
A LOW-RANK SOLVER FOR THE STOCHASTIC UNSTEADY
NAVIER–STOKES PROBLEM∗

HOWARD C. ELMAN† AND TENGFEI SU‡

Abstract. We study a low-rank iterative solver for the unsteady Navier–Stokes equations for
incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic
Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all
the time steps are collected and solved simultaneously. The problem is linearized with Picard’s
method. To efficiently solve the linear systems at each step, we use low-rank tensor representations
within the Krylov subspace method, which leads to significant reductions in storage requirements and
computational costs. Combined with effective mean-based preconditioners and the idea of inexact
solve, we show that only a small number of linear iterations are needed at each Picard step. The
proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with
different settings to demonstrate the computational efficiency.

Key words. time-dependent Navier–Stokes, stochastic Galerkin method, all-at-once system,
low-rank tensor approximation

AMS subject classifications. 35R60, 60H35, 65F08, 65F10, 65N22

1. Introduction. Stochastic partial differential equations (PDEs) are widely
used to model physical problems with uncertainty [16]. In this paper, we develop
some new computational methods for solving the stochastic unsteady Navier–Stokes
equations, using stochastic Galerkin methods [11] to address the stochastic nature of
the problem and so-called all-at-once treatment of time integration.

For a time-dependent problem, the solutions at different time steps are usually
computed in a sequential manner via time stepping. For example, a fully-implicit
scheme with adaptive time step sizes was studied in [7, 14]. On the other hand, an
all-at-once system can be formed by collecting the algebraic systems at all the discrete
time steps into a single one, and the solutions are computed simultaneously. Such
a formulation avoids the serial nature of time stepping, and allows parallelization in
the time direction for accelerating the solution procedure [10, 18, 19]. A drawback,
however, is that for large-size problems, the all-at-once system may require excessive
storage. In this study, we address this issue by using a low-rank tensor representation
of data within the solution methods.

We develop a low-rank iterative algorithm for solving the unsteady Navier–Stokes
equations with an uncertain viscosity. The equations are linearized with Picard’s
method. At each step of the nonlinear iteration, the stochastic Galerkin discretization
gives rise to a large linear system, which is solved by a Krylov subspace method.
Similar approaches have been used to study the steady-state problem [23, 27], where
the authors also proposed effective preconditioners by taking advantage of the special
structures of the linear systems. To reduce memory and computational costs, we
compute low-rank approximations to the discrete solutions, which are represented
as three-dimensional tensors in the all-at-once formulation. We refer to [12] for a

∗This work was supported by the U.S. Department of Energy Office of Advanced Scientific Com-
puting Research, Applied Mathematics program under award DE-SC0009301 and by the U.S. Na-
tional Science Foundation under grant DMS1819115.
†Department of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, MD 20742 (elman@cs.umd.edu).
‡Applied Mathematics & Statistics, and Scientific Computation Program, University of Maryland,

College Park, MD 20742 (tengfesu@math.umd.edu).

1

ar
X

iv
:1

90
6.

06
78

5v
1

 [
m

at
h.

N
A

]
 1

6
Ju

n
20

19

mailto:elman@cs.umd.edu
mailto:tengfesu@math.umd.edu

2 H. C. ELMAN AND T. SU

review of low-rank tensor approximation techniques, and we will use the tensor train
decomposition [21] in this work. The tensor train decomposition allows efficient basic
operations on tensors. A truncation procedure is also available to compress low-rank
tensors in the tensor train format to ones with smaller ranks.

Our goal is to use the low-rank tensors within Krylov subspace methods, in order
to efficiently solve the large linear systems arising in each nonlinear step. The basic
idea is to represent all the vector quantities that arise during the course of a Krylov
subspace computation as low-rank tensors. With this strategy, much less memory
is needed to store the data produced during the iteration. Moreover, the associated
computations, such as matrix-vector products and vector additions, become much
cheaper. The tensors are compressed in each iteration to maintain low ranks. This idea
has been used for the conjugate gradient (CG) method and the generalized minimal
residual (GMRES) method, with different low-rank tensor formats [1, 2, 5, 15]. In
addition, the convergence of Krylov subspace methods can be greatly improved by
an effective preconditioner. In conjunction with the savings achieved through low-
rank tensor computations, we will derive preconditioners for the stochastic all-at-once
formulation based on some state-of-the-art techniques used for deterministic problems,
and we will demonstrate their performances in numerical experiments. We also explore
the idea of inexact Picard methods where the linear systems are solved inexactly at
each Picard step to further save computational work, and we show that with this
strategy very small numbers of iterations are needed for the Krylov subspace method.

We note that a different type of approach, the alternating iterative methods [6,
13, 25], including the density matrix renormalization group (DMRG) algorithm and
its variants, can be used for solving linear systems in the tensor train format. In
these methods, each component of the low-rank solution tensor is approached directly
and optimized by projecting to a small local problem. This approach avoids the rank
growth in intermediate iterates typically encountered in a low-rank Krylov subspace
method. However, these methods are developed for solving symmetric positive definite
systems and require nontrivial effort to be adapted for a nonsymmetric Navier–Stokes
problem.

The rest of the paper is organized as follows. In section 2 we give a formal
presentation of the problem. Discretization techniques that result in an all-at-once
linear system at each Picard step are discussed in section 3. In section 4 we introduce
the low-rank tensor approximation and propose a low-rank Krylov subspace iterative
solver for the all-at-once systems. The preconditioners are derived in section 5 and
numerical results are given in section 6.

2. Problem setting. Consider the unsteady Navier–Stokes equations for in-
compressible flows on a space-time domain D × (0, tf],

(2.1)

∂~u

∂t
−∇ · (ν∇~u) + ~u · ∇~u+∇p = ~0,

∇ · ~u = 0,

where ~u and p stand for the velocity and pressure, respectively, ν is the viscosity,
and D is a two-dimensional spatial domain with boundary ∂D = ∂DD ∪ ∂DN. The
Dirichlet boundary ∂DD consists of an inflow boundary and fixed walls, and Neumann
boundary conditions are set for the outflow,

(2.2)
~u = ~uD on ∂DD,

ν∇~u · ~n− p~n = ~0 on ∂DN.

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 3

We assume the Neumann boundary ∂DN is not empty so that the pressure p is uniquely
determined. The function ~uD(x, t) denotes a time-dependent inflow, typically growing
from zero to a steady state, and it is set to zero at fixed walls. The initial conditions
are zero everywhere for both ~u and p.

The uncertainty in the problem is introduced by a stochastic viscosity ν, which is
modeled as a random field depending on a finite collection of random variables {ξl}ml=1

(or written as a vector ξ). Specifically, we consider a representation as a truncated
Karhunen–Loève (KL, [17]) expansion,

(2.3) ν(x, ξ) = ν0(x) +

m∑
l=1

νl(x)ξl,

where ν0 is the mean viscosity, and {νl}ml=1 are determined by the covariance function
of ν. We assume that the random parameters {ξl}ml=1 are independent and that the
viscosity satisfies ν(x, ξ) ≥ νmin > 0 almost surely for any x ∈ D. We refer to [23, 27]
for different forms of the stochastic viscosity. The solutions ~u and p in (2.1) will also
be random fields which depend on the space parameter x, time t, and the random
variables ξ.

3. Discrete problem. In this section, we derive a fully discrete problem for the
stochastic unsteady Navier–Stokes equations (2.1). This involves a time discretization
scheme and a stochastic Galerkin discretization for the physical and parameter spaces
at each time step. The discretizations give rise to a nonlinear algebraic system.
Instead of solving such a system at each time step, we collect the systems from all
time steps to form an all-at-once system, where the discrete solutions at all the time
steps are solved simultaneously. The discrete problem is then linearized with Picard’s
method, and a large linear system is solved at each step of the nonlinear iteration.

3.1. Time discretization. For simplicity we use the backward Euler method
for time discretization, which is first-order accurate but unconditionally stable and
dissipative. The all-at-once formulation discussed later in section 3.3 requires prede-
termined time steps. Divide the interval (0, tf] into nt uniform steps {tk}ntk=1 with
step size τ = tf/nt and initial time t0 = 0. Given the solution at time tk−1, we need
to solve the following equations for ~uk and pk:

(3.1)

~uk − ~uk−1

τ
−∇ · (ν∇~uk) + ~uk · ∇~uk +∇pk = ~0,

∇ · ~uk = 0.

After discretization (in physical space and parameter space) the implicit method re-
quires solving an algebraic system at each time step. In the following we discuss how
the system is assembled from the stochastic Galerkin discretization of (3.1).

3.2. Stochastic Galerkin method. At time step k, the stochastic Galerkin
method finds parametrized approximate velocity solutions ~ukh and pressure solutions
pkh in finite-dimensional subspaces of (H1(D))2 ⊗ L2(Γ) and L2(D)⊗ L2(Γ), where Γ
is the joint image of the random variables {ξl}. The functional spaces are defined as
follows,

(3.2)
(H1(D))2 ⊗ L2(Γ) :=

{
~v : D × Γ→ R | E

[
‖~v‖2(H1(D))2

]
<∞

}
,

L2(D)⊗ L2(Γ) :=
{
q : D × Γ→ R | E

[
‖q‖2L2(D)

]
<∞

}
.

4 H. C. ELMAN AND T. SU

The expectations are taken with respect to the joint distribution of the random vari-
ables {ξl}. In the following we use 〈·〉 to denote the expected value. Let the finite-

dimensional subspaces be X = span{~φi(x)} ⊂ (H1(D))2, Y = span{ϕi(x)} ⊂ L2(D),
and Z = span{ψr(ξ)} ⊂ L2(Γ). Let X kD and X0 be the spaces of functions in X with

Dirichlet boundary conditions ~uD(x, tk) and ~0 imposed for the velocity field, respec-
tively. Then for (3.1) the stochastic Galerkin formulation entails the computation of
~ukh ∈ X kD ⊗Z and pkh ∈ Y ⊗ Z, satisfying the weak form

(3.3)

τ−1〈(~ukh, ~vh)〉 − τ−1〈(~uk−1h , ~vh)〉+ 〈(ν∇~ukh,∇~vh)〉
+ 〈(~ukh · ∇~ukh, ~vh)〉 − 〈(pkh,∇ · ~vh)〉 = 0,

〈(∇ · ~ukh, qh)〉 = 0,

for any ~vh ∈ X0 ⊗ Z and qh ∈ Y ⊗ Z. Here, (·, ·) denotes the inner product in
L2(D). For the physical spaces, we use a div-stable Taylor–Hood discretization [8] on

quadrilateral elements, with biquadratic basis functions {~φi}nui=1 =
{(

φi
0

)
,
(

0
φi

)}nu/2
i=1

for velocity, and bilinear basis functions {ϕi}
np
i=1 for pressure. The stochastic ba-

sis functions {ψr}
nξ
r=1 are m-dimensional orthonormal polynomials constructed from

generalized polynomial chaos (gPC, [28]) satisfying 〈ψrψs〉 = δrs. The stochastic
Galerkin solutions are expressed as linear combinations of the basis functions,

(3.4)

~ukh(x, ξ) =

nξ∑
s=1

nu∑
j=1

ukjs
~φj(x)ψs(ξ),

pkh(x, ξ) =

nξ∑
s=1

np∑
j=1

pkjsϕj(x)ψs(ξ).

The coefficient vectors uk = [uk11, u
k
21, . . . , u

k
nu1, . . . , u

k
1nξ

, uk2nξ , . . . , u
k
nunξ

] and simi-

larly defined pk are computed from the nonlinear algebraic system

(3.5)

(
Fk(u) Inξ ⊗BT
Inξ ⊗B 0

)(
uk

pk

)
+

(
−τ−1(Inξ ⊗M) 0

0 0

)(
uk−1

pk−1

)
=

(
fu,k

fp,k

)
where

(3.6) Fk(u) = τ−1(Inξ ⊗M) +

m∑
l=0

(Gl ⊗Al) +

nξ∑
l=1

(Hl ⊗N(~ukh,l)).

Here Inξ is the nξ × nξ identity matrix, and ⊗ denotes the Kronecker product of

two matrices. The boldface matrices M , Al, and N(~ukh,l) are 2 × 2 block-diagonal,
with the scalar mass matrix M , weighted stiffness matrix Al, and discrete convection
operator N(~ukh,l) as diagonal components, where

(3.7) [M]ij = (φj , φi), [Al]ij = (νl∇φj ,∇φi), [N(~ukh,l)]ij = (~ukh,l · ∇φj , φi),

for i, j = 1, . . . , nu/2. Note the dependency on uk comes from the nonlinear convection

term N , with convection velocity ~ukh,l =
∑
j u

k
jl
~φj(x). Let x = (x1, x2). The discrete

divergence operator B = [Bx1 , Bx2], with

(3.8) [Bx1
]ij = −(ϕi,

∂φj
∂x1

), [Bx2
]ij = −(ϕi,

∂φj
∂x2

),

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 5

for i = 1, . . . , np and j = 1, . . . , nu/2. The matrices {Gl}ml=0 and {Hl}
nξ
l=1 of (3.6)

come from the stochastic basis functions and have entries

(3.9) [Gl]rs = 〈ξlψrψs〉, [Hl]rs = 〈ψlψrψs〉,

for r, s = 1, . . . , nξ, where ξ0 ≡ 1. These matrices are also sparse due to orthogonality
of the basis functions [9]. The Dirichlet boundary conditions are incorporated in the
right-hand side of (3.5).

3.3. All-at-once system. As discussed in the beginning of the section, we con-
sider an all-at-once system where the discrete solutions at all the time steps are
computed together. Let

(3.10) u =

u1

u2

...
unt

 ∈ Rntnξnu

and let p, fu, and fp be similarly defined. By collecting the algebraic systems (3.5)
corresponding to all the time steps {tk}ntk=1, we get the single system

(3.11)

(
F(u) + C BT

B 0

)(
u
p

)
=

(
fu

fp

)
,

where F(u) is block diagonal with Fk(u) as the kth diagonal block, B = Int⊗Inξ⊗B,

and C = −τ−1Cnt ⊗ Inξ ⊗M with Cnt =

(0
1 0

. . .
. . .
1 0

)
∈ Rnt×nt . Note that the

zero initial conditions are incorporated in (3.5) for k = 1. The all-at-once system
(3.11) is nonsymmetric and blockwise sparse. Each part of the system contains sums

of Kronecker products of three matrices, i.e., in the form
∑
lX

(1)
l ⊗X(2)

l ⊗X(3)
l . In

fact, from (3.6),

(3.12) F(u) = τ−1Int ⊗ Inξ ⊗M +

m∑
l=0

(Int ⊗Gl ⊗Al) + N(u).

We discuss later (see section 4.3) how the convection matrix N can also be put in
the Kronecker product form. It will be seen that this structure is useful for efficient
matrix-vector product computations.

3.4. Picard’s method. We use Picard’s method to solve the nonlinear equation
(3.11). Picard’s method is a fixed-point iteration. Let u(i), p(i) be the approximate
solutions at the ith step. Each Picard step entails solving a large linear system

(3.13)

(
F(u(i−1)) + C BT

B 0

)(
u(i)

p(i)

)
=

(
fu

fp

)
.

Instead of (3.13), one can equivalently solve the corresponding residual equation for
a correction of the solution. Let u(i) = u(i−1) + δu(i), p(i) = p(i−1) + δp(i). Then
δu(i) and δp(i) satisfy

(3.14)

(
F(u(i−1)) + C BT

B 0

)(
δu(i)

δp(i)

)
=

(
ru,(i−1)

rp,(i−1)

)
,

6 H. C. ELMAN AND T. SU

where the nonlinear residual is

(3.15) r(i) =

(
ru,(i)

rp,(i)

)
=

(
fu

fp

)
−
(
F(u(i)) + C BT

B 0

)(
u(i)

p(i)

)
.

Let f denote the right-hand side of (3.11). The complete algorithm is summarized in
Algorithm 3.1. The initial iterates u(0), p(0) are obtained as the solution of a Stokes
problem, for which in (3.13) the convection matrix N is set to zero.

Algorithm 3.1 Picard’s method

1: Solve Stokes problem for initial u(0), p(0), update convection matrix N(u(0)), and
compute nonlinear residual r(0). i = 0.

2: while ‖r(i)‖2 > tolpicard ∗ ‖f‖2 and i < maxit do
3: i = i+ 1
4: Solve linear system (3.14) for δu(i), δp(i)

5: Update solution u(i), p(i)

6: Update convection matrix N(u(i))
7: Compute nonlinear residual r(i)

8: end while
9: return u(i), p(i)

4. Low-rank approximation. In this section we discuss low-rank approxima-
tion techniques and how they can be used with iterative solvers. The computa-
tional cost of solving (3.14) at each Picard step is high due to the large problem size
ntnξ(nu + np), especially when large numbers of spatial grid points or time steps are
used to achieve high-resolution solution. We will address this using low-rank tensor
approximations to the solution vectors u and p. We will develop efficient iterative
solvers and preconditioners where the solution is approximated using a compressed
data representation in order to greatly reduce memory requirements and computa-
tional effort. The idea is to represent the iterates in an approximate Krylov subspace
method in a low-rank tensor format. The basic operations associated with the low-
rank format are much cheaper, and as the Krylov subspace method converges it
constructs a sequence of low-rank approximations to the solution of the system.

4.1. Tensor train decomposition. A tensor z ∈ Rn1×···×nd is a multidimen-
sional array with entries z(i1, . . . , id), where il = 1, . . . , nl, l = 1, . . . , d. The solution
coefficients in (3.4) can be represented in the form of three-dimensional nt×nξ×nx ten-
sors u (where nx = nu) and p (nx = np), such that u(k, s, j) = ukjs and p(k, s, j) = pkjs.
Equivalently, such tensors can be represented in vector format, where the vector ver-
sion u and p are specified using the vectorization operation

(4.1) u = vec(u) ⇔ u(i1i2i3) = u(i1, i2, i3)

where i1i2i3 = i3 + (i2 − 1)nx + (i1 − 1)nξnx, and p = vec(p) in a similar manner. In
an iterative solver for the system (3.14), any iterate z can be equivalently represented
as a three-dimensional tensor z ∈ Rnt×nξ×nx . In the sequel we use vector z and
tensor z interchangebly. The tensor train decomposition [21] is a compressed low-rank
representation to approximate a given tensor and efficiently perform tensor operations.
Specifically, the tensor train format of z is defined as

(4.2) z(i1, i2, i3) ≈
∑
α1,α2

z(1)(i1, α1)z(2)(α1, i2, α2)z(3)(α2, i3),

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 7

where z(1) ∈ Rnt×κ1 , z(2) ∈ Rκ1×nξ×κ2 , z(3) ∈ Rκ2×nx are the tensor train cores, and
κ1 and κ2 are called the tensor train ranks. It is easy to see that if κ1, κ2 ≈ κ and κ is
small, the memory cost to store z is reduced from O(ntnξnx) to O((nt +nξκ+nx)κ).

The tensor train decomposition allows efficient basic operations on tensors. Most
importantly, matrix-vector products can be computed much less expensively if the
vector z is in the tensor train format. For z as in (4.2), the vector z has an equivalent
Kronecker product form [6]

(4.3) z = vec(z) =
∑
α1,α2

z(1)α1
⊗ z(2)α1,α2

⊗ z(3)α2
,

where in the right-hand side z
(1)
α1 , z

(2)
α1,α2 , and z

(3)
α2 are vectors of length nt, nξ, and

nx, respectively, obtained by fixing the indices α1 and α2 in z(1), z(2), and z(3). Then
for any matrix X = X(1) ⊗X(2) ⊗X(3), such as the blocks in (3.14),

(4.4) Xz =
∑
α1,α2

(X(1)z(1)α1
)⊗ (X(2)z(2)α1,α2

)⊗ (X(3)z(3)α2
).

The product is also in tensor train format with the same ranks as in z (of the right-
hand side of (4.2)), and it only requires matrix-vector products for each component of
X. From left to right in the Kronecker products, the component matrices from (3.12)
are sparse with numbers of nonzeros proportional to nt, nξ, and nx, respectively, and
the computational cost is thus reduced from O(ntnξnx) to O((nt + nξκ+ nx)κ).

Other vector computations, including additions and inner products, are also in-
expensive with the tensor train format. One thing to note is that the additions of two
vectors in tensor train format will tend to increase the ranks. This can be easily seen
from (4.2), since the addition of two low-rank tensors end up with more terms for
the summation on the right-hand side. An important operation for the tensor train
format is a truncation (or rounding) operation, used to reduce the ranks for tensors
that are already in the tensor train format but have suboptimal high ranks. For a
given tensor z as in (4.2), the truncation operation T with tolerance ε computes

(4.5) z̃ = Tε(z),

such that z̃ has smaller ranks than z and satisfies the relative error

(4.6) ‖z̃ − z‖F /‖z‖F ≤ ε.

(Note that ‖z‖F = ‖z‖2.) The truncation operator is based on the TT-SVD algo-
rithm [21], given in Algorithm 4.1, which is used to compute a low-rank tensor train
approximation for a full tensor z ∈ Rn1×···×nd . In the algorithm, a sequence of sin-
gular value decompositions (SVDs) is computed for the so-called unfolding matrix Z,
obtained by reshaping the entries of a tensor into a two-dimensional array. Terms
corresponding to small singular values are dropped such that an error E in the trun-
cated SVD satisfies ‖E‖F ≤ δj , j = 1, . . . , d− 1 (see line 4 of Algorithm 4.1). It was
shown in [21] that the algorithm produces a tensor train z̃ that satisfies

(4.7) ‖z − z̃‖F ≤
(d−1∑
k=1

δ2k

)1/2
.

Thus, one can choose δ1 = · · · = δd−1 = ε‖z‖F /
√
d− 1 to make the relative error

‖z̃ − z‖F /‖z‖F ≤ ε. Note the algorithm is costly since it requires SVDs on matrices

8 H. C. ELMAN AND T. SU

Z ∈ Rκj−1nj×nj+1···nd . However, when the tensor z is already in the tensor train
format, the computation can be greatly simplified, and only SVDs on the much smaller
tensor train cores are needed. In this case, the cost of the truncation operation is
O(dnκ3) if n1, . . . , nd ≈ n and κ1, . . . , κd−1 ≈ κ. We refer to [21] for more details. In
the numerical experiments, we use TT-Toolbox [22] for tensor train computations.

Algorithm 4.1 TT-SVD

1: Let Z = z. Set truncation parameters {δj}. κ0 = 1.
2: for j = 1, . . . , d− 1 do
3: Z ← reshape(Z, [κj−1nj , nj+1 · · ·nd])
4: Compute truncated SVD Z = UΣV T + E, ‖E‖F ≤ δj , κj = rank(Σ)

5: New core z̃(j) ← reshape(U, [κj−1, nj , κj])
6: Update Z ← ΣV T

7: end for
8: New core z̃(d) ← Z
9: return z̃ in tensor train format with cores {z̃(j)}

4.2. Low-rank solver. The tensor train decomposition offers efficient tensor
operations and we use it in iterative solvers to reduce the computational costs. The
all-at-once system (3.14) to be solved at each step of Picard’s method is nonsymmetric.
We use a right-preconditioned GMRES method to solve the system. The complete
algorithm for solving L z = b is summarized in Algorithm 4.2. The preconditioner
P−1 entails an inner iterative process and is not fixed for each GMRES iteration,
and therefore a variant of the flexible GMRES method (see, e.g., [24]) is used. As
discussed above, all the iterates in the algorithm are represented in the tensor train
format for efficient computations, and a truncation operation with tolerance εgmres is
used to compress the tensor train ranks so that they stay small relative to the problem
size. It should be noted that since the quantities are truncated, the Arnoldi vectors
{vi} do not form orthogonal basis for the Krylov subspace, and thus this is not a true
GMRES computation. When the algorithm is used for solving (3.14), the truncation
operator is applied to quantities associated with the two tensor trains δu(i) and δp(i)

separately. In section 5, we construct effective preconditioners for the system (3.14).
We also use the tensor train decomposition to construct a more efficient variant

of Algorithm 3.1. In particular, the updated solutions u(i) and p(i) in line 5 are
truncated, with a tolerance εsoln, so that

(4.8) u(i) = Tεsoln(u(i−1) + δu(i)), p(i) = Tεsoln(p(i−1) + δp(i)).

Another truncation operation with εgmres is applied to compress the ranks of the
nonlinear residual r(i) in line 7. We will use this truncated version of Algorithm 3.1
in numerical experiments; choices of the truncation tolerances will be specified in
section 6.

4.3. Convection matrix. We now show that in (3.12) if the velocity u is in
the tensor train format, the convection matrix N(u) can be represented as a sum
of Kronecker products of matrices [3], which allows efficient matrix-vector product
computations as in (4.4). Assume the coefficient tensor in (3.4) is approximated by a
tensor train decomposition,

(4.9) ukjl = u(k, l, j) =
∑
α1,α2

u(1)(k, α1)u(2)(α1, l, α2)u(3)(α2, j).

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 9

Algorithm 4.2 Low-rank GMRES method

1: Choose initial z0, compute s0 = Tεgmres
(b−L z0), β = ‖s0‖2, and v1 = s0/β. Let

k = 0.
2: while ‖sk‖2 > tolgmres ∗ ‖b‖2 and k < maxit do
3: k = k + 1
4: Compute v̂k = P−1vk
5: Compute x = Tεgmres

(L v̂k)
6: for i = 1, . . . , k do
7: hik = xTvi
8: x = x− hikvi
9: end for

10: hk+1,k = ‖x‖2, vk+1 = Tεgmres
(x/hk+1,k)

11: Define V̂k = [v̂1, . . . , v̂k] and H̄ ∈ R(k+1)×k with H̄ij = hij
12: Compute yk = argminy‖βe1 − H̄y‖2, where e1 = [1, 0, . . . , 0]T

13: Compute zk = Tεgmres
(z0 + V̂kyk)

14: Compute sk = Tεgmres
(b−L zk)

15: end while
16: return zk

Note that the entries of N(~ukh,l) are linear in ~ukh,l and

(4.10) ~ukh,l =
∑
j

ukjl
~φj(x) =

∑
α1,α2

u(1)(k, α1)u(2)(α1, l, α2)(
∑
j

u(3)(α2, j)~φj(x)).

Let ~u
(3)
α2 =

∑
j u

(3)(α2, j)~φj(x). Then the kth diagonal block of N(u) is

(4.11)

nξ∑
l=1

(Hl ⊗N(~ukh,l)) =
∑
α1,α2

u(1)(k, α1)

nξ∑
l=1

(u(2)(α1, l, α2)Hl)⊗N(~u(3)α2
).

The convection matrix N(u) can be expressed as

(4.12) N(u) =
∑
α1,α2

diag(u(1)α1
)⊗

nξ∑
l=1

(u(2)(α1, l, α2)Hl)⊗N(~u(3)α2
).

Here u
(1)
α1 is a vector obtained by fixing the index α1 in u(1), and diag(u

(1)
α1) is a

diagonal matrix with u
(1)
α1 on the diagonal. The result is a sum of Kronecker products

of three smaller matrices. Such a representation can be constructed for any iterate
u(i) in the tensor train format.

Given the number of terms in the summation in the right-hand side of (4.12),
the matrix-vector product with N will result in a dramatic tensor train rank increase,
from κ to κ2. Unless κ is very small, a tensor train with rank κ2 will require too much
memory and also be expensive to work with. To overcome this difficulty, when solving
the all-at-once system (3.14), we use a low-rank approximation of u(i) to construct
N(u(i)). Specifically, let

(4.13) ũ(i) = Tεconv(u(i))

with some truncation tolerance εconv. Since ũ(i) has smaller ranks than u(i), the
approximate convection matrix N(ũ(i)) contains a smaller number of terms in (4.12),

10 H. C. ELMAN AND T. SU

and thus the rank increase becomes less significant when computing matrix-vector
products with it. In other words, the linear system solved at each Picard step becomes

(4.14)

(
F(ũ(i−1)) + C BT

B 0

)(
δu(i)

δp(i)

)
=

(
ru,(i−1)

rp,(i−1)

)
.

Note that the original u(i) is still used for computing the nonlinear residual r(i) in
Picard’s method.

5. Preconditioning. In this section we discuss preconditioning techniques for
the all-at-once system (3.14) so that the Krylov subspace methods converge in a small
number of iterations. To simplify the notation, we use w instead of u(i−1), and the
associated approximate solution at the kth time step is

(5.1) ~wkh(x, ξ) =

nξ∑
l=1

nu∑
j=1

wkjl
~φj(x)ψl(ξ) =

nξ∑
l=1

~wkh,l(x)ψl(ξ)

with ~wkh,l(x) =
∑
j w

k
jl
~φj(x). In the following the dependence on w in F(w) is omitted

in most cases. We derive a preconditioner by extending ideas for more standard
problems [8], starting with an “idealized” block triangular preconditioner

(5.2) P =

(
F + C BT

0 −S

)
.

With this choice of preconditioner, the Schur complement is S = B(F + C)−1BT , and
the idealized preconditioned system derived from a block factorization

(5.3)

(
F + C BT
B 0

)
P−1 =

(
I 0

BF−1 I

)
has eigenvalues equal to 1 and Jordan blocks of order 2. (Here I is an identity block.)
Thus a right-preconditioned true GMRES method will converge in two iterations.
However, the application of P−1 involves solving linear systems associated with S and
F + C. These are too expensive for practical computation and to develop precondi-
tioners we will construct inexpensive approximations to the linear solves. Specifically,
we derive mean-based preconditioners that use results from the mean deterministic
problem. Such preconditioners for the stochastic steady-state Navier–Stokes equations
have been studied in [23]. We generalize the techniques for the all-at-once formulation
of the unsteady equations.

5.1. Deterministic operator. We review the techniques used for approximat-
ing the Schur complement in the deterministic case [8]. The approximations are based
on the fact that a commutator of the convection-diffusion operator with the divergence
operator

(5.4) E = ∇ · (−ν∇2 + ~wkh,1 · ∇)− (−ν∇2 + ~wkh,1 · ∇)p∇·

is small under certain assumptions about smoothness and boundary conditions. The
subscript p means the operators are defined on the pressure space. For a discrete
convection-diffusion operator F = A0 +N(~wkh,1) (which is part of the mean problem
we discuss later), as defined in (3.7), an approximation to the Schur complement
S = BF−1BT is identified from a discrete analogue of (5.4),

(5.5) E = (M−1p B)(M−1F)− (M−1p Fp)(M
−1
p B) ≈ 0,

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 11

where the subscript p means the corresponding matrices constructed on the discrete
pressure space. Equation (5.5) leads to an approximation to the Schur complement
matrix,

(5.6) S = BF−1BT ≈MpF
−1
p BM−1BT .

The pressure convection-diffusion (PCD) preconditioner is constructed by replacing
the mass matrices with approximations containing only their diagonal entries (denoted
by a subscript ∗) in (5.6),

(5.7) S−1PCD = (BM−1
∗ BT)−1FpM

−1
p∗ .

The least-squares commutator (LSC) preconditioner avoids the construction of ma-
trices on the pressure space, with the approximation to Fp,

(5.8) Fp ≈ (BM−1FM−1BT)(BM−1BT)−1Mp

(see [8, section 9.2] for a derivation). The LSC preconditioner is obtained by substi-
tuting Fp in (5.6) and replacing the mass matrices with their diagonals,

(5.9) S−1LSC = (BM−1
∗ BT)−1(BM−1

∗ FM−1
∗ BT)(BM−1

∗ BT)−1.

For both preconditioners, the only use of the matrices F and Fp is through matrix-
vector products with them.

5.2. Approximations to S−1. The Schur complement S involves (F + C)−1

and is impractical to work with. For our stochastic unsteady problem, we consider
mean-based preconditioners that use approximations to the Schur complement matrix

(5.10) S0 = B(F0 + C)−1BT ,

where the “mean” matrix F0 is block-diagonal with Fk0 as the kth diagonal block, and

(5.11) Fk0 = τ−1(Inξ ⊗M) + Inξ ⊗A0 + Inξ ⊗N(~wkh,1).

This corresponds to taking only the first term in the two summations on the right-
hand side of (3.6). Since the gPC basis functions are orthonormal with 〈ψrψs〉 = δrs
and ψ1 ≡ 1, it follows 〈ψs〉 = δ1s, and G0 = H1 = Inξ . The matrices A0 and N(~wkh,1)

are constructed from the mean of ν and ~wkh,

(5.12) 〈ν〉 = ν0, 〈~wkh〉 =
∑

j
wkj1

~φj(x) = ~wkh,1.

The matrix Fk0 can be expressed as Inξ ⊗ (τ−1M + A0 + N(~wkh,1)) and this enables
use of approximations associated with a deterministic problem. Now, similarly define
Fp,0 on the pressure space, with

(5.13) Fkp,0 = τ−1(Inξ ⊗Mp) + Inξ ⊗Ap,0 + Inξ ⊗Np(~wkh,1).

Let M = Int ⊗ Inξ ⊗M and Mp = Int ⊗ Inξ ⊗Mp. Assuming the validity of (5.5) it
is easy to check that

(5.14) M−1p BM−1F0 −M−1p Fp,0M−1p B ≈ 0.

12 H. C. ELMAN AND T. SU

On the other hand, let Cp = −τ−1Cnt ⊗ Inξ ⊗Mp, so that C satisfies

(5.15) M−1p BM−1C−M−1p CpM−1p B = 0.

Combining (5.14) and (5.15) gives an approximation to S0,

(5.16) S0 = B(F0 + C)−1BT ≈Mp(Fp,0 + Cp)−1BM−1BT .

Then the mean-based PCD preconditioner is given as

(5.17) S−1PCD,0 = (BM−1∗ BT)−1(Fp,0 + Cp)M−1p∗ ,

where M∗ = Int ⊗ Inξ ⊗M∗ and Mp∗ = Int ⊗ Inξ ⊗Mp∗. Similarly from (5.8), it holds
that

(5.18) Fp,0 + Cp ≈ (BM−1(F0 + C)M−1BT)(BM−1B)−1Mp.

Substituting Fp,0 + Cp in (5.17) and replacement of the mass matrices with their
diagonals gives the mean-based LSC preconditioner

(5.19) S−1LSC,0 = (BM−1∗ BT)−1(BM−1∗ (F0 + C)M−1∗ BT)(BM−1∗ BT)−1.

The two mean-based preconditioners in (5.17) and (5.19) have the same form as for
the deterministic problem, except that there is an extra term C or Cp from the all-
at-once formulation. Computations associated with the two approximations to the
Schur complement are also inexpensive. For example, (BM−1∗ BT)−1 = Int ⊗ Inξ ⊗
(BM−1

∗ BT)−1, and this only requires solving a system with BM−1
∗ BT a discrete

Laplacian. Multiplications with the mean matrix F0+C are reduced to its components
(see (4.4)),

(5.20) F0 + C = τ−1(Int ⊗ Inξ ⊗M) + Int ⊗ Inξ ⊗A0 + N0 − τ−1(Cnt ⊗ Inξ ⊗M).

The matrix N0 is block-diagonal with Nk0 = Inξ ⊗N(~wkh,1) and can be expressed as a
sum of Kronecker products of matrices as discussed in section 4.3,

(5.21) N0(w) =
∑
α1,α2

diag(w(1)
α1

)⊗ (w(2)(α1, 1, α2)Inξ)⊗N(~w(3)
α2

).

5.3. System solve with F + C. The application of the preconditioner P−1 in
(5.2) also involves solving a linear system associated with the (1,1) block F + C. For
approximation, we replace it with the mean matrix F0 +C, and solve a system of the
form

(5.22) (F0 + C)v = y.

For such a system it is easy to compute matrix-vector products and we again use
a low-rank GMRES method for solving the system. This inner GMRES solver is
preconditioned with

(5.23) M = (Int − Cnt)⊗ Inξ ⊗ (τ−1M + A0 + N(~wavg
h,1)),

where ~wavg
h,1 is the average of ~wkh,1 over all time steps. For small time step τ , the

contribution from the mass matrix, τ−1M , becomes dominant and M forms a good
approximation to the coefficient matrix F0 + C. The application of M−1 is also
conveniently reduced to computations associated with smaller matrices. We note
that (5.22) need not be solved accurately. In particular, with a stopping criterion
‖y − (F0 + C)v‖2 ≤ tol‖y‖2, a relatively large stopping tolerance, e.g., tol = 10−1,
will suffice for the mean-based preconditioner P to be effective.

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 13

Remark 5.1. For systems like (5.22), a block diagonal preconditioner (M = F0)
was studied in [20], where it was shown that preconditioned GMRES converges very
slowly before a sharp drop in the residual occurs when the number of iterations reaches
nt, which is equal to the number of diagonal blocks. In numerical experiments, we
found that the preconditioner in (5.23) is more effective than a block diagonal one,
for which performance deteriorates as τ becomes smaller.

6. Numerical experiments.

6.1. Benchmark problem. Consider a flow around a symmetric step where the
spatial domain D is a two-dimensional rectangular duct with a symmetric expansion
(see Figure 6.1). The Dirichlet inflow boundary conditions at (−1, x2), |x2| ≤ 0.5 are
deterministic and time-dependent, growing from zero to a steady parabolic profile,

(6.1) ~uD((−1, x2), t) =

(
1− 4x22

0

)
(1− e−10t).

Neumann boundary conditions ν∂ux1
/∂x1 = p, ∂ux2

/∂x1 = 0 are imposed at the
outflow boundary (12, x2), |x2| ≤ 1, and no-flow conditions ~u = ~0 at the fixed walls
(x1,±1), 0 ≤ x1 ≤ 12; (x1,±0.5), −1 ≤ x1 ≤ 0; (0, x2), 0.5 ≤ |x2| ≤ 1. The
initial conditions are zero everywhere for both ~u and p. The Taylor–Hood spatial
discretization with biquadratic basis functions for the velocity space and bilinear basis
functions for the pressure space is defined on a uniform grid of square elements with
mesh size h, and it is constructed using the IFISS software package [26].

∂DN∂DD

∂DD

∂DD

0

0.5

1

-0.5

-1

-1 12

Fig. 6.1. Symmetric step domain with boundary conditions.

The stochastic viscosity ν(x, ξ) is represented as a truncated KL expansion

(6.2) ν(x, ξ) = ν0

(
1.0 + σ

m∑
l=1

√
βlal(x)ξl

)
.

The constants ν0 and ν0σ represent the mean and the standard deviation of the
stochastic field. We use an exponential covariance function c(x, y) = exp(−‖x−y‖1/b),
where b is the correlation length. The pair (βl, al(x)) is the lth largest eigenvalue and
the corresponding eigenfunction of c(x, y), satisfying

(6.3)

∫
D
c(x, y)al(y)dy = βlal(x).

This can be computed with a standard finite element method. The random variables
{ξl}ml=1 are assumed to be independent and each of them uniformly distributed on the
interval [−

√
3,
√

3], so they have zero means and unit variances. For the stochastic
Galerkin method, the basis functions {ψr}

nξ
r=1 are m-dimensional Legendre polynomi-

als, with total degrees bounded by dψ. Then the number of stochastic basis functions

14 H. C. ELMAN AND T. SU

is nξ = (m + dψ)!/(m!dψ!). In the numerical experiments, unless otherwise stated,
the parameter values associated with the discrete problem are chosen as in Table 6.1.
This gives a problem with dimensions nt = 64, nξ = 20, nu = 2992, np = 461, and
ntnξ(nu +np) = 4419840. All computations are done in MATLAB 9.4.0 (R2018a) on
a desktop with 64 GB memory.

Table 6.1
Parameter values for numerical experiments.

ν0 σ b m dψ tf τ h
1/50 0.01 4.0 3 3 1.0 2−6 2−2

6.2. Inexact Picard method. The main computational cost associated with
Picard’s method is to solve an all-at-once system (3.14) at each step. In section 4 we
discussed how to construct low-rank approximate solutions in tensor train format with
much cheaper computations. To further reduce the cost, we adopt the idea of inexact
Picard method [4], where the linear systems are solved inexactly to save unnecessary
computational work. Let (3.14) be denoted as L z(i) = r(i−1), and define the residual

norm ‖sk‖2 = ‖r(i−1)−L z
(i)
k ‖2 for an approximate solution z

(i)
k . It was shown in [4]

that if the stopping criterion for the linear solve (line 2 of Algorithm 4.2) is given as

(6.4) ‖sk‖2 ≤ tolgmres‖r(i−1)‖2,

then Picard’s method converges as long as tolgmres < 1. This is especially helpful
for our low-rank GMRES method. The best accuracy that the low-rank GMRES
method can achieve is related to the truncation tolerance εgmres used in the algo-
rithm (see Figure 6.2a). A relaxed stopping tolerance not only reduces the number
of GMRES iterations, but it also allows use of larger truncation tolerances for tensor
rank compressions, resulting in smaller ranks for the iterates and more efficient com-
putations in the iterative solver. In the numerical tests, we set tolgmres = 10−1 and
εgmres = 10−2 ∗ tolgmres = 10−3. The same tolerances are used for solving the linear
system (5.22) required for the preconditioning operation. For the initial u(0), p(0),
the Stokes problem is solved to satisfy ‖sk‖2 ≤ tolgmres‖f‖2 where f is the right-hand
side of (3.13).

6.3. Numerical results. In the following, we examine the performance of the
proposed low-rank algorithm in different settings. The choices of stopping and trunca-
tion tolerances are summarized in Table 6.2. In Algorithm 3.1, the stopping criterion
for Picard’s method is

(6.5) ‖r(i)‖2 ≤ tolpicard ∗ ‖f‖2.

We set tolpicard = 10−5. A small truncation tolerance εsoln = 10−7 is used to produce
low-rank approximate solutions u(i) and p(i) in (4.8). It is shown in Figure 6.2b that,
like the exact method, the inexact Picard method still exhibits a linear convergence
rate. It takes 5 Picard steps to reach the required accuracy. Figure 6.3 shows the
tensor train ranks κ1 and κ2 of the iterates at each Picard step. As the Picard iteration
converges, the right-hand side of (6.4) becomes smaller, and the corrections δu(i) and
δp(i) computed from the low-rank GMRES method have increasing ranks. On the
other hand, for the approximate solutions u(i) and p(i), their ranks drop to smaller
values in the latter steps of the iteration. With a more stringent tolpicard, a smaller

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 15

εsoln is required and the approximate solutions have slightly higher ranks than those
shown in Figure 6.3b. Also shown in Figure 6.3b are the tensor train ranks of ũ(i)

for constructing the approximate convection matrices using (4.13). They have much
smaller values than the ranks of u(i).

Table 6.2
Stopping and truncation tolerances.

GMRES stopping tolerance tolgmres = 10−1

Picard stopping tolerance tolpicard = 10−5

GMRES truncation tolerance εgmres = 10−3

Truncation tolerance for solutions εsoln = 10−7

Truncation tolerance for convection matrix εconv = 10−3

(a) (b)

Fig. 6.2. (a) Convergence of the low-rank GMRES method (at the first Picard step) with
different truncation tolerances. (b) Convergence of the inexact Picard method with tolerances chosen
as in Table 6.2. LSC preconditioner is used.

We demonstrate the savings obtained from the inexact solves. Table 6.3 shows the
performance of Picard’s method if different stopping tolerances are used in (6.4). With
a larger tolgmres, the number of Picard steps does not increase, while the total number
of GMRES iterations and the associated computational costs are greatly reduced.

Table 6.3
Performance of Picard’s method with different values of GMRES stopping tolerance tolgmres.

Truncation tolerance εgmres = 10−2 ∗ tolgmres. tolpicard = 10−5. LSC preconditioner is used.

tolgmres 10−1 10−3 10−5

εgmres 10−3 10−5 10−7

Number of Picard steps 5 5 5
Total number of GMRES iterations 18 39 58

Computational time (s) 205.9 555.7 1168.2

16 H. C. ELMAN AND T. SU

(a) (b)

Fig. 6.3. (a) Tensor train ranks of corrections δu(i) and δp(i). (b) Tensor train ranks of
approximate solutions u(i) and p(i), and tensor train ranks of ũ(i) for convection matrix. LSC
preconditioner is used.

We compare the two mean-based preconditioners discussed in section 5. Fig-
ure 6.4 shows the number of GMRES iterations required at each Picard step, and
the associated computational costs when the two preconditioners are used. For two
different mesh sizes, the PCD preconditioner results in larger numbers of GMRES
iterations, and thus higher computational times, than the LSC preconditioner. It
should also be noted that for both preconditioners, only a small number of GMRES
iterations is needed for solving the linear system at each Picard step. This is partially
due to the large stopping tolerance used in (6.4). The LSC preconditioner will be
used for the numerical tests below.

In the following, we test the algorithm with several variants of the benchmark
problem determined by various values of parameters associated with it. Figure 6.5a
shows the solution ranks and computational times for three different values of σ.
When σ is smaller, the standard deviation is smaller, the discrete solution can be
approximated by a tensor train with smaller ranks, and it is also less expensive to
solve the nonlinear problem. On the other hand, even for σ = 0.1, the low-rank
solution takes much less storage than a full tensor. For example, the ranks of the
approximate solution u(i) are κ1 = 13, κ2 = 83. The ratio of storage requirements
between such a tensor train and a full tensor is

(6.6)
ntκ1 + nξκ1κ2 + nuκ2

ntnξnu
=

270748

3829760
≈ 7.1%.

The same quantities are plotted in Figure 6.5b for different values of the mean viscosity
ν0. The ranks and computational times are not significantly affected by ν0.

Finally, the algorithm is applied to solve discrete problems with various mesh
sizes h or time step sizes τ . It can be seen from Figure 6.6a that there is only a
slight increase in the solution ranks as the spatial mesh is refined. It is also shown in
Figure 6.6a that the computational time increases with an asymptotic rate O(h−2)
(note that a logarithmic scale is used in the figure). In other words, as the spatial

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 17

(a) (b)

Fig. 6.4. (a) Number of GMRES iterations at each Picard step. (b) Cumulative computational
time after each Picard step. For h = 2−2 with PCD preconditioner, it takes 6 Picard steps for
convergence.

(a) (b)

Fig. 6.5. Tensor train ranks of solutions u(i) and p(i) at final Picard step and computational
times to compute solutions, for different values of σ and ν0.

mesh is refined, no extra computational burden is introduced except for the increased
problem size. For different time step sizes τ , the computational time increases much
more slowly than O(τ−1) (see Figure 6.6b). This is due to the fact that in F+C, the
matrices obtained from time discretization are very simple (e.g., Int and Cnt), and
thus an increase in nt does not make a significant impact on the computational costs.

18 H. C. ELMAN AND T. SU

(a) (b)

Fig. 6.6. Tensor train ranks of solutions u(i) and p(i) at final Picard step and computational
times to compute solutions, for different values of h and τ . In (a), ne = 2/h is the number of
elements in the vertical interval [−1, 1] of the domain D.

7. Conclusions. In this paper, we developed and studied efficient low-rank iter-
ative methods for solving the time-dependent Navier–Stokes equations with a random
viscosity. We considered an all-at-once formulation where the discrete solutions at all
the time steps are solved together in a single system. To address the high storage
and computational costs of this strategy, we used low-rank tensor approximations
in a Newton–Krylov type algorithm. For the all-at-once system, we proposed two
mean-based preconditioners using results from the deterministic problem. The com-
putational costs were further reduced with inexact Picard method and approximate
convection matrices. It was shown in the numerical experiments that the low-rank
method is able to solve the nonlinear problem efficiently and the discrete solutions
have small tensor ranks.

REFERENCES

[1] R. Andreev and C. Tobler, Multilevel preconditioning and low-rank tensor iteration for
space-time simultaneous discretizations of parabolic PDEs, Numerical Linear Algebra with
Applications, 22 (2015), pp. 317–337.

[2] J. Ballani and L. Grasedyck, A projection method to solve linear systems in tensor format,
Numerical Linear Algebra with Applications, 20 (2013), pp. 27–43.

[3] P. Benner, S. Dolgov, A. Onwunta, and M. Stoll, Solving optimal control problems
governed by random Navier–Stokes equations using low-rank methods, Mar. 2017, https:
//arxiv.org/abs/1703.06097.

[4] P. Birken, Termination criteria for inexact fixed-point schemes, Numerical Linear Algebra
with Applications, 22 (2015), pp. 702–716.

[5] S. V. Dolgov, TT-GMRES: solution to a linear system in the structured tensor format, Rus-
sian Journal of Numerical Analysis and Mathematical Modelling, 28 (2013), pp. 149–172.

[6] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods for linear systems
in higher dimensions, SIAM Journal on Scientific Computing, 36 (2014), pp. A2248–A2271.

[7] H. Elman, M. Mihajlović, and D. Silvester, Fast iterative solvers for buoyancy driven flow
problems, Journal of Computational Physics, 230 (2011), pp. 3900–3914.

[8] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:

https://arxiv.org/abs/1703.06097
https://arxiv.org/abs/1703.06097

LOW-RANK SOLVER FOR STOCHASTIC UNSTEADY NAVIER–STOKES PROBLEM 19

With Applications in Incompressible Fluid Dynamics, Oxford University Press, UK, sec-
ond ed., 2014.

[9] O. G. Ernst and E. Ullmann, Stochastic Galerkin matrices, SIAM Journal on Matrix Analysis
and Applications, 31 (2010), pp. 1848–1872.

[10] M. J. Gander and M. Neumüller, Analysis of a new space-time parallel multigrid algorithm
for parabolic problems, SIAM Journal on Scientific Computing, 38 (2016), pp. A2173–
A2208.

[11] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Dover
Publications, New York, 2003.

[12] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-
imation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53–78.

[13] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor op-
timization in the tensor train format, SIAM Journal on Scientific Computing, 34 (2012),
pp. A683–A713.

[14] D. A. Kay, P. M. Gresho, D. F. Griffiths, and D. J. Silvester, Adaptive time-stepping
for incompressible flow part II: Navier–Stokes equations, SIAM Journal on Scientific Com-
puting, 32 (2010), pp. 111–128.

[15] D. Kressner and C. Tobler, Low-rank tensor Krylov subspace methods for parametrized
linear systems, SIAM Journal on Matrix Analysis and Applications, 32 (2011), pp. 1288–
1316.

[16] O. Le Mâıtre and O. M. Knio, Spectral Methods for Uncertainty Quantification: With Ap-
plications to Computational Fluid Dynamics, Springer, Netherlands, 2010.

[17] M. Loève, Probability Theory, Van Nostrand, New York, 1960.
[18] Y. Maday and E. M. Rønquist, Parallelization in time through tensor-product space–time

solvers, Comptes Rendus Mathematique, 346 (2008), pp. 113–118.
[19] E. McDonald, J. Pestana, and A. Wathen, Preconditioning and iterative solution of all-

at-once systems for evolutionary partial differential equations, SIAM Journal on Scientific
Computing, 40 (2018), pp. A1012–A1033.

[20] E. McDonald and A. Wathen, A simple proposal for parallel computation over time of an
evolutionary process with implicit time stepping, in Numerical Mathematics and Advanced
Applications ENUMATH 2015, Springer, 2016, pp. 285–293.

[21] I. V. Oseledets, Tensor-train decomposition, SIAM Journal on Scientific Computing, 33
(2011), pp. 2295–2317.

[22] I. V. Oseledets, S. Dolgov, V. Kazeev, D. Savostyanov, O. Lebedeva, P. Zhlobich,
T. Mach, and L. Song, TT-Toolbox, https://github.com/oseledets/TT-Toolbox. Version
2.2.

[23] C. E. Powell and D. J. Silvester, Preconditioning steady-state Navier–Stokes equations with
random data, SIAM Journal on Scientific Computing, 34 (2012), pp. A2482–A2506.

[24] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, second ed., 2003.
[25] U. Schollwöck, The density-matrix renormalization group, Reviews of Modern Physics, 77

(2005), pp. 259–315.
[26] D. Silvester, H. Elman, and A. Ramage, Incompressible Flow and Iterative Solver Software

(IFISS), Sept. 2016, https://www.manchester.ac.uk/ifiss. Version 3.5.
[27] B. Soused́ık and H. C. Elman, Stochastic Galerkin methods for the steady-state Navier–Stokes

equations, Journal of Computational Physics, 316 (2016), pp. 435–452.
[28] D. Xiu and G. E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential

equations, SIAM Journal on Scientific Computing, 24 (2002), pp. 619–644.

https://github.com/oseledets/TT-Toolbox
https://www.manchester.ac.uk/ifiss

	1 Introduction
	2 Problem setting
	3 Discrete problem
	3.1 Time discretization
	3.2 Stochastic Galerkin method
	3.3 All-at-once system
	3.4 Picard's method

	4 Low-rank approximation
	4.1 Tensor train decomposition
	4.2 Low-rank solver
	4.3 Convection matrix

	5 Preconditioning
	5.1 Deterministic operator
	5.2 Approximations to S-1
	5.3 System solve with F+C

	6 Numerical experiments
	6.1 Benchmark problem
	6.2 Inexact Picard method
	6.3 Numerical results

	7 Conclusions
	References

