matrix with entries zero or one that extracts

the components of w ∈ R
NRj which are associated with the k-th patch in Dj .

Following the advice in [1], we choose the scaling parameter in the definition of Sj

to be η = 1/2.
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Now, computing Sjv, where v ∈ R
MNRj , requires local solves with the matrices

Hk
j = G0 ⊗ (Kk

0,j +Dk
0,j) +

m∑
r=1

√
λr Gr ⊗Kk

r,j , k = 1, . . . , Lj ,(28)

where Kk
0,j , D

k
0,j , and Kk

r,j are small principal submatrices of K0,j , D0,j , and Kr,j ,
respectively. The major strength of this method is that the Lj solves are decoupled
and can (and should) be performed in parallel. The size of Hk

j is approximately
6M × 6M , where M is defined in (8) and six is the typical number of flux degrees
of freedom lying on a patch in Dj . We assume that these Lj systems are solved via
direct methods and so a few thousand stochastic degrees of freedom can be handled
comfortably in a parallel computing environment.

If parallel computing facilities are not available or M is in the order of hundreds
of thousands or more, then a cheaper smoother may have to be considered. We
outline one possibility. Suppose that we define a modified smoother Ŝj via

Ŝj = η

Lj∑
k=1

P k
j Ĥ

−1
j , P k

j = (I ⊗ Jk
j )

T (Ĥk
j )

−1(I ⊗ Jk
j )Ĥj ,

where, now,

Ĥk
j = G0 ⊗ (Kk

0,j +Dk
0,j), k = 1, . . . , Lj .

Then, Ĥk
j is a local version of the positive definite matrix

Ĥj = G0 ⊗ (K0,j +D0,j) ,

which is a stochastic H(div) matrix with a deterministic weight that provides a
representation of the norm

||c−
1
2

0 �v||2L2(D)2⊗L2(Ω) + ||∇ · �v||2L2(D)⊗L2(Ω)

on Rj ⊗ T. Crucially, since G0 is diagonal, then

(Ĥk
j )

−1 = G−1
0 ⊗

(
Kk

0,j +Dk
0,j

)−1

is block-diagonal and computing Ŝjv now requires LjM decoupled solves with ma-
trices of dimension approximately six. Each of these solves is a trivial cost and,
moreover, there are two levels of parallelism to exploit.

The analysis in §7 is valid only for the multigrid method that uses the smoother
(28). Consequently, we have no theoretical bounds for the constants θ and θ̄ in
(24) when V corresponds to the modified method. However, a preliminary analy-
sis suggests that if c0(�x) dominates in the expression (3), the resulting multigrid
approximation is efficient.

8.1. Model problem. We now solve (2) with f = 1 using uniformly refined meshes
of triangular finite elements on D = (−1, 1)× (−1, 1). The spatial grid consists of
d × d squares each of which is further subdivided into two equal triangles. The

random diffusion coefficient c(�x, �ξ(ω))−1 is chosen to be of the form (3) with the
covariance function

(29) C(�x, �y) = σ2 exp (−|x1 − y1| − |x2 − y2|) .
Note that the eigenvalues and eigenfunctions of this function are known explicitly
(see [12]). The random variables {ξr}mr=1 in (3) are assumed to be independent and
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identically distributed with zero mean and unit variance. If uniform random vari-
ables are selected, then Ω = [−

√
3,
√
3]m and multivariate Legendre polynomials of

total degree n are used to construct the polynomial chaos basis for T. Alternatively,
if Gaussian random variables are selected, then Ω = R

m and multivariate Hermite
polynomials are employed.

We investigate the performance of the preconditioner (25) with respect to the
discretization parameters h and n, the number of random variables m, and the
mean c0 and variance σ2 of c−1. In each experiment, we report preconditioned
minres iteration counts and assess the efficiency of the multigrid approximation
by computing the constants θ and θ̄ from (24). In each minres iteration, a single
V-cycle of multigrid is applied with a single pre- and post-smoothing step per grid
level. The iteration is terminated when the relative residual reaches a tolerance of
10−6. All experiments were performed on a modest single-processor Linux machine
with 2GB RAM.

8.2. Robustness with respect to discretization parameters. First we fix the

mean and standard deviation of c(�x, �ξ(ω))−1 to be c0 = 1 and σ = 0.1. Iteration
counts for solving this problem, using two types of random variables, are listed in
Tables 1 and 2. The numbers in parentheses in Table 1 indicate iterations obtained
with the exact preconditioner (23).

Table 1. Preconditioned minres iterations using multigrid with
original smoother

Uniform Gaussian
n m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

d = 16 1 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 2 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 3 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (6)
- 4 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
d = 32 1 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 2 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5)
- 3 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (6) 17 (5)
- 4 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (5) 17 (6) 17 (5)

Table 2. Preconditioned minres iterations using multigrid with
modified smoother

Uniform Gaussian
n m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4

d = 16 1 17 17 17 18 17 17 17 17
- 2 17 18 19 19 17 19 19 19
- 3 17 19 19 19 18 19 19 19
- 4 17 19 19 19 18 19 19 19
d = 32 1 17 17 17 18 17 17 17 18
- 2 17 18 18 18 18 18 18 19
- 3 17 18 18 18 18 18 18 19
- 4 17 18 18 18 18 18 19 19
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In both cases the results are robust with respect to h, n, and m. In the case
of Gaussian random variables, which are unbounded, condition (5) will not hold.
However, for low values of the discretization parameters, the discrete problem is
well-posed and our results show that in that range the method is robust. Since (5)
can’t be guaranteed for Gaussian random variables, we will only consider bounded
uniform random variables in the following experiments. In this example, modifying
the multigrid smoother also has little to no effect on the performance of the precon-
ditioning scheme. To reinforce this, in Table 3, we list the numerically computed
constants from (24) for both variants of the multigrid method.

Table 3. Multigrid constants, d = 8, [θ, θ̄], uniform random variables

n m = 1 m = 2 m = 3
Original (Uniform) 1 [0.4589,1.0000] [0.4589,1.0000] [0.4589,1.0000]
- 2 [0.4586,1.0000] [0.4587,1.0000] [0.4587,1.0000]

Original (Gaussian) 1 [0.4589,1.0000] [0.4589,1.0000] [0.4578,1.0000]
- 2 [0.4583,1.0000] [0.4584,1.0000] [0.4584,1.0000]

Modified (Uniform) 1 [0.4235,1.0003] [0.4217,1.0009] [0.4205,1.0013]
- 2 [0.4149,1.0000] [0.4103,1.0008] [0.4079,1.0012]

Modified (Gaussian) 1 [0.4235,1.0003] [0.4217,1.0009] [0.4205,1.0013]
- 2 [0.4049,1.0004] [0.4024,1.0008] [0.3862,1.0009]

8.3. Robustness with respect to amax. The experiment above is not challenging
from a statistical point of view. We know from Theorems 5 and 6 that iteration
counts are likely to be sensitive to the value amax in (5), even if the multigrid
approximation is not. Here, we vary the mean c0 and fix σ = c0/10 so that c0 is
the dominant term in (3) and amax = O(c0). We fix the discretization parameters
and choose uniform random variables.

Table 4. minres iterations and multigrid constantsm = 4, n = 2,
d = 32

Exact Original Modified
c0 σ iter iter [θ, θ̄] iter [θ, θ̄]

10−3 10−4 3 15 [0.4552,1.0000] 16 [0.4068,1.0008]
10−2 10−3 3 16 [0.4550,1.0000] 16 [0.4068,1.0008]
10−1 10−2 4 16 [0.4556,1.0000] 17 [0.4071,1.0008]
100 10−1 5 17 [0.3956,1.0000] 18 [0.4103,1.0008]
101 100 8 21 [0.4864,1.0000] 22 [0.4387,1.0005]
102 101 16 40 [0.6453,1.0000] 45 [0.5990,1.0000]
103 102 46 99 [0.9172,1.0000] 107 [0.8660,1.0013]

The results in Table 4 tell us that both multigrid approximations improve as c0 →
∞ and neither one deteriorates as c0 → 0. The deterioration in the minres iteration
counts as c0 → ∞ is not caused by a deficiency in the multigrid approximation but
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rather is a feature of the underlying exact preconditioner (23), as indicated by
the eigenvalue bound established in Theorem 5. This is a known feature of the
corresponding deterministic preconditioner. Ideally, (2) should be rescaled so that
for the rescaled diffusion coefficient, amax ≤ 1.

8.4. Robustness with respect to the ratio c−1
0 σ. It is known that precondi-

tioners for stochastic finite element systems that are based on the mean-component
of the diffusion coefficient are cheap but lose efficiency when c−1

0 σ → ∞. Theo-
rems 6 and 15 tell us that if V is based on our original multigrid method, then the
efficiency of (25) is affected by amax, and possibly amin, but not directly by the
ratio c−1

0 σ → ∞ (if amax remains bounded). To illustrate this, we fix c0 = 1 and
vary only σ. We fix all the discretization parameters and choose uniform random
variables.

Table 5. minres iteration counts, m = 4, n = 2, c0 = 1, d = 32

σ/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Exact 5 5 5 5 5 5 5
Original 17 17 17 17 17 19 19
Modified 18 20 21 24 28 * *

The iteration counts listed in Table 5 confirm that the preconditioning scheme
based on the original multigrid algorithm is insensitive to c−1

0 σ. Iteration counts
deteriorate, however, for the modified version and minres stagnates when c−1

0 σ
exceeds a certain threshold (indicated by ∗). This is to be expected since the
matrix

m∑
r=1

√
λr Gr ⊗Kr

which encapsulates the deviation of the diffusion coefficient from its mean value is
not taken into account in the smoothing. This causes the quality of the multigrid
approximation to deteriorate. To reinforce this, we list the associated multigrid
constants in Table 6 for d = 8. These results reinforce our earlier comment that the
modified method should only be considered if the deviation of c(�x, �ξ(ω))−1 from
the mean field is small.

Table 6. Multigrid constants [θ, θ̄] for modified smoother, c0 = 1,
d = 8

σ/c0 0.4 0.5 0.6
m = 2 n = 1 [0.2657, 1.0000] [0.2268, 1.0000] [0.1915, 1.0000]

n = 2 [0.2155, 1.0000] [0.1651, 1.0000] [0.1187, 1.0000]
m = 3 n = 1 [0.2574, 1.0000] [0.2179, 1.0000] [0.1822, 1.0000]

n = 2 [0.2072, 1.0000] [0.1529, 1.0000] [0.1035, 1.0000]
m = 4 n = 1 [0.2194, 1.0000] [0.2090, 1.0000] [0.1727, 1.0000]

n = 2 [0.1949, 1.0000] [0.1078, 1.0000] [-0.5426, 1.0000]
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